Introduction

Results
Insights inferred from sequence and structural alignments

Single-point mutation of Asn27 and Ile142 diminished the catalytic efficiency by decreasing the oxygen capturing capacity
Enzyme | Buffer | Substrate | Km | kcat | kcat/Km × 103 |
---|---|---|---|---|---|
μm | s−1 | s−1 μm−1 | |||
Wild-type | 3-HAA | 22.4 ± 2.7 | 25 | 1120 ± 130 | |
Wild-type | O2 saturated | 3-HAA | 24.7 ± 4.7 | 24.2 ± 2.3 | 980 ± 210 |
N27A | O2 (286 μm) | 3-HAA | 142 ± 18 | 3.97 ± 0.3 | 28.0 ± 4.1 |
N27A | O2 saturated | 3-HAA | 72.0 ± 9.2 | 26.5 ± 1.8 | 368 ± 53 |
I142A | O2 (286 μm) | 3-HAA | 240 ± 50 | 5.01 ± 0.6 | 20.9 ± 5.0 |
I142A | O2 saturated | 3-HAA | 110 ± 20 | 13.9 ± 0.9 | 126 ± 25 |
I142P | O2 (286 μm) | 3-HAA | 97 ± 15 | 11.5 ± 0.7 | 118 ± 20 |
I142P | O2 saturated | 3-HAA | 187 ± 34 | 24.8 ± 2.6 | 133 ± 28 |
Wild-type | 3-HAA saturated | O2 | 156 ± 36 | 25.8 ± 2.8 | 165 ± 42 |
N27A | 3-HAA saturated | O2 | 1144 ± 48 | 15.7 ± 0.5 | 13.64 ± 0.7 |
I142A | 3-HAA saturated | O2 | >2227 | >19.5 | ND |
I142P | 3-HAA saturated | O2 | 1120 ± 250 | 21.3 ± 3.4 | 19.0 ± 5.2 |
Mutation of Asn27 evades substrate-binding–induced loop movement
HAO N27A ligand-free | HAO N27A ClHAA-bound | HAO I142A ligand-free | HAO I142A ClHAA-bound | HAO I142A 3-HAA-bound | HAO I142P ligand-free | HAO I142P ClHAA-bound | HAO I142P 3-HAA-bound | |
---|---|---|---|---|---|---|---|---|
Data collection | ||||||||
Space group | P6522 | P6522 | P6522 | P6522 | P6522 | P6522 | P6522 | P6522 |
Cell dimensions a, b, c (Å) | 58.4, 58.4, 230.5 | 58.6, 58.6, 236.3 | 58.9, 58.9, 232.1 | 58.3, 58.3, 239.6 | 58.4, 58.4, 230.8 | 58.5, 58.5, 232.2 | 58.7, 58.7, 231.9 | 58.9, 58.9, 232.3 |
Resolution | 50–1.90 (1.97–1.90) | 50–2.10 (2.18–2.10) | 50–1.90 (1.93–1.90) | 50–2.31 (2.35–2.31) | 50–2.60 (2.64–2.60) | 50–2.22 (2.26–2.22) | 50–1.74 (1.77–1.74) | 50–1.77 (1.80–1.77) |
No. of observed reflections | 19,292 (1816) | 14,268 (1466) | 20,024 (946) | 10,918 (519) | 7693 (350) | 12,593 (620) | 25,473 (1160) | 24,171 (1151) |
Redundancy | 10.3 (5.7) | 28.7 (31.4) | 10.8 (8.2) | 17.6 (19.0) | 15.2 (7.5) | 22.5 (22.6) | 26.1 (21.2) | 9.9 (9.0) |
Completeness (%) | 99.4 (97.3) | 100 (94.3) | 99.9 (99.3) | 99.9 (99.8) | 98.4 (87.1) | 99.8 (100) | 99.5 (92.9) | 98.6 (97.9) |
I/σ(I) | 16.7 (1.6) | 8.8 (10.3) | 22.9 (3.6) | 17.9 (3.7) | 19.0 (2.2) | 21.9 (4.8) | 42 (3.2) | 30.2 (5.5) |
Rmerge (%) | 17.1 (52.2) | 23.6 (39.4) | 11.8 (38.2) | 21.1 (93.3) | 17.8 (43.9) | 18.4 (95.4) | 10.1 (90.9) | 8.2 (31.4) |
CC1/2 | 0.99 (0.85) | 0.98 (0.98) | 1.00 (0.98) | 0.99 (0.97) | 1.00 (0.93) | 1.00 (0.98) | 1.00 (0.97) | 1.00 (0.99) |
Refinement | ||||||||
Rwork | 19.2 | 22.8 | 19.2 | 20.5 | 19.2 | 20.8 | 19.9 | 18.7 |
Rfree | 23.2 | 26.7 | 24.1 | 25.5 | 24.9 | 25.2 | 23.7 | 21.6 |
RMSD bond length (Å) | 0.007 | 0.011 | 0.007 | 0.009 | 0.007 | 0.008 | 0.006 | 0.006 |
RMSD bond angles (°) | 0.830 | 0.935 | 0.896 | 0.901 | 0.974 | 1.174 | 0.802 | 0.848 |
Ramachandran statistics | ||||||||
Preferred (%) | 98.2 | 97.6 | 98.3 | 98.8 | 97.6 | 98.3 | 99.4 | 98.8 |
Allowed (%) | 1.2 | 2.4 | 1.7 | 1.2 | 1.2 | 1.7 | 0.6 | 1.2 |
Outliers (%) | 0 | 0 | 0 | 0 | 1.2 | 0 | 0 | 0 |
Average B-factor (Å2) | ||||||||
Protein/atoms | 38.7/1382 | 44.4/1377 | 40.0/1428 | 45.8/1401 | 31.3/1377 | 35.3/1408 | 27.5/1408 | 21.9/1414 |
ClHAA or 3-HAA/atoms | NA | 53.7/12 | NA | 62.8/12 | 38.0/11 | NA | 30.1/12 | 22.9/11 |
Tris/atoms | 49.3/8 | 47.6/8 | 39.2/8 | 53.8/8 | NA | 39.0/8 | 31.0/8 | 30.6/8 |
Iron/atoms | 42.4/2 | 58.4/2 | 36.6/2 | 59.6/2 | 26.2/2 | 48.8/2 | 33.4/2 | 28.8/2 |
Solvent/atoms | 47.2/143 | 47.8/96 | 46.5/181 | 45.9/68 | 28.9/63 | 37.8/144 | 37.8/264 | 33.0/298 |
PDB code | 6BVP | 6BVQ | 6BVR | 6BVS | 6CD3 | 6D60 | 6D61 | 6D62 |

Effect of Ile142 on loop regions conformation change

Discussion
Protein dynamics during HAO reaction
The putative O2 binding cavity in the active site of HAO
The loop regions in HAO from other biological origins
How do the nonheme iron enzymes handle two or more substrates with distinct polar natures?
Structural requirement for capturing O2 in iron-dependent proteins
Concluding remarks
Experimental procedures
Materials
Site-directed mutagenesis and protein preparation
Kinetic assay of wtHAO and mutants toward both substrates
Crystallization, data collection, processing, and refinement
Author contributions
Acknowledgments
Supplementary Material
References
- Versatility of biological non-heme Fe(II) centers in oxygen activation reactions.Nat. Chem. Biol. 2008; 4 (18277980): 186-193
- Finding intermediates in the O2 activation pathways of non-heme iron oxygenases.Acc. Chem. Res. 2007; 40 (17567087): 475-483
- Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis.Biochemistry. 2005; 44 (15909978): 7632-7643
- Crystal structure of 3-hydroxyanthranilic acid 3,4-dioxygenase from Saccharomyces cerevisiae: a special subgroup of the type III extradiol dioxygenases.Protein Sci. 2006; 15 (16522801): 761-773
- Crystal structure of bovine 3-hydroxyanthranilate 3,4-dioxygenase.Biopolymers. 2009; 91 (19226621): 1189-1195
- The kynurenine pathway of tryptophan degradation as a drug target.Curr. Opin. Pharmacol. 2004; 4 (15018833): 12-17
- Kynurenines in the mammalian brain: when physiology meets pathology.Nat. Rev. Neurosci. 2012; 13 (22678511): 465-477
- Endogenous kynurenines as targets for drug discovery and development.Nat. Rev. Drug Discov. 2002; 1 (12402501): 609-620
- NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria.Chem. Biol. 2003; 10 (14700627): 1195-1204
- Tryptophan catabolism: identification and characterization of a new degradative pathway.J. Bacteriol. 2005; 187 (16267312): 7866-7869
- Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7.Appl. Environ. Microbiol. 2003; 69 (12620844): 1564-1572
- The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3-hydroxyanthranilate.Biochemistry. 2005; 44 (15909977): 7623-7631
- An iron reservoir to the catalytic metal: the rubredoxin iron in an extradiol dioxygenase.J. Biol. Chem. 2015; 290 (25918158): 15621-15634
- Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas.J. Biol. Chem. 2009; 284 (19828456): 34321-34330
- Anaerobic enzyme substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (12486225): 16625-16630
- Substrate-induced conformational changes in Escherichia coli taurine/α-ketoglutarate dioxygenase and insight into the oligomeric structure.Biochemistry. 2003; 42 (12741810): 5547-5554
- Conformational switch triggered by α-ketoglutarate in a halogenase of curacin A biosynthesis.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20660778): 14099-14104
- Order of substrate binding in bacterial phenylalanine hydroxylase and its mechanistic implication for pterin-dependent oxygenases.J. Biol. Inorg. Chem. 2003; 8 (12459906): 121-128
- Crystal structure and site-specific mutagenesis of pterin-bound human phenylalanine hydroxylase.Biochemistry. 2000; 39 (10694386): 2208-2217
- Equality of the in vivo and in vitro oxygen-binding capacity of haemoglobin in patients with severe respiratory disease.Br. J. Anaesth. 1981; 53 (7317251): 1325-1328
- An X-ray study of azide methaemoglobin.J. Mol. Biol. 1966; 21 (5969763): 199-202
- Hydrophobic effect drives oxygen uptake in myoglobin via histidine E7.J. Biol. Chem. 2013; 288 (23297402): 6754-6762
- O2 migration pathways are not conserved across proteins of a similar fold.Biophys. J. 2007; 93 (17693478): 3591-3600
- Processing of X-ray diffraction data collected in oscillation mode.Methods Enzymol. 1997; 276 (27799103, 27754618): 307-326
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- The PyMOL Molecular Graphics System.(version 1.7.0.0) Schrodinger, LLC, New York2014
- Linking crystallographic model and data quality.Science. 2012; 336 (22628654): 1030-1033
- Accurate bond and angle parameters for X-ray protein structure refinement.Acta Crystallogr. A. 1991; 47: 392-400
- MolProbity: all-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20057044): 12-21
- Deciphering key features in protein structures with the new ENDscript server.Nucleic Acids Res. 2014; 42 (24753421): W320-W324
Article info
Publication history
Footnotes
This work was supported in part by National Science Foundation Grant CHE-1623856 (to A. L.) and National Institutes of Health Grants GM107529, GM108988, and MH107985 (A. L.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The atomic coordinates and structure factors (codes 6BVP, 6BVQ, 6BVR, 6BVS, 6CD3, 6D60, 6D61, and 6D62) have been deposited in the Protein Data Bank (http://wwpdb.org/).
This article contains Figs. S1–S10.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy