Introduction
- Ward M.
- Wu S.
- Dauberman J.
- Weiss G.
- Larenas E.
- Bower B.
- Rey M.
- Clarkson K.
- Bott R.
- Foreman P.K.
- Brown D.
- Dankmeyer L.
- Dean R.
- Diener S.
- Dunn-Coleman N.S.
- Goedegebuur F.
- Houfek T.D.
- England G.J.
- Kelley A.S.
- Meerman H.J.
- Mitchell T.
- Mitchinson C.
- Olivares H.A.
- Teunissen P.J.
- et al.
- Foreman P.K.
- Brown D.
- Dankmeyer L.
- Dean R.
- Diener S.
- Dunn-Coleman N.S.
- Goedegebuur F.
- Houfek T.D.
- England G.J.
- Kelley A.S.
- Meerman H.J.
- Mitchell T.
- Mitchinson C.
- Olivares H.A.
- Teunissen P.J.
- et al.
- Momeni M.H.
- Goedegebuur F.
- Hansson H.
- Karkehabadi S.
- Askarieh G.
- Mitchinson C.
- Larenas E.A.
- Ståhlberg J.
- Sandgren M.
- Momeni M.H.
- Goedegebuur F.
- Hansson H.
- Karkehabadi S.
- Askarieh G.
- Mitchinson C.
- Larenas E.A.
- Ståhlberg J.
- Sandgren M.
Results
Expression of thermostabilized H. jecorina Cel7A variants in A. niger var. awamori
Variant | Mutations | Tm | ΔTm |
---|---|---|---|
°C | °C | ||
FCA301 | None | 62.5 | 0 |
FCA330 | S8P | 63.7 | +1.2 |
FCA328 | G22D/S278P/T296P | 63.6 | +1.1 |
FCA335 | T41I | 64.2 | +1.7 |
FCA332 | N49S | 63.7 | +1.2 |
FCA347 | A68T | 63.7 | +1.2 |
FCA377 | N89D | 63.5 | +1.0 |
FCA374 | S92T | 64.4 | +1.9 |
FCA326 | S113N | 64.0 | +1.5 |
FCA375 | S196T/S411F | 65.3 | +2.8 |
FCA334 | P227L | 65.2 | +2.7 |
FCA373 | P227A | 64.8 | +2.3 |
FCA349 | D249K | 64.0 | +1.5 |
FCA376 | T255P | 64.4 | +1.9 |
FCA384 | E295K | 64.0 | +1.5 |
FCA372 | S297L/V403D/T462I | 64.5 | +2.0 |
FCA468 | N301R | 63.0 | +0.5 |
FCA369 | T332Y | 63.3 | +0.8 |
Cel7A variant | Mutations | t½ | Tm | ΔTm | ||
---|---|---|---|---|---|---|
62 °C | 66 °C | 69 °C | ||||
min | °C | °C | ||||
FCA301 | None | 19.9 | 9.3 | 8.6 | 62.5 | 0 |
FCA353 | G22D/N49S/A68T/P227L/S278P/T296P | 223 | ND | 8.3 | 65.9 | +3.4 |
FCA367 | S8P/G22D/T41I/N49S/A68T/S113N/P227L /D249K/S278P/T296P/N301R | 596 | 182 | 53.9 | 69.9 | +7.4 |
FCA398 | S8P/T41I/N49S/A68T/N89D/S92T/S113N /S196T/P227L/D249K/T255P/S278P/E295K /T296P/T332Y/V403D/S411F/T462I | 866 | 315 | 75.3 | 72.9 | +10.4 |
Determination of protein Tm values
Thermal inactivation and half-life, t½, at elevated temperature
Degradation of phosphoric acid swollen cellulose (PASC) by Cel7A variant FCA398 at elevated temperature

3D structure of the catalytic domain of the Cel7A FCA398 variant

Parameter | Value |
---|---|
PDB code | 5OA5 |
Diffraction source | ESRF ID23-2 |
Wavelength (Å) | 0.8726 |
Temperature (K) | 100 |
Detector | CCD MAR225 |
Rotation range per image (degrees) | 0.5 |
Space group | P21212 |
a, b, c (Å) | 102.94, 92.10, 102.20 |
α, β, γ (degrees) | 90, 90, 90 |
Resolution range (Å) | 41–2.1 (2.21–2.10) |
Total no. of reflections | 211,322 |
No. of unique reflections | 56,990 |
Completeness (%) | 99.6 (99.6) |
Redundancy | 3.71 (3.73) |
〈I/σ(I)〉 | 7.2 (3.0) |
Rmeas | 0.15 (0.47) |
Resolution range in refinement (Å) | 40–2.1 (2.15–2.10) |
σ cut-off | 2.0 |
No. of reflections, working set | 53,983 (3975) |
No. of reflections, test set | 2882 (183) |
Final Rcryst | 0.197 (0.256) |
Final Rfree | 0.238 (0.306) |
No. of non-hydrogen atoms | |
Protein | 6480 |
Non-protein | 90 |
Water | 546 |
RMSD | |
Bonds (Å) | 0.013 |
Angles (degrees) | 1.65 |
Average B factors (Å2) | |
Overall | 17.7 |
Protein | 16.9 |
Water | 25.0 |
Stringent Ramachandran outliers (%) | 1.7 |
- von Ossowski I.
- Ståhlberg J.
- Koivula A.
- Piens K.
- Becker D.
- Boer H.
- Harle R.
- Harris M.
- Divne C.
- Mahdi S.
- Zhao Y.
- Driguez H.
- Claeyssens M.
- Sinnott M.L.
- Teeri T.T.
- Momeni M.H.
- Payne C.M.
- Hansson H.
- Mikkelsen N.E.
- Svedberg J.
- Engström Å.
- Sandgren M.
- Beckham G.T.
- Ståhlberg J.
- von Ossowski I.
- Ståhlberg J.
- Koivula A.
- Piens K.
- Becker D.
- Boer H.
- Harle R.
- Harris M.
- Divne C.
- Mahdi S.
- Zhao Y.
- Driguez H.
- Claeyssens M.
- Sinnott M.L.
- Teeri T.T.
Molecular dynamics (MD) simulations of Cel7A FCA301 and the FCA398 variant


Discussion
- Kraulis J.
- Clore G.M.
- Nilges M.
- Jones T.A.
- Pettersson G.
- Knowles J.
- Gronenborn A.M.
- Hobdey S.E.
- Knott B.C.
- Haddad Momeni M.
- Taylor 2nd, L.E.
- Borisova A.S.
- Podkaminer K.K.
- VanderWall T.A.
- Himmel M.E.
- Decker S.R.
- Beckham G.T.
- Ståhlberg J.
- Hobdey S.E.
- Knott B.C.
- Haddad Momeni M.
- Taylor 2nd, L.E.
- Borisova A.S.
- Podkaminer K.K.
- VanderWall T.A.
- Himmel M.E.
- Decker S.R.
- Beckham G.T.
- Ståhlberg J.
Mutation P227L

Tunnel entrance region
Surface loop turns
New N-glycosylation at S113N site
- Hobdey S.E.
- Knott B.C.
- Haddad Momeni M.
- Taylor 2nd, L.E.
- Borisova A.S.
- Podkaminer K.K.
- VanderWall T.A.
- Himmel M.E.
- Decker S.R.
- Beckham G.T.
- Ståhlberg J.
- Textor L.C.
- Colussi F.
- Silveira R.L.
- Serpa V.
- de Mello B.L.
- Muniz J.R.C.
- Squina F.M.
- Pereira Jr., N.
- Skaf M.S.
- Polikarpov I.

Role of cystine residues in stability
Experimental procedures
H. jecorina Cel7A combinatorial variant construction
- Momeni M.H.
- Goedegebuur F.
- Hansson H.
- Karkehabadi S.
- Askarieh G.
- Mitchinson C.
- Larenas E.A.
- Ståhlberg J.
- Sandgren M.
- Momeni M.H.
- Goedegebuur F.
- Hansson H.
- Karkehabadi S.
- Askarieh G.
- Mitchinson C.
- Larenas E.A.
- Ståhlberg J.
- Sandgren M.
Recombination of mutated sites of variant FCA367
Expression and purification of selected Cel7A variants
Determination of Tm
- Momeni M.H.
- Goedegebuur F.
- Hansson H.
- Karkehabadi S.
- Askarieh G.
- Mitchinson C.
- Larenas E.A.
- Ståhlberg J.
- Sandgren M.
Thermal inactivation half-life measurements
- Momeni M.H.
- Goedegebuur F.
- Hansson H.
- Karkehabadi S.
- Askarieh G.
- Mitchinson C.
- Larenas E.A.
- Ståhlberg J.
- Sandgren M.
Cellulose conversion assay using PASC as substrate
Preparation and crystallization of Cel7A variant FCA398 catalytic domain
X-ray data collection, structure solution, and refinement
Molecular dynamics simulation
Author contributions
Acknowledgments
Supplementary Material
References
- Deconstruction of lignocellulosic biomass to fuels and chemicals.Annu. Rev. Chem. Biomol. Eng. 2011; 2: 121-145
- Fungal cellulases.Chem. Rev. 2015; 115: 1308-1448
- Systems biological approaches towards understanding cellulase production by Trichoderma reesei.J. Biotechnol. 2013; 163: 133-142
- Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414.Appl. Environ. Microbiol. 1998; 64: 555-563
- EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme.Gene. 1988; 63: 11-22
- A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast.Mol. Microbiol. 1994; 13: 219-228
- cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.Eur. J. Biochem. 1997; 249: 584-591
- Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II.Gene. 1987; 51: 43-52
- Cloning, sequence and preliminary structural analysis of a small, high pI endoglucanase (EGIII) from Trichoderma reesei.in: Suominen P. Reinikainen T. The Tricel 93 symposium. Vol. 8. Foundation for Biotechnical and Industrial Fermentation Research, Espoo, Finland1993: 153-158
- Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei.J. Biol. Chem. 2003; 278: 31988-31997
- Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates.Biotechnology. 1991; 9: 562-567
- Comparison of gene structures and enzymatic properties between two endoglucanases from Humicola grisea.J. Biotechnol. 1999; 67: 85-97
- Identification of genes encoding microbial glucuronoyl esterases.FEBS Lett. 2007; 581: 4029-4035
- The crystal structure of the core domain of a cellulose induced protein (Cip1) from Hypocrea jecorina, at 1.5 Å resolution.PLoS One. 2013; 8: e70562
- Directed evolution of industrial enzymes: an update.Curr. Opin. Biotechnol. 2003; 14: 438-443
- High-frequency one-step gene replacement in Trichoderma reesei. 2. Effects of deletions of individual cellulase genes.Mol. Gen. Genet. 1993; 241: 523-530
- Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei.Appl. Environ. Microbiol. 1997; 63: 1298-1306
- Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures.J. Proteome Res. 2011; 10: 4365-4372
- Biomass recalcitrance: engineering plants and enzymes for biofuels production.Science. 2007; 315: 804-807
- Expression, crystal structure and cellulase activity of the thermostable cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea.Acta Crystallogr. D Biol. Crystallogr. 2014; 70: 2356-2366
- The consensus concept for thermostability engineering of proteins: further proof of concept.Protein Eng. 2002; 15: 403-411
- Introduction of disulfide bonds into Bacillus subtilis neutral protease.Protein Eng. 1993; 6: 521-527
- Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability.Protein Sci. 2003; 12: 848-860
- Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase.Curr. Genet. 2002; 41: 89-98
- Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms.PLoS One. 2016; 11: e0145848
- The consensus concept for thermostability engineering of proteins.Biochim. Biophys. Acta. 2000; 1543: 408-415
- Improvement of tagatose conversion rate by genetic evolution of thermostable galactose isomerase.Biotechnol. Appl. Biochem. 2001; 34: 99-102
- Thermostabilization of bacterial fructosyl-amino acid oxidase by directed evolution.Appl. Environ. Microbiol. 2003; 69: 139-145
- Structure-guided SCHEMA recombination of distantly related β-lactamases.Protein Eng. Des. Sel. 2006; 19: 563-570
- A family of thermostable fungal cellulases created by structure-guided recombination.Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 5610-5615
- Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris.Biotechnol. Prog. 1999; 15: 828-833
- Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli.Appl. Biochem. Biotechnol. 1996; 57: 389-397
- Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I.Proteins. 1992; 14: 475-482
- Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae.Gene. 1988; 63: 103-112
- The importance of pyroglutamate in cellulase Cel7A.Biotechnol. Bioeng. 2014; 111: 842-847
- Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination.Protein Eng. Des. Sel. 2010; 23: 871-880
- Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods.Protein Eng. Des. Sel. 2012; 25: 827-833
- Biased clique shuffling reveals stabilizing mutations in cellulase Cel7A.Biotechnol. Bioeng. 2012; 109: 2710-2719
- Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B.Appl. Microbiol. Biotechnol. 2009; 83: 261-272
- Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity.Protein Eng. Des. Sel. 2010; 23: 69-79
- Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination.ACS Synth. Biol. 2013; 2: 690-696
- Variant Hypocrea jecorina CBH1 cellulases.January 28 2014 (United States Patent 8,637,294)
- Stabilization of an enzyme with protein engineering technology.in: Biotechnology for Sustainable Utilization of Biological Resources in the Tropics. Vol. 14. International Center for Biotechnology, Osaka University, Osaka, Japan2000: 186-192
- Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane.Adv. Synth. Catal. 2001; 343: 607-617
- Factors influencing glycosylation of Trichoderma reesei cellulases. II: N-glycosylation of Cel7A core protein isolated from different strains.Glycobiology. 2004; 14: 725-737
- Carbohydrate–protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity.J. Am. Chem. Soc. 2014; 136: 8810-8819
- Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A: a comparison with Phanerochaete chrysosporium Cel7D.J. Mol. Biol. 2003; 333: 817-829
- Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare.J. Biol. Chem. 2013; 288: 5861-5872
- High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei.J. Mol. Biol. 1998; 275: 309-325
- The catalytic module of Cel7D from Phanerochaete chrysosporium as a chiral selector: structural studies of its complex with the β blocker (R)-propranolol.Acta Crystallogr. D Biol. Crystallogr. 2003; 59: 637-643
- Determination of the 3-dimensional solution structure of the C-terminal domain of cellobiohydrolase-I from Trichoderma reesei: a study using nuclear magnetic-resonance and hybrid distance geometry dynamical simulated annealing.Biochemistry. 1989; 28: 7241-7257
- Biochemical and structural characterizations of two dictyostelium cellobiohydrolases from the amoebozoa kingdom reveal a high level of conservation between distant phylogenetic trees of life.Appl. Environ. Microbiol. 2016; 82: 3395-3409
- Capping and α-helix stability.Nature. 1989; 342: 296-299
- Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr 59.Biochemistry. 1992; 31: 3590-3596
- The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability.Proteins. 1986; 1: 23-33
- Thermoascus aurantiacus CBHI/Cel7A production in Trichoderma reesei on alternative carbon sources.Appl. Biochem. Biotechnol. 2007; 137: 195-204
- Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding.Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 6663-6667
- The effect of proline insertions on the thermostability of a barley α-glucosidase.Protein Eng. 2002; 15: 29-33
- Joint X-ray crystallographic and molecular dynamics study of cellobiohydrolase I from Trichoderma harzianum: deciphering the structural features of cellobiohydrolase catalytic activity.FEBS J. 2013; 280: 56-69
- A combination of weakly stabilizing mutations with a disulfide bridge in the α-helix region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism.J. Biotechnol. 2001; 88: 37-46
- The development of gene expression systems for filamentous fungi.Biotechnol. Adv. 1989; 7: 127-154
- Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to kcat.Protein Sci. 2000; 9: 991-1001
- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY1989 Molecular Cloning: A Laboratory Manual. 2nd Ed.
- The influence of the fine structure of cellulose on the action of cellulases.TAPPI. 1952; 35: 233-238
- The cellulase of Fusarium solani: purification and specificity of the β-(1→4)-glucanase and the β-d-glucosidase components.Biochem. J. 1971; 121: 353-362
- Effect of single active-site cleft mutation on product specificity in a thermostable bacterial cellulase.Appl. Biochem. Biotechnol. 2002; 98: 383-394
- Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei.J. Mol. Biol. 1996; 264: 337-349
- Preparation and Analysis of Protein Crystals.Wiley, New York1982
- Solvent content of protein crystals.J. Mol. Biol. 1968; 33: 491-497
- Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein–nucleic acid complex crystals.Protein Sci. 2003; 12: 1865-1871
- Scaling and assessment of data quality.Acta Crystallogr. D Biol. Crystallogr. 2006; 62: 72-82
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 125-132
- Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67: 235-242
- Free R value: a novel statistical quantity for assessing the accuracy of crystal structures.Nature. 1992; 355: 472-475
- The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei.Science. 1994; 265: 524-528
- Refinement of macromolecular structures by the maximum-likelihood method.Acta Crystallogr. D Biol. Crystallogr. 1997; 53: 240-255
- Molray: a web interface between O and the POV-Ray ray tracer.Acta Crystallogr. D Biol. Crystallogr. 2001; 57: 1201-1203
- The Protein Data Bank: a computer-based archival file for macromolecular structures.J. Mol. Biol. 1977; 112: 535-542
- Increasing temperature accelerates protein unfolding without changing the pathway of unfolding.J. Mol. Biol. 2002; 322: 189-203
- Similarity and difference in the unfolding of thermophilic and mesophilic cold shock proteins studied by molecular dynamics.Biophys. J. 2006; 91: 2451-2463
- Thermal unfolding molecular dynamics simulation of Escherichia coli dihydrofolate reductase: thermal stability of protein domains and unfolding pathway.Proteins Struct. Funct. Genet. 2002; 46: 308-320
- Calculations on folding of segment B1 of streptococcal protein G.J. Mol. Biol. 1998; 278: 439-456
- The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies.J. Am. Chem. Soc. 2014; 136: 321-329
- Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.J. Phys. Chem. B. 2013; 117: 4924-4933
- Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation.J. Biol. Chem. 2011; 286: 41028-41035
- H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.Nucleic Acids Res. 2012; 40: W537-W541
- H++: a server for estimating pKas and adding missing hydrogens to macromolecules.Nucleic Acids Res. 2005; 33: W368-W371
- A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules.Proteins. 2006; 63: 928-938
- CHARMM: the biomolecular simulation program.J. Comput. Chem. 2009; 30: 1545-1614
- Canonical dynamics: equilibrium phase-space distributions.Phys. Rev. A. 1985; 31: 1695-1697
- Constant pressure molecular-dynamics for molecular-systems.Mol. Phys. 1983; 50: 1055-1076
- Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.J. Comput. Chem. 2004; 25: 1400-1415
- All-atom empirical potential for molecular modeling and dynamics studies of proteins.J. Phys. Chem. B. 1998; 102: 3586-3616
- Comparison of simple potential functions for simulating liquid water.J. Chem. Phys. 1983; 79: 926-935
- Solvent-induced forces between 2 hydrophilic groups.J. Phys. Chem. 1994; 98: 2198-2202
- Scalable molecular dynamics with NAMD.J. Comput. Chem. 2005; 26: 1781-1802
- VMD: visual molecular dynamics.J. Mol. Graph. Model. 1996; 14: 33-38
- Improved methods for building protein models in electron density maps and the location of errors in these models.Acta Crystallogr. A. 1991; 47: 110-119
- xdlMAPMAN and xdlDATAMAN: programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets.Acta Crystallogr. D Biol. Crystallogr. 1996; 52: 826-828
- Detecting folding motifs and similarities in protein structures.Methods Enzymol. 1997; 277: 525-545
- Phi/Psi-cology: Ramachandran revisited.Structure. 1996; 4: 1395-1400
- Glycoside hydrolase processivity is directly related to oligosaccharide binding free energy.J. Am. Chem. Soc. 2013; 135: 18831-18839
Article info
Publication history
Footnotes
This work was supported, in part, by a subcontract from the Office of Biomass Program, within the Department of Energy Office of Energy Efficiency and Renewable Energy; the Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning (Formas; Grant 213-2013-1607; principal investigator: J. S.); and the National Science Foundation (NSF) under Grant 1552355 (principal investigator: C. M. P.). F. G., L. D., B. R. K., P. K., and P. J. M. T. are employees of DuPont Industrial Biosciences, a producer of enzymes for industrial use.
This article contains supplemental Figs. S1–S5.
The atomic coordinates and structure factors (code 5OA5) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy