Introduction
Results and discussion
Crystallization and structure determination

Complex | T. cruzi I105F CYP51-Obtusifoliol |
---|---|
Data collection | |
Wavelength (Å) | 1.12713 |
Detector used | EIGER X 9 m |
Exposure time | 0.4 s |
Space group | P 31 1 2 |
Cell dimensions | |
a, b, c (Å) | 154.31, 154.31, 178.876 |
α, β, γ (°) | 90.00, 90.00, 120.00 |
Molecules per asymmetric unit | 4 |
Number of reflections | 38,484 |
Resolution (outer shell) (Å) | 133.64–3.18 (3.27–3.18) |
Rmerge (outer shell) | 0.061 (1.357) |
I/σ (outer shell) | 14.6 (1.0) |
Completeness (outer shell) (%) | 99.3 (99.6) |
Redundancy (outer shell) | 6.2 (6.4) |
Refinement | |
Rwork | 0.260 |
Rfree | 0.282 |
RMSDs from ideal geometry | |
Bond lengths (Å) | 0.0016 |
Bond angles (°) | 0.846 |
Ramachandran plot | |
Residues in favorable/allowed regions (%) | 97/100 |
Outliers (%) | 0 |
Number of atoms (mean B-factor,Å2) | 14,610 (156.44) |
Number of residues per molecule | A/B/C/D |
Protein (mean B-factor, Å2) | 447 (137.8)/447 (161.4)/447 (170.2)/447 (166.9) |
Heme (mean B-factor, Å2) | 1 (91.0)/1 (94.9)/1 (118.0) /1 (113) |
Substrate (mean B-factor, Å2) | 1 (100.5)/1 (123.3)/1 (136.8) /0 (—) |
PDB code | 6FMO |

Obtusifoliol in the CYP51 active site
Substrate-induced rearrangements in the CYP51 structure

The histidine-acid salt bridge is critical for proton delivery

Human CYP51 | Low-to-high spin transition | Kd |
---|---|---|
% | μm | |
WT | 30 | 0.55 |
H314A | 68 | 0.73 |
D231A | 50 | 0.68 |
Double | 94 | 0.91 |
The heme-binding arginine is involved in the electron transfer mechanism

Closing of the substrate entrance
Proton relay machinery
Electron transfer
Enzyme inhibition
Experimental procedures
Protein purification, crystallization, and structure determination
Stability assay
Enzymatic activity assays
Substrate binding assays
Reduction of ferric CYP51
Author contributions
Acknowledgments
Supplementary Material
References
- Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms.Biochim. Biophys. Acta. 2007; 1770 (16963187): 467-477
- Mechanisms of cytochrome P450 substrate oxidation: MiniReview.J. Biochem. Mol. Toxicol. 2007; 21 (17936929): 163-168
- Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Δ7–24,25-dihydrolanosterol.J. Lipid Res. 2012; 53 (22135275): 311-320
- Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics.Science. 2010; 330 (21071661): 933-937
- CYP51 as drug targets for fungi and protozoan parasites: past, present and future.Parasitology. 2018; 145 (29642960): 1820-1836
- Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design.J. Lipid Res. 2016; 57 (27313059): 1552-1563
- Cytochrome P450 and the individuality of species.Arch. Biochem. Biophys. 1999; 369 (10462435): 1-10
- Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily.Biochem. Biophys. Res. Commun. 2000; 273 (10891326): 799-804
- Crystal structures of Trypanosoma brucei sterol 14α-demethylase and implications for selective treatment of human infections.J. Biol. Chem. 2010; 285 (19923211): 1773-1780
- Structural basis for conservation in the CYP51 family.Biochim. Biophys. Acta. 2011; 1814 (20547249): 88-93
- Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis.J. Biol. Chem. 2017; 292 (28258218): 6728-6743
- Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi.J. Biol. Chem. 2010; 285 (20530488): 25582-25590
- Structure-functional characterization of cytochrome P450 sterol 14α-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal drugs.J. Biol. Chem. 2015; 290 (26269599): 23916-23934
- Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity.J. Biol. Chem. 2013; 288 (24047900): 31602-31615
- Sterol 14α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth.Chem. Biol. 2007; 14 (18022567): 1283-1293
- Conformational dynamics in the F/G segment of CYP51 from Mycobacterium tuberculosis monitored by FRET.Arch. Biochem. Biophys. 2007; 464 (17585868): 221-227
- CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B' helix defines substrate preferences of sterol 14α-demethylase.J. Biol. Chem. 2006; 281 (16321980): 3577-3585
- Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14α-demethylase (CYP51) from Leishmania infantum.J. Biol. Chem. 2011; 286 (21632531): 26838-26848
- Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24613931): 3865-3870
- Molecular oxygen activation and proton transfer mechanisms in lanosterol 14α-demethylase catalysis.J. Phys. Chem. B. 2009; 113 (19438188): 8170-8182
- Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect.Biochemistry. 1998; 37 (9649301): 9211-9219
- Structural basis for effector control and redox partner recognition in cytochrome P450.Science. 2013; 340 (23744947): 1227-1230
- Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation.J. Biol. Chem. 2007; 282 (17213193): 7066-7076
- Interactions of cytochrome P450s with their ligands.Arch. Biochem. Biophys. 2011; 507 (20939998): 56-65
- Strength of axial water ligation in substrate-free cytochrome P450s is isoform dependent.Biochemistry. 2014; 53 (24576089): 1428-1434
- CW EPR parameters reveal cytochrome P450 ligand binding modes.J. Inorg. Biochem. 2018; 183 (29530595): 157-164
- Cytochrome P450 systems: biological variations of electron transport chains.Biochim. Biophys. Acta. 2007; 1770 (16978787): 330-344
- Structure of a cytochrome P450–redox partner electron-transfer complex.Proc. Natl. Acad. Sci. U.S.A. 1999; 96 (10051560): 1863-1868
- Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21636783): 10139-10143
- The structure of the cytochrome p450cam-putidaredoxin complex determined by paramagnetic NMR spectroscopy and crystallography.J. Mol. Biol. 2013; 425 (23856620): 4353-4365
- Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18621681): 9546-9551
- Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1.J. Biol. Chem. 2011; 286 (21159775): 5607-5613
- Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (28031486): 486-491
- A graphical user interface to the CCP4 program suite.Acta Crystallogr. D Biol. Crystallogr. 2003; 59 (12832755): 1131-1137
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- Kinetics of ferric cytochrome P450 reduction by NADPH–cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems.Biochemistry. 1997; 36 (9398194): 14741-14750
- The use of protocatechuate dioxygenase for maintaining anaerobic conditions in biochemical experiments.Anal. Biochem. 2000; 286 (11067739): 187-192
Article info
Publication history
Footnotes
* This work was supported by National Institutes of Health Grant R01 GM067871 (to G. I. L. and F. P. G.). Synthesis of obtusifoliol and eburicol was supported by National Institutes of Health Grant R33 AI119782 (to W. D. N.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Movie S1 and Figs. S1–S9.
The atomic coordinates and structure factors (code 6FMO) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy