- Wolosker H.
- Sheth K.N.
- Takahashi M.
- Mothet J.P.
- Brady Jr., R.O.
- Ferris C.D.
- Snyder S.H.
Purification of serine racemase: Biosynthesis of the neuromodulator d-serine.
Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 721-725- Berger A.J.
- Dieudonné S.
- Ascher P.
Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses.
J. Neurophysiol. 1998; 80: 3336-3340- Mothet J.-P.
- Parent A.T.
- Wolosker H.
- Brady Jr., R.O.
- Linden D.J.
- Ferris C.D.
- Rogawski M.A.
- Snyder S.H.
d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor.
Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 4926-4931NMDA receptor regulation by d-serine: New findings and perspectives.
Mol. Neurobiol. 2007; 36: 152-164- Ishiwata S.
- Umino A.
- Balu D.T.
- Coyle J.T.
- Nishikawa T.
Neuronal serine racemase regulates extracellular d-serine levels in the adult mouse hippocampus.
J. Neural Transm. 2015; 122: 1099-1103- Wolosker H.
- Balu D.T.
- Coyle J.T.
The rise and fall of the d-serine-mediated gliotransmission hypothesis.
Trends Neurosci. 2016; 39: 712-721- Berkowitz D.B.
- Karukurichi K.R.
- de la Salud-Bea R.
- Nelson D.L.
- McCune C.D.
Use of fluorinated functionality in enzyme inhibitor development: mechanistic and analytical advantages.
J. Fluor. Chem. 2008; 129: 731-742- Karukurichi K.R.
- de la Salud-Bea R.
- Jahng W.J.
- Berkowitz D.B.
Examination of the new α-(2′Z-fluoro)vinyl trigger with lysine decarboxylase: the absolute stereochemistry dictates the reaction course.
J. Am. Chem. Soc. 2007; 129: 258-259- Berkowitz D.B.
- Wu B.
- Li H.
A formal [3,3]-sigmatropic rearrangement route to quaternary α-vinyl amino acids: use of allylic N-PMP trifluoroacetimidates.
Org. Lett. 2006; 8: 971-974- Berkowitz D.B.
- de la Salud-Bea R.
- Jahng W.-J.
Synthesis of quaternary amino acids bearing a (2′Z)-fluorovinyl α-branch: potential PLP enzyme inactivators.
Org. Lett. 2004; 6: 1821-1824- Berkowitz D.B.
- McFadden J.M.
- Chisowa E.
- Semerad C.L.
Organoselenium-based entry into versatile, α-(2-tributylstannyl)vinyl amino acids in scalemic form: a new route to vinyl stannanes.
J. Am. Chem. Soc. 2000; 122: 11031-11032- Berkowitz D.B.
- Smith M.K.
A convenient synthesis of l-α-vinylglycine from l-homoserine lactone.
Synthesis. 1996; 1: 39-41- Berkowitz D.B.
- Jahng W.-J.
- Pedersen M.L.
α-Vinyllysine and α-vinylarginine are time-dependent inhibitors of their cognate decarboxylases.
Bioorg. Med. Chem. Lett. 1996; 6: 2151-2156- Tan B.H.
- Wong P.T.
- Bian J.S.
Hydrogen sulfide: a novel signaling molecule in the central nervous system.
Neurochem. Int. 2010; 56: 3-10Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor.
Biochem. Biophys. Res. Commun. 2000; 267: 129-133- Mustafa A.K.
- Ahmad A.S.
- Zeynalov E.
- Gazi S.K.
- Sikka G.
- Ehmsen J.T.
- Barrow R.K.
- Coyle J.T.
- Snyder S.H.
- Doré S.
Serine racemase deletion protects against cerebral ischemia and excitotoxicity.
J. Neurosci. 2010; 30: 1413-1416- Abe T.
- Suzuki M.
- Sasabe J.
- Takahashi S.
- Unekawa M.
- Mashima K.
- Iizumi T.
- Hamase K.
- Konno R.
- Aiso S.
- Suzuki N.
Cellular origin and regulation of d- and l-serine in in vitro and in vivo models of cerebral ischemia.
J. Cereb. Blood Flow Metab. 2014; 34: 1928-1935- McCune C.D.
- Chan S.J.
- Beio M.L.
- Shen W.
- Chung W.J.
- Szczesniak L.M.
- Chai C.
- Koh S.Q.
- Wong P.T.H.
- Berkowitz D.B.
“Zipped synthesis” by cross-metathesis provides a cystathionine β-synthase inhibitor that attenuates cellular H2S levels and reduces neuronal infarction in a rat ischemic stroke model.
ACS Cent. Sci. 2016; 2: 242-252- Madeira C.
- Lourenco M.V.
- Vargas-Lopes C.
- Suemoto C.K.
- Brandão C.O.
- Reis T.
- Leite R.E.P.
- Laks J.
- Jacob-Filho W.
- Pasqualucci C.A.
- Grinberg L.T.
- Ferreira S.T.
- Panizzutti R.
d-Serine levels in Alzheimer's disease: implications for novel biomarker development.
Transl. Psychiatry. 2015; 5: e561The role of d-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS).
Front. Synaptic Neurosci. 2014; 6: 10- Xia M.
- Zhu S.
- Shevelkin A.
- Ross C.A.
- Pletnikov M.
Disc1, astrocytes and neuronal maturation: a possible mechanistic link with implications for mental disorders.
J. Neurochem. 2016; 138: 518-524- Van der Auwera S.
- Teumer A.
- Hertel J.
- Homuth G.
- Völker U.
- Lucht M.J.
- Degenhardt F.
- Schulze T.
- Rietschel M.
- Nöthen M.M.
- John U.
- Nauck M.
- Grabe H.J.
The inverse link between genetic risk for schizophrenia and migraine through NMDA (N-methyl-d-aspartate) receptor activation via d-serine.
Eur. Neuropsychopharmacol. 2016; 26: 1507-1515- Puhl M.D.
- Mintzopoulos D.
- Jensen J.E.
- Gillis T.E.
- Konopaske G.T.
- Kaufman M.J.
- Coyle J.T.
In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia.
Neurobiol. Dis. 2015; 73: 269-274- Panatier A.
- Theodosis D.T.
- Mothet J.-P.
- Touquet B.
- Pollegioni L.
- Poulain D.A.
- Oliet S.H.R.
Glia-derived d-serine controls NMDA receptor activity and synaptic memory.
Cell. 2006; 125: 775-784- Marchetti M.
- Bruno S.
- Campanini B.
- Peracchi A.
- Mai N.
- Mozzarelli A.
ATP binding to human serine racemase is cooperative and modulated by glycine.
FEBS J. 2013; 280: 5853-5863Allosteric regulation of mouse brain serine racemase.
Neurochem. Res. 2002; 27: 1719-1724- De Miranda J.
- Panizzutti R.
- Foltyn V.N.
- Wolosker H.
Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-d-aspartate (NMDA) receptor coagonist d-serine.
Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 14542-14547- Foltyn V.N.
- Zehl M.
- Dikopoltsev E.
- Jensen O.N.
- Wolosker H.
Phosphorylation of mouse serine racemase regulates d-serine synthesis.
FEBS Lett. 2010; 584: 2937-2941- Balan L.
- Foltyn V.N.
- Zehl M.
- Dumin E.
- Dikopoltsev E.
- Knoh D.
- Ohno Y.
- Kihara A.
- Jensen O.N.
- Radzishevsky I.S.
- Wolosker H.
Feedback inactivation of d-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane.
Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 7589-7594- Shoji K.
- Mariotto S.
- Ciampa A.R.
- Suzuki H.
Regulation of serine racemase activity by d-serine and nitric oxide in human glioblastoma cells.
Neurosci. Lett. 2006; 392: 75-78- Dumin E.
- Bendikov I.
- Foltyn V.N.
- Misumi Y.
- Ikehara Y.
- Kartvelishvily E.
- Wolosker H.
Modulation of d-serine levels via ubiquitin-dependent proteasomal degradation of serine racemase.
J. Biol. Chem. 2006; 281: 20291-20302- Fujii K.
- Maeda K.
- Hikida T.
- Mustafa A.K.
- Balkissoon R.
- Xia J.
- Yamada T.
- Ozeki Y.
- Kawahara R.
- Okawa M.
- Huganir R.L.
- Ujike H.
- Snyder S.H.
- Sawa A.
Serine racemase binds to PICK1: potential relevance to schizophrenia.
Mol. Psychiatry. 2006; 11: 150-157The schizophrenic faces of PICK1.
Trends Pharmacol. Sci. 2006; 27: 574-579- Baumgart F.
- Mancheño J.M.
- Rodríguez-Crespo I.
Insights into the activation of brain serine racemase by the multi-PDZ domain glutamate receptor interacting protein, divalent cations and ATP.
FEBS J. 2007; 274: 4561-4571- Ma T.M.
- Paul B.D.
- Fu C.
- Hu S.
- Zhu H.
- Blackshaw S.
- Wolosker H.
- Snyder S.H.
Serine racemase regulated by binding to stargazin and PSD-95.
J. Biol. Chem. 2014; 289: 29631-29641- Yamauchi T.
- Goto M.
- Wu H.-Y.
- Uo T.
- Yoshimura T.
- Mihara H.
- Kurihara T.
- Miyahara I.
- Hirotsu K.
- Esaki N.
Serine racemase with catalytically active lysinoalanyl residue.
J. Biochem. 2009; 145: 421-424- Zou L.
- Song Y.
- Wang C.
- Sun J.
- Wang L.
- Cheng B.
- Fan J.
Crystal structure of maize serine racemase with pyridoxal 5′-phosphate.
Acta Crystallogr. F Struct. Biol. Commun. 2016; 72: 165-171- Vorlová B.
- Nachtigallová D.
- Jirásková-Vaníčková J.
- Ajani H.
- Jansa P.
- Rezáč J.
- Fanfrlík J.
- Otyepka M.
- Hobza P.
- Konvalinka J.
- Lepšík M.
Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study.
Eur. J. Med. Chem. 2015; 89: 189-197- Smith M.A.
- Mack V.
- Ebneth A.
- Moraes I.
- Felicetti B.
- Wood M.
- Schonfeld D.
- Mather O.
- Cesura A.
- Barker J.
The structure of mammalian serine racemase: evidence for conformational changes upon inhibitor binding.
J. Biol. Chem. 2010; 285: 12873-12881- Foltyn V.N.
- Bendikov I.
- De Miranda J.
- Panizzutti R.
- Dumin E.
- Shleper M.
- Li P.
- Toney M.D.
- Kartvelishvily E.
- Wolosker H.
Serine racemase modulates intracellular d-serine levels through an α,β-elimination activity.
J. Biol. Chem. 2005; 280: 1754-1763- Strísovský K.
- Jirásková J.
- Barinka C.
- Majer P.
- Rojas C.
- Slusher B.S.
- Konvalinka J.
Mouse brain serine racemase catalyzes specific elimination of l-serine to pyruvate.
FEBS Lett. 2003; 535: 44-48- Goto M.
- Yamauchi T.
- Kamiya N.
- Miyahara I.
- Yoshimura T.
- Mihara H.
- Kurihara T.
- Hirotsu K.
- Esaki N.
Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe.
J. Biol. Chem. 2009; 284: 25944-25952- Strísovský K.
- Jirásková J.
- Mikulová A.
- Rulísek L.
- Konvalinka J.
Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the β-eliminase activity.
Biochemistry. 2005; 44: 13091-13100Understanding the reaction mechanism and intermediate stabilization in mammalian serine racemase using multiscale quantum-classical simulations.
Biochemistry. 2015; 54: 516-527- Cerqueira NMFSA
- Moorthy H.
- Fernandes P.A.
- Ramos M.J.
The mechanism of the Ser-(cis)Ser-Lys catalytic triad of peptide amidases.
Phys. Chem. Chem. Phys. 2017; 19: 12343-12354- Valiña A.L.B.
- Mazumder-Shivakumar D.
- Bruice T.C.
Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
Biochemistry. 2004; 43: 15657-15672- Shin S.
- Lee T.-H.
- Ha N.-C.
- Koo H.M.
- Kim S.-Y.
- Lee H.-S.
- Kim Y.S.
- Oh B.-H.
Structure of malonamidase E2 reveals a novel Ser-cis-Ser-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature.
EMBO J. 2002; 21: 2509-2516- Labahn J.
- Neumann S.
- Büldt G.
- Kula M.-R.
- Granzin J.
An alternative mechanism for amidase signature enzymes.
J. Mol. Biol. 2002; 322: 1053-1064- Wu Z.-M.
- Zheng R.-C.
- Zheng Y.-G.
Identification and characterization of a novel amidase signature family amidase from Parvibaculum lavamentivorans zjb14001.
Protein Expr. Purif. 2017; 129: 60-68- Lee S.
- Park E.-H.
- Ko H.-J.
- Bang W.G.
- Kim H.-Y.
- Kim K.H.
- Choi I.-G.
Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family.
Biochem. Biophys. Res. Commun. 2015; 467: 268-274- Neu D.
- Lehmann T.
- Elleuche S.
- Pollmann S.
Arabidopsis amidase 1, a member of the amidase signature family.
FEBS J. 2007; 274: 3440-3451- Mileni M.
- Kamtekar S.
- Wood D.C.
- Benson T.E.
- Cravatt B.F.
- Stevens R.C.
Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water molecule and insight into enzyme inactivation.
J. Mol. Biol. 2010; 400: 743-754- McKinney M.K.
- Cravatt B.F.
Structure and function of fatty acid amide hydrolase.
Annu. Rev. Biochem. 2005; 74: 411-432- McKinney M.K.
- Cravatt B.F.
Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase.
J. Biol. Chem. 2003; 278: 37393-37399Structural relationship between the active sites of β-lactam-recognizing and amidase signature enzymes: convergent evolution?.
Biochemistry. 2010; 49: 9688-9697- Akiyama T.
- Ishii M.
- Takuwa A.
- Oinuma K.-I.
- Sasaki Y.
- Takaya N.
- Yajima S.
Structural basis of the substrate recognition of hydrazidase isolated from Microbacterium sp. strain hm58-2, which catalyzes acylhydrazide compounds as its sole carbon source.
Biochem. Biophys. Res. Commun. 2017; 482: 1007-1012- Hoffman H.E.
- Jirásková J.
- Ingr M.
- Zvelebil M.
- Konvalinka J.
Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog.
Protein Expr. Purif. 2009; 63: 62-67- Bruno S.
- Margiotta M.
- Marchesani F.
- Paredi G.
- Orlandi V.
- Faggiano S.
- Ronda L.
- Campanini B.
- Mozzarelli A.
Magnesium and calcium ions differentially affect human serine racemase activity and modulate its quaternary equilibrium toward a tetrameric form.
Biochim. Biophys. Acta. 2017; 1865: 381-387- Ito T.
- Maekawa M.
- Hayashi S.
- Goto M.
- Hemmi H.
- Yoshimura T.
Catalytic mechanism of serine racemase from. Dictyostelium discoideum.
Amino Acids. 2013; 44: 1073-1084- Wang C.-Y.
- Ku S.C.
- Lee C.-C.
- Wang A.H.J.
Modulating the function of human serine racemase and human serine dehydratase by protein engineering.
Protein Eng. Des. Sel. 2012; 25: 741-749- Soo V.W.C.
- Yosaatmadja Y.
- Squire C.J.
- Patrick W.M.
Mechanistic and evolutionary insights from the reciprocal promiscuity of two pyridoxal phosphate-dependent enzymes.
J. Biol. Chem. 2016; 291: 19873-19887Conformation and reaction specificity in pyridoxal phosphate enzymes.
Proc. Natl. Acad. Sci. U.S.A. 1966; 55: 712-716- Hoffman H.E.
- Jirásková J.
- Cígler P.
- Sanda M.
- Schraml J.
- Konvalinka J.
Hydroxamic acids as a novel family of serine racemase inhibitors: mechanistic analysis reveals different modes of interaction with the pyridoxal-5′-phosphate cofactor.
J. Med. Chem. 2009; 52: 6032-6041- Koutmos M.
- Kabil O.
- Smith J.L.
- Banerjee R.
Structural basis for substrate activation and regulation by cystathionine β-synthase (CBS) domains in cystathionine β-synthase.
Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20958-20963- Caulkins B.G.
- Young R.P.
- Kudla R.A.
- Yang C.
- Bittbauer T.J.
- Bastin B.
- Hilario E.
- Fan L.
- Marsella M.J.
- Dunn M.F.
- Mueller L.J.
NMR crystallography of a carbanionic intermediate in tryptophan synthase: chemical structure, tautomerization, and reaction specificity.
J. Am. Chem. Soc. 2016; 138: 15214-15226- Tamura K.
- Stecher G.
- Peterson D.
- Filipski A.
- Kumar S.
Mega6: molecular evolutionary genetics analysis version 6.0.
Mol. Biol. Evol. 2013; 30: 2725-2729- Wada M.
- Nakamori S.
- Takagi H.
Serine racemase homologue of Saccharomyces cerevisiae has l-threo-3-hydroxyaspartate dehydratase activity.
FEMS Microbiol. Lett. 2003; 225: 189-193- Murakami T.
- Maeda T.
- Yokota A.
- Wada M.
Gene cloning and expression of pyridoxal 5′-phosphate-dependent l-threo-3-hydroxyaspartate dehydratase from Pseudomonas sp. T62, and characterization of the recombinant enzyme.
J. Biochem. 2009; 145: 661-668- Katane M.
- Saitoh Y.
- Uchiyama K.
- Nakayama K.
- Saitoh Y.
- Miyamoto T.
- Sekine M.
- Uda K.
- Homma H.
Characterization of a homologue of mammalian serine racemase from Caenorhabditis elegans: the enzyme is not critical for the metabolism of serine in vivo.
Genes Cells. 2016; 21: 966-977BLAST: at the core of a powerful and diverse set of sequence analysis tools.
Nucleic Acids Res. 2004; 32: W20-W25- Thompson J.D.
- Higgins D.G.
- Gibson T.J.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 1994; 22: 4673-4680Comparative protein modelling by satisfaction of spatial restraints.
J. Mol. Biol. 1993; 234: 779-815- Hess B.
- Kutzner C.
- van der Spoel D.
- Lindahl E.
GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation.
J. Chem. Theory Comput. 2008; 4: 435-447- Morris G.M.
- Huey R.
- Lindstrom W.
- Sanner M.F.
- Belew R.K.
- Goodsell D.S.
- Olson A.J.
Autodock4 and Autodocktools4: automated docking with selective receptor flexibility.
J. Comput. Chem. 2009; 30: 2785-2791- Panizzutti R.
- De Miranda J.
- Ribeiro C.S.
- Engelender S.
- Wolosker H.
A new strategy to decrease N-methyl-d-aspartate (NMDA) receptor coactivation: inhibition of d-serine synthesis by converting serine racemase into an eliminase.
Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 5294-5299