Introduction
- Shiratori T.
- Kyumoto-Nakamura Y.
- Kukita A.
- Uehara N.
- Zhang J.
- Koda K.
- Kamiya M.
- Badawy T.
- Tomoda E.
- Xu X.
- Yamaza T.
- Urano Y.
- Koyano K.
- Kukita T.
Results
Hajdu Cheney Notch2tm1.1Ecan mutation enhances TNFα-induced osteolysis in calvarial bone

Hajdu Cheney mutation enhances TNFα-induced osteoclastogenesis in vitro


TNFα promotes the expression of Notch2 and proinflammatory cytokines


TNFα accelerates NOTCH2 signal activation and increases JAG1 expression

Preventing NOTCH2 signaling reverses the sensitizing effect of the Hajdu Cheney mutation on TNFα-induced osteoclastogenesis

Inactivation of Hes1 reverses the sensitizing effect of the Hajdu Cheney mutation on TNFα-induced osteoclastogenesis

Preventing NOTCH2 signaling reverses the sensitizing effect of the Hajdu Cheney mutation on TNFα-induced osteolysis

Notch2tm1.1Ecan mice have normal serum TNFα levels
Discussion

- Shiratori T.
- Kyumoto-Nakamura Y.
- Kukita A.
- Uehara N.
- Zhang J.
- Koda K.
- Kamiya M.
- Badawy T.
- Tomoda E.
- Xu X.
- Yamaza T.
- Urano Y.
- Koyano K.
- Kukita T.
Experimental procedures
Mice and TNFα-induced osteolysis in vivo
Bone histomorphometry
BMM, adenovirus-Cre-mediated gene deletion, and osteoclast formation
Quantitative RT-PCR (qRT-PCR)
Gene | Strand | Sequence | GenBankTM accession no. |
---|---|---|---|
Acp5 | Forward | 5′-GACAAGAGGTTCCAGGAGAC-3′ | NM_001102404; NM_001102405; NM_007388 |
Reverse | 5′-TTCCAGCCAGCACATACC-3′ | ||
Ctsk | Forward | 5′-AGATATTGGTGGCTTTGGAA-3′ | NM_007802 |
Reverse | 5′-AACGAGAGGAGAAATGAAACA-3′ | ||
Hes1 | Forward | 5′-ACCAAAGACGGCCTCTGAGCACAGAAAGT-3′ | NM_008235 |
Reverse | 5′-ATTCTTGCCCTTCGCCTCTT-3′ | ||
Il1b | Forward | 5′-GGACAGAATATCAACCAACAAGTG-3′ | NM_008361 |
Reverse | 5′-TCGTTGCTTGGTTCTCCTT-3′ | ||
Il6 | Forward | 5′-CGGCCTTCCCTACTTCACAAGTCCG-3′ | NM_001314054; NM_031168 |
Reverse | 5′-CAGGTCTGTTGGGAGTGGTATCC-3′ | ||
Jag1 | Forward | 5′-TGGGAACTGTTGTGGTGGAGTCCG-3′ | NM_013822 |
Reverse | 5′-GTGACGCGGGACTGATACTCCT-3′ | ||
Nfatc1 | Forward | 5′-GCGCAAGTACAGTCTCAATGGCC-3′ | NM_198429; NM_001164110; NM_001164111; NM_001164112; NM_00116641091; NM_016791 |
Reverse | 5′-GGATGGTGTGGGTGAGTGGT-3′ | ||
Notch2 | Forward | 5′-TGACGTTGATGAGTGTATCTCCAAGCC-3′ | NM_010928 |
Reverse | 5′-GTAGCTGCCCTGAGTGTTGTGG-3′ | ||
Rpl38 | Forward | 5′-AGAACAAGGATAATGTGAAGTTCAAGGTTC-3′ | NM_001048057; NM_001048058; NM_023372 |
Reverse | 5′-CTGCTTCAGCTTCTCTGCCTTT-3′ | ||
Tnfa | Forward | 5′-CCACCATCAAGGACTCAAATGG-3′ | NM_001278601; NM_013693 |
Reverse | 5′-CCTTTGCAGAACTCAGGAATGGACATTCG-3′ | ||
Tnfr1 | Forward | 5′-GGTCTGCTGATGTTAGGA-3′ | NM_011609 |
Reverse | 5′-CTTGGCATCTCTTTGTAGG-3′ | ||
Tnfr2 | Forward | 5′-TGTTCTTGTCTCAGTTTGTAGGG-3′ | NM_011610 |
Reverse | 5′-AGTCGTCCTTCTCACCTCTT-3′ |
Immunoblotting
NF-κB activation assay
Serum TNFα
Statistics
Author contributions
Acknowledgments
References
- Notch signaling in development, tissue homeostasis, and disease.Physiol. Rev. 2017; 97 (28794168): 1235-1294
- Notch signaling and the skeleton.Endocr. Rev. 2016; 37 (27074349): 223-253
- NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells.J. Biol. Chem. 2008; 283 (18156632): 6509-6518
- Osteoblast lineage-specific effects of notch activation in the skeleton.Endocrinology. 2013; 154 (23275471): 623-634
- Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis and bone resorption.J. Biol. Chem. 2016; 291 (26627824): 1538-1551
- The lateral meningocele syndrome mutation causes marked osteopenia in mice.J. Biol. Chem. 2018; 293 (30042232): 14165-14177
- The association of Notch2 and NF-κB accelerates RANKL-induced osteoclastogenesis.Mol. Cell. Biol. 2008; 28 (18710934): 6402-6412
- Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation.Nat. Med. 2008; 14 (18297083): 306-314
- Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes.Bone. 2017; 103 (28676438): 159-167
- Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development.Mol. Cell. Neurosci. 1996; 8 (8923452): 14-27
- Notch in skeletal physiology and disease.Osteoporos. Int. 2018; 29 (30194467): 2611-2621
- Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats.Mol. Cell. Biol. 2004; 24 (15485896): 9265-9273
- HES and HERP families: multiple effectors of the Notch signaling pathway.J. Cell. Physiol. 2003; 194 (12548545): 237-255
- HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling.Mol. Cell. Biol. 2001; 21 (11486045): 6080-6089
- Cranio-skeletal dysplasia.Br. J. Radiol. 1948; 21 (18918373): 42-48
- Acro-Osteolysis.Am. J. Roentgenol. Radium. Ther. Nucl. Med. 1965; 94 (14303950): 595-607
- Hajdu-Cheney syndrome: a review.Orphanet J. Rare Dis. 2014; 9 (25491639): 200
- Serpentine fibula polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome.Eur. J. Hum. Genet. 2012; 20 (21712856): 122-124
- Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis.Nat. Genet. 2011; 43 (21378989): 306-308
- Mutations in NOTCH2 in families with Hajdu-Cheney syndrome.Hum. Mutat. 2011; 32 (21681853): 1114-1117
- Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss.Nat. Genet. 2011; 43 (21378985): 303-305
- Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome.Osteoporos. Int. 2013; 24 (23389697): 2275-2281
- NOTCH2 Hajdu-Cheney mutations Escape SCF(FBW7)-dependent proteolysis to promote osteoporosis.Mol. Cell. 2017; 68 (29149593): 645-658.e5
- Mice harboring a Hajdu Cheney syndrome mutation are sensitized to osteoarthritis.Bone. 2018; 114 (29940267): 198-205
- The Hajdu Cheney mutation is a determinant of B-cell allocation of the splenic marginal zone.Am. J. Pathol. 2018; 188 (29037852): 149-159
- Bone structural characteristics and response to bisphosphonate treatment in children with Hajdu-Cheney syndrome.J. Clin. Endocrinol. Metab. 2017; 102 (28938420): 4163-4172
- Acro-osteolysis and osteoporosis as manifestations of the Hajdu-Cheney syndrome.Clin. Exp. Rheumatol. 2002; 20 (12175120): 574-575
- The acro-osteolysis syndrome: morphologic and biochemical studies.J. Pediatr. 1976; 88 (1255314): 573-580
- Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome.Arthritis Rheum. 1986; 29 (3527178): 1032-1038
- Macrophages and bone inflammation.J. Orthop. Translat. 2017; 10 (29662760): 86-93
- IL-6, RANKL, TNF-α/IL-1: interrelations in bone resorption pathophysiology.Cytokine Growth Factor Rev. 2004; 15 (14746813): 49-60
- Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts.J. Biol. Chem. 2000; 275 (10671521): 4858-4864
- Tumor necrosis factor-α cooperates with receptor activator of nuclear factor κB ligand in generation of osteoclasts in stromal cell-depleted rat bone marrow cell culture.Bone. 2001; 28 (11344046): 474-483
- Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction.J. Exp. Med. 2000; 191 (10637272): 275-286
- IL-1 mediates TNF-induced osteoclastogenesis.J. Clin. Invest. 2005; 115 (15668736): 282-290
- IL-1 plays an important role in the bone metabolism under physiological conditions.Int. Immunol. 2010; 22 (20679512): 805-816
- IL-1β induces pathologically activated osteoclasts bearing extremely high levels of resorbing activity: a possible pathological subpopulation of osteoclasts, accompanied by suppressed expression of Kindlin-3 and Talin-1.J. Immunol. 2018; 200 (29141864): 218-228
- Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo.Arthritis Rheum. 2009; 60 (19714627): 2747-2756
- Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation.J. Bone Miner. Res. 1996; 11 (8770701): 88-95
- Classical and paradoxical effects of TNF-α on bone homeostasis.Front. Immunol. 2014; 5 (24592264): 48
- Inflammatory osteolysis: a conspiracy against bone.J. Clin. Invest. 2017; 127 (28569732): 2030-2039
- TNF and bone remodeling.Curr. Osteoporos. Rep. 2017; 15 (28477234): 126-134
- Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis.PLoS ONE. 2017; 12 (29240821): e0189702
- TNFalpha increases RANKL expression via PGE(2)-induced activation of NFATc1.Int. J. Mol. Sci. 2017; 18 (28245593): E495
- Therapeutic antibody targeting of individual Notch receptors.Nature. 2010; 464 (20393564): 1052-1057
- An antibody to Notch2 reverses the osteopenic phenotype of Hajdu-Cheney mutant male mice.Endocrinology. 2017; 158 (28323963): 730-742
- Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung.Nature. 2015; 528 (26580007): 127-131
- High bone turnover in mice carrying a pathogenic Notch2 mutation causing Hajdu-Cheney syndrome.J. Bone Miner. Res. 2018; 33 (28856714): 70-83
- TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J.J. Exp. Med. 2012; 209 (22249448): 319-334
- Hairy and enhancer of split (HES)1 is a determinant of bone mass.J. Biol. Chem. 2011; 286 (21084301): 2648-2657
- Role of Notch signaling in regulating innate immunity and inflammation in health and disease.Protein Cell. 2016; 7 (26936847): 159-174
- PEST sequences and regulation by proteolysis.Trends Biochem. Sci. 1996; 21 (8755249): 267-271
- The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets.Oncotarget. 2017; 8 (28157712): 17873-17886
- Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia.Nat. Med. 2007; 13 (17873882): 1203-1210
- HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRbeta-selected mouse thymocytes.Blood. 2012; 120 (22649105): 1439-1448
- Identification of a role for the PI3K/AKT/mTOR signaling pathway in innate immune cells.PLoS ONE. 2014; 9 (24718556): e94496
- The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation.Bone. 2002; 30 (11792567): 71-77
- Hes1, a new target for interleukin 1β in chondrocytes.Ann. Rheum. Dis. 2010; 69 (19914905): 1488-1494
- RANKL-independent osteoclastogenesis: a long-standing controversy.J. Bone Miner. Res. 2017; 32 (28177151): 431-433
- Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline.Development. 2008; 135 (18579678): 2531-2541
- Contradictory role of CD97 in basal and tumor necrosis factor-induced osteoclastogenesis in vivo.Arthritis Rheumatol. 2016; 68 (26663852): 1301-1313
- Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee.J. Bone Miner. Res. 2013; 28 (23197339): 2-17
- v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation.Nat. Med. 2006; 12 (17128270): 1403-1409
- Housekeeping and tissue-specific genes in mouse tissues.BMC Genomics. 2007; 8 (17519037): 127
- Nuclear factor of activated T-cells (Nfat)c2 inhibits Notch signaling in osteoblasts.J. Biol. Chem. 2013; 288 (23166323): 624-632
- Rituximab-mediated Raf kinase inhibitor protein induction modulates NF-kappaB in Sjogren syndrome.Immunology. 2014; 143 (24655025): 42-51
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grant AR068160 from NIAMS and Grant DK045227 from NIDDK. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy