Introduction
- Hickey C.A.
- Kuhn K.A.
- Donermeyer D.L.
- Porter N.T.
- Jin C.
- Cameron E.A.
- Jung H.
- Kaiko G.E.
- Wegorzewska M.
- Malvin N.P.
- Glowacki R.W.
- Hansson G.C.
- Allen P.M.
- Martens E.C.
- Stappenbeck T.S.
- Desai M.S.
- Seekatz A.M.
- Koropatkin N.M.
- Kamada N.
- Hickey C.A.
- Wolter M.
- Pudlo N.A.
- Kitamoto S.
- Terrapon N.
- Muller A.
- Young V.B.
- Henrissat B.
- Wilmes P.
- Stappenbeck T.S.
- Núñez G.
- Martens E.C.
Results
Biochemical properties of BT0997

![]() |

Crystal structure of BPA0997

Active site interactions of BPA0997 in complex with ligands
Interactions involving noncatalytic residues
Chloride-binding site

Bioinformatic analysis

Discussion
Conclusions
Materials and methods
Cloning, expression, and purification of BT0997 and of its homologue BPA0997
Oligosaccharides production and purification—RGII-derived oligosaccharides
Enzyme assays
Circular dichroism
Crystallization, data collection, structure solution, and refinement
BPA0997 (SeMet) | BPA0997E361S | BPA0997ΔCTE361S | |
---|---|---|---|
Data collection | |||
Date | 17/12/16 | 04/03/17 | 09/12/17 |
Source | I03 | I04 | I24 |
Wavelength (Å) | 0.978 | 0.979 | 0.979 |
Space group | P21 | P21 | P22121 |
Cell dimensions | |||
a, b, c (Å) | 69.8 103.2 138.5 | 69.5 107.4 139.2 | 55.30 68.38 220.16 |
α, β, γ (°) | 90.0 90.4 90.0 | 90.0 98.7 90.0 | 90.0 90.0 90.0 |
No. of measured reflections | 1,721,396 (82,026) | 210,454 (17,375) | 514,191 (23,838) |
No. of independent reflections | 134,407 (6637) | 55,515 (4532) | 100,505 (4630) |
Resolution (Å) | 49.50–2.00 (2.03–2.00) | 47.35–2.70 (2.78–2.70) | 73.39–1.60 (1.63–1.60) |
CC1/2 | 0.999 (0.879) | 0.992 (0.835) | 0.991 (0.343) |
I/σ(I) | 21.0 (3.6) | 10.5 (2.1) | 5.9 (1.7) |
Completeness (%) | 100.0 (99.9) | 99.8 (99.7) | 90.5 (84.7) |
Redundancy | 12.8 (1.4) | 3.8 (3.8) | 5.1 (5.1) |
Anomalous completeness (%) | 99.6 (98.9) | ||
Anomalous multiplicity | 6.4 (6.1) | ||
Refinement | |||
Rwork/Rfree | 17.3/20.8 | 21.3/28.2 | 15.4/20.5 |
No. atoms | |||
Protein | 13,898 | 13,926 | 5630 |
Ligand/ions | 19 | 36 | 41 |
Water | 686 | 769 | |
B-factors | |||
Protein | 41.8 | 48.2 | 20.4 |
Ligand/ions | 32.6 | 40.8 | 25.7 |
Water | 42.0 | 34.3 | |
PDB code |
NMR spectroscopy
Author contributions
Acknowledgments
Supplementary Material
References
- The critical roles of polysaccharides in gut microbial ecology and physiology.Annu. Rev. Microbiol. 2017; 71 (28657886): 349-369
- The contribution of the large intestine to energy supplies in man.Am. J. Clin. Nutr. 1984; 39 (6320630): 338-342
- Colitogenic Bacteroides thetaiotaomicron antigens access host immune cells in a sulfatase-dependent manner via outer membrane vesicles.Cell Host Microbe. 2015; 17 (25974305): 672-680
- Cancer and the gut microbiota: An unexpected link.Sci. Transl. Med. 2015; 7 (25609166)271ps1
- The gut microbiota and Alzheimer's disease.J. Alzheimers Dis. 2017; 58 (28372330): 1-15
- A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility.Cell. 2016; 167 (27863247): 1339-1353e1321
- Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.PLoS Biol. 2011; 9 (22205877)e1001221
- Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. In vitro conditions for the formation and hydrolysis of the dimer.J. Biol. Chem. 1996; 271 (8798473): 22923-22930
- Polysaccharide composition of Monastrell red wines from four different Spanish terroirs: Effect of wine-making techniques.J. Agric. Food Chem. 2013; 61 (23425547): 2538-2547
- Complex pectin metabolism by gut bacteria reveals novel catalytic functions.Nature. 2017; 544 (28329766): 65-70
- The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42 (24270786): D490-D495
- Stereochemical course of hydrolysis catalysed by α-l-rhamnosyl and α-d-galacturonosyl hydrolases from Aspergillus aculeatus.Biochem. Biophys. Res. Commun. 1998; 242 (9464254): 552-559
- Buried chloride stereochemistry in the Protein Data Bank.BMC Struct. Biol. 2014; 14 (25928393): 19
- Structural basis of α-amylase activation by chloride.Protein Sci. 2002; 11 (12021442): 1435-1441
- Structural and functional aspects of chloride binding to Alteromonas haloplanctis α-amylase.J. Biol. Chem. 1996; 271 (8798613): 23836-23841
- Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22492980): 6537-6542
- Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A.J. Biol. Chem. 2008; 283 (18755688): 31551-31558
- The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site.J. Biol. Chem. 2008; 283 (18799462): 34403-34413
- An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins.J. Biol. Chem. 2017; 292 (28637865): 13271-13283
- Convergent evolution sheds light on the anti-β-elimination mechanism common to family 1 and 10 polysaccharide lyases.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (12221284): 12067-12072
- Synthesis of a 2,3,4-triglycosylated rhamnoside fragment of rhamnogalacturonan-II side chain A using a late stage oxidation approach.J. Org. Chem. 2005; 70 (15675855): 960-966
- Synthesis of apiose-containing oligosaccharide fragments of the plant cell wall: Fragments of rhamnogalacturonan-II side chains A and B, and apiogalacturonan.Org. Biomol. Chem. 2011; 9 (21847487): 6670-6684
- BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra.Nucleic Acids Res. 2018; 46 (29893907): W315-W322
- XDS. Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Scaling and assessment of data quality.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16369096): 72-82
- Experimental phasing with SHELXC/D/E: Combining chain tracing with density modification.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383001): 479-485
- The Buccaneer software for automated model building. 1. Tracing protein chains.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16929101): 1002-1011
- Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7.Nat. Protoc. 2008; 3 (18600222): 1171-1179
- Decision making in xia2.Acta Crystallogr. D Biol. Crystallogr. 2013; 69 (23793152): 1260-1273
- Molecular replacement with MOLREP.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20057045): 22-25
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460454): 355-367
- The CCP4 suite: Programs for protein crystallography.Acta Crystallogr. D Biol. Crystallogr. 1994; 50 (15299374): 760-763
- PULDB: The expanded database of polysaccharide utilization loci.Nucleic Acids Res. 2017; 46 (29088389): D677-D683
Article info
Publication history
Footnotes
This work was supported by Priority Excellent Science, H2020 European Research Council Grant 322820. The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S4.
The atomic coordinates and structure factors (codes 6HZE, 6HZF, and 6HZG) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy