Advertisement
JBC Reviews| Volume 294, ISSUE 14, P5352-5364, April 05, 2019

Download started.

Ok

Role of host tRNAs and aminoacyl-tRNA synthetases in retroviral replication

  • Danni Jin
    Affiliations
    From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
    Search for articles by this author
  • Karin Musier-Forsyth
    Correspondence
    To whom correspondence should be addressed:Dept. of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Ave., 3033B McPherson Laboratory, Columbus, OH 43210, Tel.:614-292-2021; Fax:61-688-5402
    Affiliations
    From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
    Search for articles by this author
  • Author Footnotes
    2 The abbreviations used are: HTLV-1human T-cell leukemia virus type 1ARSaminoacyl-tRNA synthetasentnucleotideEnvenvelope proteingRNAgenomic RNAtRFtRNA fragmentMuLVmurine leukemia virusMAmatrixCAcapsidNCnucleocapsidPRproteaseINintegraseLTRlong terminal repeatMSCmulti-tRNA synthetase complexPI(4,5)P2phosphatidylinositol 4,5-bisphosphatePBSprimer-binding siteTLEtRNA-like elementRSVRous sarcoma virusLysRSlysyl-tRNA synthetaseTrpRStryptophanyl-tRNA synthetaseArgRSarginyl-tRNA synthetaseIleRSisoleucyl-tRNA synthetaseGlnRSglutaminyl-tRNA synthetaseMetRSmethionyl-tRNA synthetaseAspRSaspartyl-tRNA synthetaseLeuRSleucyl-tRNA synthetasencRNAnoncoding RNAtiRNAstRNA halvesARTantiretroviral therapypiRNAPiwi-interacting RNARTreverse transcriptase.
Open AccessPublished:January 30, 2019DOI:https://doi.org/10.1074/jbc.REV118.002957
      The lifecycle of retroviruses and retrotransposons includes a reverse transcription step, wherein dsDNA is synthesized from genomic RNA for subsequent insertion into the host genome. Retroviruses and retrotransposons commonly appropriate major components of the host cell translational machinery, including cellular tRNAs, which are exploited as reverse transcription primers. Nonpriming functions of tRNAs have also been proposed, such as in HIV-1 virion assembly, and tRNA-derived fragments may also be involved in retrovirus and retrotransposon replication. Moreover, host cellular proteins regulate retroviral replication by binding to tRNAs and thereby affecting various steps in the viral lifecycle. For example, in some cases, tRNA primer selection is facilitated by cognate aminoacyl-tRNA synthetases (ARSs), which bind tRNAs and ligate them to their corresponding amino acids, but also have many known nontranslational functions. Multi-omic studies have revealed that ARSs interact with both viral proteins and RNAs and potentially regulate retroviral replication. Here, we review the currently known roles of tRNAs and their derivatives in retroviral and retrotransposon replication and shed light on the roles of tRNA-binding proteins such as ARSs in this process.

      Introduction

      Retroviruses as a human health concern include HIV type 1 (HIV-1), the causative agent of acquired immune deficiency syndrome (AIDS) (
      • Weiss R.A.
      How does HIV cause AIDS?.
      ), and human T-cell leukemia virus type 1 (HTLV-1),
      The abbreviations used are: HTLV-1
      human T-cell leukemia virus type 1
      ARS
      aminoacyl-tRNA synthetase
      nt
      nucleotide
      Env
      envelope protein
      gRNA
      genomic RNA
      tRF
      tRNA fragment
      MuLV
      murine leukemia virus
      MA
      matrix
      CA
      capsid
      NC
      nucleocapsid
      PR
      protease
      IN
      integrase
      LTR
      long terminal repeat
      MSC
      multi-tRNA synthetase complex
      PI(4,5)P2
      phosphatidylinositol 4,5-bisphosphate
      PBS
      primer-binding site
      TLE
      tRNA-like element
      RSV
      Rous sarcoma virus
      LysRS
      lysyl-tRNA synthetase
      TrpRS
      tryptophanyl-tRNA synthetase
      ArgRS
      arginyl-tRNA synthetase
      IleRS
      isoleucyl-tRNA synthetase
      GlnRS
      glutaminyl-tRNA synthetase
      MetRS
      methionyl-tRNA synthetase
      AspRS
      aspartyl-tRNA synthetase
      LeuRS
      leucyl-tRNA synthetase
      ncRNA
      noncoding RNA
      tiRNAs
      tRNA halves
      ART
      antiretroviral therapy
      piRNA
      Piwi-interacting RNA
      RT
      reverse transcriptase.
      which causes adult T-cell leukemia/lymphoma and a demyelinating disease named HTLV-associated myelopathy/tropical spastic paraparesis (
      • Gonçalves D.U.
      • Proietti F.A.
      • Ribas J.G.
      • Araújo M.G.
      • Pinheiro S.R.
      • Guedes A.C.
      • Carneiro-Proietti A.B.
      Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases.
      ). The lifecycle of a typical retrovirus starts with interaction between viral envelope protein (Env) and cellular receptors. This induces membrane fusion and entry of the viral capsid (Fig. 1). The viral genomic RNA (gRNA) is reverse-transcribed into cDNA using a viral reverse transcriptase (RT) and a packaged cellular tRNA as the primer. The viral cDNA enters the nucleus in the form of a pre-integration complex and is inserted into the host genome. The DNA provirus is transcribed by host machinery to produce new gRNAs that are packaged or serve as mRNAs (full-length and spliced variants) that are translated to generate viral proteins. The viral Gag and Gag-Pol polyproteins drive viral assembly at the plasma membrane; during this process, viral gRNA and some host factors, including the tRNA primer, are recruited. The newly budded virion undergoes maturation to become fully infectious (
      ).
      Figure thumbnail gr1
      Figure 1HIV-1 polyproteins, overview of retrovirus lifecycle, and the roles of tRNA in retroviral replication. The events that involve tRNAs are highlighted in boxes. The virus enters the host cell via membrane fusion. Viral RT, with tRNA as the primer, converts viral genomic RNA into dsDNA. The viral DNA enters the nucleus in the form of a pre-integration complex. The integrated viral DNA is transcribed and translated by host machinery to create viral genomic RNA and proteins. Viral assembly occurs at the plasma membrane, where the viral polyproteins Gag and Gag-Pol multimerize and bind the membrane. tRNA plays a regulatory role in Gag membrane binding. Viral components and host factors, including the tRNA primer, are packaged into progeny virions. After viral budding, the viral particle undergoes maturation to become fully infectious.
      The genome of simple retroviruses, such as murine leukemia virus (MuLV), encodes three polyproteins, Gag, Gag-Pol, and Env, whereas the complex retroviruses, including HIV-1, encode additional regulatory proteins. The Gag structural protein includes three major domains: matrix (MA), capsid (CA), and nucleocapsid (NC) (Fig. 1). During maturation, Gag is cleaved into individual domains by viral protease (PR), a product of the retroviral pol gene, which also encodes enzymatic proteins RT and integrase (IN) (
      • Vogt V.
      ). Retrotransposons are RT gene-containing mobile genetic elements found in various eukaryotic species. They move from one location in the genome to another via reverse transcription from an RNA intermediate. The mobile nature of retrotransposons is a source of genomic instability as retrotransposition may induce changes in genome structure and gene expression (
      • Mita P.
      • Boeke J.D.
      How retrotransposons shape genome regulation.
      ). Retrotransposons adopt a similar genomic organization as retroviruses, but unlike retroviruses they do not have an extracellular phase in their replication cycle (
      • Sandmeyer S.B.
      • Hansen L.J.
      • Chalker D.L.
      Integration specificity of retrotransposons and retroviruses.
      ). Long terminal repeat (LTR) retrotransposons contain LTRs similar to a provirus. LTR retrotransposons contain a gag gene that allows the formation of virus-like particles and a pol gene that encodes enzymatic proteins (
      • Finnegan D.J.
      Retrotransposons.
      ).
      Retroviruses and retrotransposons exploit various host factors throughout their replication cycles. A hallmark of retroviral replication is reverse transcription, wherein the single-stranded RNA genome is converted into dsDNA. As mentioned above, all retroviruses use specific host tRNAs as the primer for reverse transcription (
      • Duchon A.A.
      • Musier-Forsyth K.
      ). For HIV-1, the identity of the primer is the human tRNALys isoacceptor 3 (tRNALys,3) (
      • Wain-Hobson S.
      • Sonigo P.
      • Danos O.
      • Cole S.
      • Alizon M.
      Nucleotide sequence of the AIDS virus, LAV.
      ). HTLV-1 uses tRNAPro as primer (
      • Seiki M.
      • Hattori S.
      • Hirayama Y.
      • Yoshida M.
      Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA.
      ), and Rous sarcoma virus (RSV), a retrovirus that causes sarcoma in avian species, uses tRNATrp (
      • Sawyer R.C.
      • Dahlberg J.E.
      Small RNAs of Rous sarcoma virus: characterization by two-dimensional polyacrylamide gel electrophoresis and fingerprint analysis.
      ). Some retrotransposons also require a tRNA molecule to initiate reverse transcription (
      • Kikuchi Y.
      • Ando Y.
      • Shiba T.
      Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila.
      ,
      • Rothnie H.M.
      • McCurrach K.J.
      • Glover L.A.
      • Hardman N.
      Retrotransposon-like nature of Tp1 elements: implications for the organisation of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum.
      • Ke N.
      • Gao X.
      • Keeney J.B.
      • Boeke J.D.
      • Voytas D.F.
      The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.
      ).
      The enrichment of specific cellular tRNAs in some retroviruses is facilitated by the host machinery. For example, in the case of HIV-1, the cognate ARS, human lysyl-tRNA synthetase (LysRS), mediates tRNALys primer recruitment and packaging (
      • Cen S.
      • Khorchid A.
      • Javanbakht H.
      • Gabor J.
      • Stello T.
      • Shiba K.
      • Musier-Forsyth K.
      • Kleiman L.
      Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1.
      ). Tryptophanyl-tRNA synthetase (TrpRS) has also been identified in RSV virions (
      • Cen S.
      • Javanbakht H.
      • Kim S.
      • Shiba K.
      • Craven R.
      • Rein A.
      • Ewalt K.
      • Schimmel P.
      • Musier-Forsyth K.
      • Kleiman L.
      Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs.
      ). ARSs are essential components of the cellular translational machinery, as they catalyze the ligation of the correct amino acids onto the 3′ end of cognate tRNA molecules. Like LysRS and TrpRS, many tRNA synthetases have evolved nontranslational functions, including roles in transcriptional control (
      • Putney S.D.
      • Schimmel P.
      An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription.
      ), translational control (
      • Sampath P.
      • Mazumder B.
      • Seshadri V.
      • Gerber C.A.
      • Chavatte L.
      • Kinter M.
      • Ting S.M.
      • Dignam J.D.
      • Kim S.
      • Driscoll D.M.
      • Fox P.L.
      Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation.
      ,
      • Sampath P.
      • Mazumder B.
      • Seshadri V.
      • Fox P.L.
      Transcript-selective translational silencing by γ interferon is directed by a novel structural element in the ceruloplasmin mRNA 3′ untranslated region.
      • Jia J.
      • Arif A.
      • Ray P.S.
      • Fox P.L.
      WHEP domains direct noncanonical function of glutamyl-prolyl tRNA synthetase in translational control of gene expression.
      ), cell proliferation (
      • Katsyv I.
      • Wang M.
      • Song W.M.
      • Zhou X.
      • Zhao Y.
      • Park S.
      • Zhu J.
      • Zhang B.
      • Irie H.Y.
      EPRS is a critical regulator of cell proliferation and estrogen signaling in ER(+) breast cancer.
      ), and the cellular immune response (
      • Yannay-Cohen N.
      • Carmi-Levy I.
      • Kay G.
      • Yang C.M.
      • Han J.M.
      • Kemeny D.M.
      • Kim S.
      • Nechushtan H.
      • Razin E.
      LysRS serves as a key signaling molecule in the immune response by regulating gene expression.
      ,
      • Lee E.-Y.
      • Lee H.-C.
      • Kim H.-K.
      • Jang S.Y.
      • Park S.-J.
      • Kim Y.-H.
      • Kim J.H.
      • Hwang J.
      • Kim J.-H.
      • Kim T.-H.
      • Arif A.
      • Kim S.-Y.
      • Choi Y.-K.
      • Lee C.
      • Lee C.-H.
      • et al.
      Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity.
      ).
      In this review, we summarize our current understanding of the involvement of tRNAs, tRNA derivatives, and ARSs in the replication cycle of retroviruses and retrotransposons. We also provide an overview of host tRNA-binding proteins that modulate retroviral replication, and the potential functions of ARSs in the retroviral lifecycle suggested by multi-omic studies.

      tRNAs as primers for reverse transcription

      The 5′UTR of retroviruses contains an 18-nucleotide (nt) sequence, termed the primer-binding site (PBS), which is complementary to the 3′ acceptor stem and the TΨC arm of a specific host cell tRNA. The sequence of the PBS is important for efficient viral replication and determines the identity of the tRNA primer (
      • Das A.T.
      • Klaver B.
      • Berkhout B.
      Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys).
      ,
      • Wakefield J.K.
      • Kang S.M.
      • Morrow C.D.
      Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His).
      • Li X.
      • Mak J.
      • Arts E.J.
      • Gu Z.
      • Kleiman L.
      • Wainberg M.A.
      • Parniak M.A.
      Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication.
      ). The cellular tRNA that serves as the reverse transcription primer is partially unwound and annealed to the PBS to prime reverse transcription (
      • Duchon A.A.
      • Musier-Forsyth K.
      ). For all retroviruses and most LTR retrotransposons, viral RT extends the tRNA primer to create an RNA–DNA duplex. The RNase H activity of RT degrades most of the genome during the reverse transcription process, leaving the (−)-strand DNA with one or more purine-rich RNA fragments known as polypurine tracts annealed to it. The polypurine tracts serve as the primers for the synthesis of (+)-strand DNA, resulting in a dsDNA product (
      • Hughes S.H.
      Reverse transcription of retroviruses and LTR retrotransposons.
      ).
      The HIV-1 PBS is complementary to human tRNALys,3, which serves as the primer for HIV-1 RT. Efforts have been made to force HIV-1 to use alternative tRNA primers by mutating the PBS to be complementary to other tRNA species (
      • Das A.T.
      • Klaver B.
      • Berkhout B.
      Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys).
      ,
      • Wakefield J.K.
      • Wolf A.G.
      • Morrow C.D.
      Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys).
      ). However, the fact that these mutant viruses cannot be stably maintained suggests that additional interactions between the tRNA primer and the viral RNA genome are present (
      • Das A.T.
      • Klaver B.
      • Berkhout B.
      Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys).
      ). Indeed, the U-rich anticodon of tRNALys,3 has been proposed to interact with an A-rich bulge located proximal to the PBS in some HIV-1 isolates (
      • Isel C.
      • Marquet R.
      • Keith G.
      • Ehresmann C.
      • Ehresmann B.
      Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription.
      ,
      • Isel C.
      • Ehresmann C.
      • Keith G.
      • Ehresmann B.
      • Marquet R.
      Initiation of reverse transcripion of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3)(Lys) (template/primer) complex.
      ). In addition, a short sequence upstream of the PBS, termed the primer activation signal, allows additional interaction with the TΨC arm of the tRNA primer (
      • Beerens N.
      • Berkhout B.
      The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription.
      ,
      • Beerens N.
      • Berkhout B.
      Switching the in vitro tRNA usage of HIV-1 by simultaneous adaptation of the PBS and PAS.
      ). A recent cryo-electron microscopy (cryo-EM) study reported the structure of the HIV-1 RT initiation complex. In this structure, the PBS–tRNALys,3 helix is localized in the nucleic acid–binding cleft of an inactive conformation (i.e. open fingers and thumb) of RT, and the nonpriming region of the tRNA folds back and stacks on the PBS to form an elongated helical structure (
      • Larsen K.P.
      • Mathiharan Y.K.
      • Kappel K.
      • Coey A.T.
      • Chen D.-H.
      • Barrero D.
      • Madigan L.
      • Puglisi J.D.
      • Skiniotis G.
      • Puglisi E.V.
      Architecture of an HIV-1 reverse transcriptase initiation complex.
      ). The cryo-EM structure is consistent with previous chemical probing data, in which extensive viral RNA–tRNA interactions beyond the PBS region were not observed at the stage of RT initiation, where the primer is extended by one nucleotide (
      • Goldschmidt V.
      • Ehresmann C.
      • Ehresmann B.
      • Marquet R.
      Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription?.
      ,
      • Goldschmidt V.
      • Paillart J.-C.
      • Rigourd M.
      • Ehresmann B.
      • Aubertin A.-M.
      • Ehresmann C.
      • Marquet R.
      Structural variability of the initiation complex of HIV-1 reverse transcription.
      ). This is in contrast to the additional interactions observed previously in the absence of RT (
      • Isel C.
      • Marquet R.
      • Keith G.
      • Ehresmann C.
      • Ehresmann B.
      Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription.
      ,
      • Beerens N.
      • Berkhout B.
      The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription.
      ).
      Retrotransposons adapt diversified tRNA-priming mechanisms. tRNAiMet-primed reverse transcription is conserved among many LTR retrotransposons, including the copia retrovirus-like particle from Drosophila melanogaster (
      • Kikuchi Y.
      • Ando Y.
      • Shiba T.
      Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila.
      ), Tp1 and Tp2 from the slime mold Physarum polycephalum (
      • Rothnie H.M.
      • McCurrach K.J.
      • Glover L.A.
      • Hardman N.
      Retrotransposon-like nature of Tp1 elements: implications for the organisation of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum.
      ), and Saccharomyces cerevisiae Ty5 (
      • Ke N.
      • Gao X.
      • Keeney J.B.
      • Boeke J.D.
      • Voytas D.F.
      The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.
      ). Other LTR retrotransposons such as Schizosaccharomyces pombe Tf1 undergo tRNA-independent reverse transcription via a self-priming mechanism (
      • Levin H.L.
      An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex.
      ). Most LTR retrotransposons such as S. cerevisiae Ty1 and Ty3 initiate (−)-DNA synthesis from the 3′ end of an intact tRNA (
      • Le Grice S.F.
      “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons.
      ). In contrast, copia from D. melanogaster and Ty5 from S. cerevisiae, reverse transcription initiation requires a processed 5′ fragment of tRNAiMet (
      • Kikuchi Y.
      • Ando Y.
      • Shiba T.
      Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila.
      ,
      • Ke N.
      • Gao X.
      • Keeney J.B.
      • Boeke J.D.
      • Voytas D.F.
      The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.
      ).
      The annealing of primer tRNA to the retroviral genome is regulated by viral and host proteins. Annealing of tRNALys,3 to the HIV-1 PBS can be facilitated by either the Gag polyprotein or the mature NC protein in vitro (
      • Feng Y.-X.
      • Campbell S.
      • Harvin D.
      • Ehresmann B.
      • Ehresmann C.
      • Rein A.
      The human immunodeficiency virus type 1 Gag polyprotein has nucleic acid chaperone activity: possible role in dimerization of genomic RNA and placement of tRNA on the primer binding site.
      ,
      • Roldan A.
      • Warren O.U.
      • Russell R.S.
      • Liang C.
      • Wainberg M.A.
      A HIV-1 minimal Gag protein is superior to nucleocapsid at in vitro annealing and exhibits multimerization-induced inhibition of reverse transcription.
      ). Because tRNA is found annealed to gRNA in PR-negative virions, Gag is believed to facilitate the initial placement of the primer onto the PBS (
      • Guo F.
      • Saadatmand J.
      • Niu M.
      • Kleiman L.
      Roles of Gag and NCp7 in facilitating tRNA(3)(Lys) annealing to viral RNA in human immunodeficiency virus type 1.
      ). It has been shown that the NC domain of Gag is essential for annealing activity in vitro (
      • Jones C.P.
      • Datta S.A.
      • Rein A.
      • Rouzina I.
      • Musier-Forsyth K.
      Matrix domain modulates HIV-1 Gag's nucleic acid chaperone activity via inositol phosphate binding.
      ). As a nucleic acid chaperone protein, the NC protein facilitates tRNA and gRNA remodeling to form a thermodynamically stable complex (
      • Levin J.G.
      • Mitra M.
      • Mascarenhas A.
      • Musier-Forsyth K.
      Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription.
      ,
      • Wu H.
      • Rouzina I.
      • Williams M.C.
      Single-molecule stretching studies of RNA chaperones.
      • Rein A.
      Nucleic acid chaperone activity of retroviral Gag proteins.
      ). A multistaged tRNA primer annealing process has been proposed, wherein initial annealing by Gag is followed by more optimized annealing by NC in mature virions (
      • Cen S.
      • Khorchid A.
      • Gabor J.
      • Rong L.
      • Wainberg M.A.
      • Kleiman L.
      Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the initiation step of reverse transcription in human immunodeficiency virus type 1.
      ,
      • Saadatmand J.
      • Kleiman L.
      Aspects of HIV-1 assembly that promote primer tRNA(Lys3) annealing to viral RNA.
      ), a model further supported by in virio RNA structure–probing analysis (
      • Seif E.
      • Niu M.
      • Kleiman L.
      In virio SHAPE analysis of tRNA(Lys3) annealing to HIV-1 genomic RNA in wild type and protease-deficient virus.
      ). Human RNA helicase A, a transcriptional cofactor that unwinds dsRNA and DNA, binds to the 5′UTR of the HIV-1 genome and has also been proposed to play a role in promoting tRNA primer annealing (
      • Xing L.
      • Liang C.
      • Kleiman L.
      Coordinate roles of Gag and RNA helicase A in promoting the annealing of tRNA(3)(Lys) to HIV-1 RNA.
      ,
      • Xing L.
      • Niu M.
      • Kleiman L.
      In vitro and in vivo analysis of the interaction between RNA helicase A and HIV-1 RNA.
      ). Together with Gag, RNA helicase A induces a conformational change in the genome, making it favorable for tRNA primer binding.

      Aminoacyl-tRNA synthetases as regulatory factors in RT primer recruitment

      Human tRNALys,3 is selectively packaged into HIV-1 virions, together with another tRNALys isoacceptor, tRNALys1,2, that does not serve as a reverse transcription primer (
      • Mak J.
      • Jiang M.
      • Wainberg M.A.
      • Hammarskjöld M.L.
      • Rekosh D.
      • Kleiman L.
      Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles.
      ,
      • Pavon-Eternod M.
      • Wei M.
      • Pan T.
      • Kleiman L.
      Profiling non-lysyl tRNAs in HIV-1.
      ). This raised the possibility that human LysRS, the only known cellular protein that specifically binds to all tRNALys isoacceptors, is involved in tRNALys packaging. Indeed, LysRS is selectively packaged into HIV-1 virions (
      • Cen S.
      • Khorchid A.
      • Javanbakht H.
      • Gabor J.
      • Stello T.
      • Shiba K.
      • Musier-Forsyth K.
      • Kleiman L.
      Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1.
      ), and overexpression of LysRS in cells enhances tRNALys,3 packaging and viral infectivity (
      • Gabor J.
      • Cen S.
      • Javanbakht H.
      • Niu M.
      • Kleiman L.
      Effect of altering the tRNA(Lys)(3) concentration in human immunodeficiency virus type 1 upon its annealing to viral RNA, GagPol incorporation, and viral infectivity.
      ). The selective packaging of the tRNA primer requires HIV-1 Gag and Gag-Pol (
      • Mak J.
      • Jiang M.
      • Wainberg M.A.
      • Hammarskjöld M.L.
      • Rekosh D.
      • Kleiman L.
      Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles.
      ), and interaction between LysRS and Gag is observed in vitro (
      • Kovaleski B.J.
      • Kennedy R.
      • Hong M.K.
      • Datta S.A.
      • Kleiman L.
      • Rein A.
      • Musier-Forsyth K.
      In vitro characterization of the interaction between HIV-1 Gag and human lysyl-tRNA synthetase.
      ). This interaction has been mapped to the C-terminal domain of the CA region of Gag and the motif 1 dimerization domain of LysRS (
      • Javanbakht H.
      • Halwani R.
      • Cen S.
      • Saadatmand J.
      • Musier-Forsyth K.
      • Gottlinger H.
      • Kleiman L.
      The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly.
      ,
      • Dewan V.
      • Wei M.
      • Kleiman L.
      • Musier-Forsyth K.
      Dual role for motif 1 residues of human lysyl-tRNA synthetase in dimerization and packaging into HIV-1.
      ). Cyclic peptides that target the interaction interface have been developed and function to inhibit the protein–protein binding in vitro (
      • Dewan V.
      • Liu T.
      • Chen K.-M.
      • Qian Z.
      • Xiao Y.
      • Kleiman L.
      • Mahasenan K.V.
      • Li C.
      • Matsuo H.
      • Pei D.
      • Musier-Forsyth K.
      Cyclic peptide inhibitors of HIV-1 capsid-human lysyl-tRNA synthetase interaction.
      ). In a proposed model, a complex containing viral RNA, Gag, and Gag-Pol recruits the LysRS/tRNALys complex, forming the tRNALys packaging complex (
      • Kleiman L.
      • Jones C.P.
      • Musier-Forsyth K.
      Formation of the tRNA(Lys) packaging complex in HIV-1.
      ). Moreover, tRNA binding to LysRS, but not aminoacylation, is required for tRNA incorporation into the virus (
      • Javanbakht H.
      • Cen S.
      • Musier-Forsyth K.
      • Kleiman L.
      Correlation between tRNA(Lys3) aminoacylation and its incorporation into HIV-1.
      ,
      • Cen S.
      • Javanbakht H.
      • Niu M.
      • Kleiman L.
      Ability of wild-type and mutant lysyl-tRNA synthetase to facilitate tRNALys incorporation into human immunodeficiency virus type 1.
      ).
      In higher eukaryotes, LysRS is part of a high-molecular weight multi-tRNA synthetase complex (MSC) in the cytoplasm. This complex contains nine ARS activities in eight proteins (aspartyl-tRNA synthetase (AspRS), arginyl-tRNA synthetase (ArgRS), glutaminyl-tRNA synthetase (GlnRS), leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), LysRS, methionyl-tRNA synthetase (MetRS), and a bi-functional tRNA synthetase consisting of glutamyl- and prolyl-tRNA synthetases (GluProRS)), and three scaffold proteins known as ARS-interacting multifunctional proteins (AIMPs), AIMP1, AIMP2, and AIMP3 (
      • Kim J.H.
      • Han J.M.
      • Kim S.
      ). The MSC serves as a reservoir for ARSs with noncanonical functions, as well as facilitating tRNA channeling and translation (
      • Ray P.S.
      • Arif A.
      • Fox P.L.
      Macromolecular complexes as depots for releasable regulatory proteins.
      ). Interestingly, HIV-1 infection leads to an increased pool of non-MSC-associated ARSs (
      • Duchon A.A.
      • St Gelais C.
      • Titkemeier N.
      • Hatterschide J.
      • Wu L.
      • Musier-Forsyth K.
      HIV-1 exploits a dynamic multi-aminoacyl-tRNA synthetase complex to enhance viral replication.
      ).
      The source of viral LysRS has been an active area of investigation. In higher eukaryotic cells, LysRS has been reported to be found in the nucleus (
      • Nathanson L.
      • Deutscher M.P.
      Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex.
      ), in mitochondria (
      • Tolkunova E.
      • Park H.
      • Xia J.
      • King M.P.
      • Davidson E.
      The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript.
      ), assembled in the MSC in the cytosol (
      • Robinson J.-C.
      • Kerjan P.
      • Mirande M.
      Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein–protein interactions and mechanism of complex assembly.
      ), and associated with the plasma membrane (
      • Halwani R.
      • Cen S.
      • Javanbakht H.
      • Saadatmand J.
      • Kim S.
      • Shiba K.
      • Kleiman L.
      Cellular distribution of lysyl-tRNA synthetase and its interaction with gag during human immunodeficiency virus type 1 assembly.
      ,
      • Kim D.G.
      • Choi J.W.
      • Lee J.Y.
      • Kim H.
      • Oh Y.S.
      • Lee J.W.
      • Tak Y.K.
      • Song J.M.
      • Razin E.
      • Yun S.-H.
      • Kim S.
      Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration.
      ). Early studies suggested that newly synthesized LysRS is packaged into the virus prior to assembly into the MSC (
      • Halwani R.
      • Cen S.
      • Javanbakht H.
      • Saadatmand J.
      • Kim S.
      • Shiba K.
      • Kleiman L.
      Cellular distribution of lysyl-tRNA synthetase and its interaction with gag during human immunodeficiency virus type 1 assembly.
      ,
      • Guo F.
      • Cen S.
      • Niu M.
      • Javanbakht H.
      • Kleiman L.
      Specific inhibition of the synthesis of human lysyl-tRNA synthetase results in decreases in tRNA(Lys) incorporation, tRNA(3)(Lys) annealing to viral RNA, and viral infectivity in human immunodeficiency virus type 1.
      ). Mitochondrial LysRS has also been proposed to be a source of LysRS used by HIV-1 (
      • Kaminska M.
      • Shalak V.
      • Francin M.
      • Mirande M.
      Viral hijacking of mitochondrial lysyl-tRNA synthetase.
      ). A recent study suggests that HIV-1 infection induces phosphorylation of LysRS at Ser-207 (
      • Duchon A.A.
      • St Gelais C.
      • Titkemeier N.
      • Hatterschide J.
      • Wu L.
      • Musier-Forsyth K.
      HIV-1 exploits a dynamic multi-aminoacyl-tRNA synthetase complex to enhance viral replication.
      ). This phosphorylation event triggers LysRS release from the MSC and nuclear localization (
      • Yannay-Cohen N.
      • Carmi-Levy I.
      • Kay G.
      • Yang C.M.
      • Han J.M.
      • Kemeny D.M.
      • Kim S.
      • Nechushtan H.
      • Razin E.
      LysRS serves as a key signaling molecule in the immune response by regulating gene expression.
      ). Interestingly, the phosphomimetic mutant S207D LysRS is packaged by the virus and maintains full tRNA-binding capability but lacks aminoacylation activity (
      • Duchon A.A.
      • St Gelais C.
      • Titkemeier N.
      • Hatterschide J.
      • Wu L.
      • Musier-Forsyth K.
      HIV-1 exploits a dynamic multi-aminoacyl-tRNA synthetase complex to enhance viral replication.
      ). However, phosphoablative mutant S207A LysRS is unable to be packaged, suggesting that phosphorylation at Ser-207 is a requirement for LysRS being packaged by HIV-1 (
      • Duchon A.A.
      • St Gelais C.
      • Titkemeier N.
      • Hatterschide J.
      • Wu L.
      • Musier-Forsyth K.
      HIV-1 exploits a dynamic multi-aminoacyl-tRNA synthetase complex to enhance viral replication.
      ). Taken together, a mechanism has been proposed wherein HIV-1 infection liberates LysRS from the MSC by inducing phosphorylation. The released p-LysRS is bound to an uncharged tRNALys,3 that can serve as an effective reverse transcription primer. Many open questions regarding the mechanism of tRNA primer packaging and the role of ARSs in this process remain, both in HIV-1 and other retroviral systems. For example, the significance of LysRS nuclear localization in HIV-1–infected cells is unknown. In addition, although an MSC-free fraction of LysRS is observed in HIV-1–infected cells, we cannot rule out the possibility that HIV-1 induces a pool of newly synthesized LysRS that is phosphorylated and thus prevented from associating with the MSC (
      • Duchon A.A.
      • St Gelais C.
      • Titkemeier N.
      • Hatterschide J.
      • Wu L.
      • Musier-Forsyth K.
      HIV-1 exploits a dynamic multi-aminoacyl-tRNA synthetase complex to enhance viral replication.
      ). Similar to HIV-1, RSV selectively packages primer tRNATrp, as well as host TrpRS (
      • Cen S.
      • Javanbakht H.
      • Kim S.
      • Shiba K.
      • Craven R.
      • Rein A.
      • Ewalt K.
      • Schimmel P.
      • Musier-Forsyth K.
      • Kleiman L.
      Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs.
      ), although the viral–host interactions have not been elucidated in detail.
      In addition to capturing the tRNA primer through LysRS recruitment, HIV-1 has also evolved a mechanism to displace tRNALys from LysRS for primer annealing. The 5′UTR of the HIV-1 genome contains a tRNA-like element (TLE) that resembles the anticodon loop of tRNALys,3 in both sequence and 3D structure (
      • Jones C.P.
      • Saadatmand J.
      • Kleiman L.
      • Musier-Forsyth K.
      Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.
      ,
      • Jones C.P.
      • Cantara W.A.
      • Olson E.D.
      • Musier-Forsyth K.
      Small-angle X-ray scattering-derived structure of the HIV-1 5′ UTR reveals 3D tRNA mimicry.
      • Liu S.
      • Comandur R.
      • Jones C.P.
      • Tsang P.
      • Musier-Forsyth K.
      Anticodon-like binding of the HIV-1 tRNA-like element to human lysyl-tRNA synthetase.
      ). The TLE binds LysRS with high affinity and promotes efficient tRNA primer annealing (Fig. 2) (
      • Jones C.P.
      • Saadatmand J.
      • Kleiman L.
      • Musier-Forsyth K.
      Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.
      ). This tRNA mimicry by the HIV-1 genome is proposed to compete with tRNALys,3 for specific LysRS binding, and therefore it facilitates the release of the tRNA primer for annealing (
      • Liu S.
      • Comandur R.
      • Jones C.P.
      • Tsang P.
      • Musier-Forsyth K.
      Anticodon-like binding of the HIV-1 tRNA-like element to human lysyl-tRNA synthetase.
      ). A divergent sequence but a similar TLE 3D structure is observed in HIV-1 NL4-3 (subtype B) and MAL (subtype A-like) isolates, suggesting that the molecular mimicry is conserved among HIV-1 subtypes (
      • Comandur R.
      • Olson E.D.
      • Musier-Forsyth K.
      Conservation of tRNA mimicry in the 5′-untranslated region of distinct HIV-1 subtypes.
      ). A model summarizing HIV-1 tRNA primer packaging and placement is illustrated in Fig. 2.
      Figure thumbnail gr2
      Figure 2HIV-1 tRNA primer recruitment and packaging. HIV-1 infection induces a pool of free, non-MSC-associated phosphorylated LysRS, which traffics to the nucleus. The role of nuclear LysRS is unknown. The genomic RNA/Gag/Gag-Pol complex recruits the LysRS/tRNA complex. The TLE binds LysRS and releases the tRNA primer for annealing. The cellular location of tRNA primer annealing is unknown but is depicted here in the cytoplasm. The PBS and anti-PBS region of the tRNA are colored in red. The TLE and the tRNA region mimicked are colored in green.

      tRNA regulates Gag membrane binding

      In addition to NC, which is well known for its viral gRNA binding and chaperone activities, the MA domain of HIV-1 Gag also interacts with RNAs in vitro and in cells (
      • Burniston M.T.
      • Cimarelli A.
      • Colgan J.
      • Curtis S.P.
      • Luban J.
      Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and ss promoted by the capsid-dimer interface and the basic region of matrix protein.
      ,
      • Alfadhli A.
      • McNett H.
      • Tsagli S.
      • Bächinger H.P.
      • Peyton D.H.
      • Barklis E.
      HIV-1 matrix protein binding to RNA.
      • Kutluay S.B.
      • Zang T.
      • Blanco-Melo D.
      • Powell C.
      • Jannain D.
      • Errando M.
      • Bieniasz P.D.
      Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis.
      ). As identified in a cross-linking–immunoprecipitation sequencing (CLIP-seq)-based study, tRNAs comprise over 60% of Gag-bound RNAs (
      • Kutluay S.B.
      • Zang T.
      • Blanco-Melo D.
      • Powell C.
      • Jannain D.
      • Errando M.
      • Bieniasz P.D.
      Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis.
      ). Strikingly HIV-1 MA binds almost exclusively to tRNAs, with an apparent preference for tRNAGlu, tRNALys, and tRNAVal isoacceptors. MA binds full-length tRNAs, and the binding sites are in the 5′-half, specifically in the D-loop (
      • Kutluay S.B.
      • Zang T.
      • Blanco-Melo D.
      • Powell C.
      • Jannain D.
      • Errando M.
      • Bieniasz P.D.
      Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis.
      ). The MA domain contains a highly basic region essential for regulating Gag relocalization to the plasma membrane by specifically interacting with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (
      • Chukkapalli V.
      • Ono A.
      Molecular determinants that regulate plasma membrane association of HIV-1 Gag.
      ). Using in vitro liposome-binding assays, it was initially reported that RNA binding to MA prevents Gag binding to non-PI(4,5)P2 membrane lipids (
      • Chukkapalli V.
      • Oh S.J.
      • Ono A.
      Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain.
      ,
      • Chukkapalli V.
      • Inlora J.
      • Todd G.C.
      • Ono A.
      Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells.
      ) and that PI(4,5)P2 outcompetes RNA for MA interaction (
      • Alfadhli A.
      • Still A.
      • Barklis E.
      Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids.
      ). More recently, the identity of the RNAs inhibiting HIV-1 MA–membrane interactions has also been examined (
      • Todd G.C.
      • Duchon A.
      • Inlora J.
      • Olson E.D.
      • Musier-Forsyth K.
      • Ono A.
      Inhibition of HIV-1 Gag–membrane interactions by specific RNAs.
      ). Interestingly, tRNAPro, but not tRNALys,3, is among the RNA species able to inhibit Gag membrane binding in vitro. Moreover, the NC domain was required for the RNA-mediated effects on Gag-membrane binding. A model was proposed wherein NC “loads” the tRNA onto MA as a prerequisite (
      • Todd G.C.
      • Duchon A.
      • Inlora J.
      • Olson E.D.
      • Musier-Forsyth K.
      • Ono A.
      Inhibition of HIV-1 Gag–membrane interactions by specific RNAs.
      ). These studies suggest that by binding to the highly basic region of HIV-1 MA, tRNAPro inhibits Gag association with non-PI(4,5)P2 membranes, whereas PI(4,5)P2 strips off the tRNA to allow specific Gag–membrane interaction (Fig. 3A).
      Figure thumbnail gr3
      Figure 3Two models of tRNA regulation of Gag-membrane binding. A, in this model (
      • Todd G.C.
      • Duchon A.
      • Inlora J.
      • Olson E.D.
      • Musier-Forsyth K.
      • Ono A.
      Inhibition of HIV-1 Gag–membrane interactions by specific RNAs.
      ), tRNA is loaded onto MA by NC. tRNA-bound Gag is unable to interact with non-PI(4,5)P2–membrane lipids (upper pathway). PI(4,5)P2 outcompetes tRNA for Gag binding (lower pathway). B, in this model (
      • Carlson L.-A.
      • Bai Y.
      • Keane S.C.
      • Doudna J.A.
      • Hurley J.H.
      Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies.
      ), tRNA prevents membrane binding of Gag monomers unassociated with viral gRNA (left). Gag binding to gRNA results in dimers that have a higher probability to overcome the inhibitory effect of tRNA and are capable of membrane binding (middle). Gag molecules binding to non-gRNA are unable to overcome the inhibitory effect of tRNA or associate with the membrane. These models do not address the conformation of Gag, which may interact with the non-gRNAs with both the MA and NC domains simultaneously in a bent conformation (
      • Olson E.D.
      • Musier-Forsyth K.
      Retroviral Gag protein–RNA interactions: implications for specific genomic RNA packaging and virion assembly.
      ).
      The inhibitory effect of tRNA on Gag-membrane binding was further validated in a minimal system that includes giant unilamellar vesicles, recombinant HIV-1 Gag protein, and purified RNAs (
      • Carlson L.-A.
      • Bai Y.
      • Keane S.C.
      • Doudna J.A.
      • Hurley J.H.
      Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies.
      ). In the presence of tRNA, gRNA-bound Gag exhibits a higher likelihood of membrane binding than nonspecific RNA-bound Gag (
      • Carlson L.-A.
      • Bai Y.
      • Keane S.C.
      • Doudna J.A.
      • Hurley J.H.
      Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies.
      ). These observations led to another model wherein viral gRNA-bound Gag overcomes the inhibitory effect of tRNA and thereby multimerizes and clusters at the plasma membrane (Fig. 3B) (
      • Carlson L.-A.
      • Bai Y.
      • Keane S.C.
      • Doudna J.A.
      • Hurley J.H.
      Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies.
      ).

      Functions of tRNA derivatives in modulating the replication of retroviruses and retroelements

      The development of high-throughput sequencing technologies has led to the discovery of many novel noncoding RNAs (ncRNAs) present in cells and virions. The host RNA packageome of HIV-1 includes a variety of cellular RNAs including nonlysyl tRNAs (
      • Pavon-Eternod M.
      • Wei M.
      • Pan T.
      • Kleiman L.
      Profiling non-lysyl tRNAs in HIV-1.
      ). Interestingly, HIV-1 and MuLV selectively package pre-tRNAs containing 3′ and 5′ extension sequences, although the function of these unprocessed tRNAs in the viral lifecycle is unclear (
      • Eckwahl M.J.
      • Arnion H.
      • Kharytonchyk S.
      • Zang T.
      • Bieniasz P.D.
      • Telesnitsky A.
      • Wolin S.L.
      Analysis of the human immunodeficiency virus-1 RNA packageome.
      ,
      • Eckwahl M.J.
      • Sim S.
      • Smith D.
      • Telesnitsky A.
      • Wolin S.L.
      A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway.
      ).
      tRNAs are a source of a class of ncRNAs, known as tRNA-derived fragments, which are increasingly gaining attention. tRNA fragments are involved in regulating basic cellular functions, such as inhibiting mRNA translation (
      • Sobala A.
      • Hutvagner G.
      Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells.
      ), and are associated with a variety of human diseases, including pathological stress injuries, cancers, and neurodegenerative diseases (
      • Anderson P.
      • Ivanov P.
      tRNA fragments in human health and disease.
      ). Viral infection can also trigger the expression of certain tRNA fragments (
      • Wang Q.
      • Lee I.
      • Ren J.
      • Ajay S.S.
      • Lee Y.S.
      • Bao X.
      Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection.
      ).
      tRNA-derived fragments are commonly divided into two categories: tRNA halves (tiRNAs) and shorter tRNA fragments (tRFs). tiRNAs correspond to 30–35-nt 5′-tRNA halves and 40–50-nt 3′-tRNA halves that are produced from specific cleavage by the RNase angiogenin under stress conditions (
      • Saikia M.
      • Krokowski D.
      • Guan B.-J.
      • Ivanov P.
      • Parisien M.
      • Hu G.F.
      • Anderson P.
      • Pan T.
      • Hatzoglou M.
      Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress.
      ). tiRNAs are involved in the stress-induced decrease of global translation (
      • Emara M.M.
      • Ivanov P.
      • Hickman T.
      • Dawra N.
      • Tisdale S.
      • Kedersha N.
      • Hu G.-F.
      • Anderson P.
      Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly.
      ) and may serve as a biomarker for tissue damage (
      • Mishima E.
      • Inoue C.
      • Saigusa D.
      • Inoue R.
      • Ito K.
      • Suzuki Y.
      • Jinno D.
      • Tsukui Y.
      • Akamatsu Y.
      • Araki M.
      • Araki K.
      • Shimizu R.
      • Shinke H.
      • Suzuki T.
      • Takeuchi Y.
      • et al.
      Conformational change in transfer RNA ss an early indicator of acute cellular damage.
      ). tRFs are smaller and more diverse fragments of tRNA with a typical length of 12–30 nt. Cleavage of mature tRNAs within the D-loop and in/near the T-loop gives rise to 5′ tRFs (tRF-5s) and 3′ CCA tRFs (tRF-3s), respectively. A third class of tRFs, tRF-1s, is derived from tRNA precursors that contain the 3′ trailer sequences but lack the 3′ CCA addition (Fig. 4) (
      • Kumar P.
      • Kuscu C.
      • Dutta A.
      Biogenesis and function of transfer RNA-related fragments (tRFs).
      ).
      Figure thumbnail gr4
      Figure 4tRNA-derived fragments generated from tRNA precursor and mature tRNA. tRF-1s are derived from tRNA precursors and contain the 3′ trailer sequences. Mature tRNAs give rise to tiRNAs and two classes of shorter tRNA fragments, tRF-3s and tRF-5s. tRNA cleavage sites that produce the two 18- and 22-nt tRF species regulating LTR-retrotransponson replication are indicated by arrows.
      Many tRF-5 molecules have recently been shown to play modulatory roles in the replication of retroelements. For example, 5′ fragments of tRNAGly(GCC) functionally suppress gene expression related to the endogenous retroelement MERVL in mature mouse sperms (
      • Sharma U.
      • Conine C.C.
      • Shea J.M.
      • Boskovic A.
      • Derr A.G.
      • Bing X.Y.
      • Belleannee C.
      • Kucukural A.
      • Serra R.W.
      • Sun F.
      • Song L.
      • Carone B.R.
      • Ricci E.P.
      • Li X.Z.
      • Fauquier L.
      • et al.
      Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.
      ). In addition, tRF-5s that accumulated in Arabidopsis thaliana were shown to direct the cleavage of mRNAs associated with gypsy family transposable elements (
      • Martinez G.
      • Choudury S.G.
      • Slotkin R.K.
      tRNA-derived small RNAs target transposable element transcripts.
      ). A recent study suggested tRF-3s also have the potential to control the replication of endogenous retroviruses in mice (
      • Schorn A.J.
      • Gutbrod M.J.
      • LeBlanc C.
      • Martienssen R.
      LTR-retrotransposon control by tRNA-derived small RNAs.
      ). Two 18- and 22-nt–long 3′ CCA tRFs (Fig. 4, arrows), both containing sequences complementary to the PBS of LTR-retrotransposons, restrict LTR-retrotransposition activity using two distinct mechanisms. While the 22-nt 3′ CCA tRF inhibits gene expression post-transcriptionally by inducing RNAi, the 18-nt 3′ CCA tRF inhibits reverse transcription (
      • Schorn A.J.
      • Gutbrod M.J.
      • LeBlanc C.
      • Martienssen R.
      LTR-retrotransposon control by tRNA-derived small RNAs.
      ). The 18-nt tRF reduces the accumulation of retroviral RNA intermediates and downstream DNA intermediates of reverse transcription in a PBS-dependent manner but has no effect on the recruitment of the tRNA primer. Thus, it was proposed that the 18-nt tRF interferes with primer annealing by competing with tRNA for PBS binding (
      • Schorn A.J.
      • Gutbrod M.J.
      • LeBlanc C.
      • Martienssen R.
      LTR-retrotransposon control by tRNA-derived small RNAs.
      ), a novel mechanism of ncRNAs controlling genome stability.
      In addition to the reported inhibitory effects of tRFs against retroelements, evidence that tRFs may play a role in the replication of retroviruses has also been presented. Compared with tRF-5s and tRF-1s, tRF-3s are present in higher abundance in CD4+ T-cells, a natural target of HIV-1 and HTLV-1 (
      • Ruggero K.
      • Guffanti A.
      • Corradin A.
      • Sharma V.K.
      • De Bellis G.
      • Corti G.
      • Grassi A.
      • Zanovello P.
      • Bronte V.
      • Ciminale V.
      • D'Agostino D.M.
      Small noncoding RNAs in cells transformed by human T-Cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase.
      ). One of the most abundant fragments in CD4+ T-cells is tRF-3019, which is derived from the 3′ end of tRNAPro, the primer for HTLV-1 reverse transcription. Interestingly, tRF-3019 is able to prime reverse transcription in vitro and is selectively packaged into HTLV-1 virions in addition to tRNAPro (
      • Ruggero K.
      • Guffanti A.
      • Corradin A.
      • Sharma V.K.
      • De Bellis G.
      • Corti G.
      • Grassi A.
      • Zanovello P.
      • Bronte V.
      • Ciminale V.
      • D'Agostino D.M.
      Small noncoding RNAs in cells transformed by human T-Cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase.
      ). This study raises the possibility that tRFs complementary to the PBS sequence may serve as primers during retrovirus replication. However, to date, there is no direct evidence that retroviruses use tRFs as primers. An 18-nt ncRNA complementary to the PBS, termed PBSncRNA, was discovered in cells latently infected with HIV-1 and in HeLa cells transfected with HIV-1 proviral DNA (
      • Yeung M.L.
      • Bennasser Y.
      • Watashi K.
      • Le S.-Y.
      • Houzet L.
      • Jeang K.-T.
      Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid.
      ). However, it is believed that PBS ncRNA is produced from an annealed PBS–tRNALys,3 duplex by dicer processing (
      • Yeung M.L.
      • Bennasser Y.
      • Watashi K.
      • Le S.-Y.
      • Houzet L.
      • Jeang K.-T.
      Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid.
      ), a source different from that of tRFs expressed in uninfected cells. Thus, this tRNA fragment may be generated by the host cell RNAi machinery and serve to down-regulate HIV-1 gene expression (
      • Yeung M.L.
      • Bennasser Y.
      • Watashi K.
      • Le S.-Y.
      • Houzet L.
      • Jeang K.-T.
      Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid.
      ).
      tRFs may also play regulatory roles independent of the reverse transcription process, although the exact function of these tRFs remains to be explored. For example, nonprimer-derived tRFs, such as a tRNASer-derived 19-nt tRF-3, is highly expressed in transformed cell lines, including those chronically infected with HTLV-1 (
      • Ruggero K.
      • Corradin A.
      • Zanovello P.
      • Amadori A.
      • Bronte V.
      • Ciminale V.
      • D'Agostino D.M.
      Role of microRNAs in HTLV-1 infection and transformation.
      ). The HTLV-1 regulatory protein Tax was found to activate RNA polymerase III promoters, raising the possibility that HTLV-1 can actively regulate the expression of tRNAs and tRFs driven by RNA polymerase III (
      • Piras G.
      • Dittmer J.
      • Radonovich M.F.
      • Brady J.N.
      Human T-cell leukemia virus type I Tax protein transactivates RNA polymerase III promoter in vitro and in vivo.
      ).

      Retroviruses manipulate host cell translation machinery

      Although HIV-1 uses the host cell translational machinery to translate viral mRNAs, it is poorly adapted to the codon usage of host cells (
      • van Weringh A.
      • Ragonnet-Cronin M.
      • Pranckeviciene E.
      • Pavon-Eternod M.
      • Kleiman L.
      • Xia X.
      HIV-1 modulates the tRNA pool to improve translation efficiency.
      ). It has been shown that HIV-1 replication capacity in cell culture can be manipulated by altering codon usage in the viral genome (
      • Martrus G.
      • Nevot M.
      • Andres C.
      • Clotet B.
      • Martinez M.A.
      Changes in codon-pair bias of human immunodeficiency virus type 1 have profound effects on virus replication in cell culture.
      ). The genomes of HIV-1 and other lentiviruses contain an above-average fraction of A nucleotides (
      • van der Kuyl A.C.
      • Berkhout B.
      The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus.
      ,
      • van Hemert F.J.
      • Berkhout B.
      The tendency of lentiviral open reading frames to become A-rich: constraints imposed by viral genome organization and cellular tRNA availability.
      ), which not only affects the rate of viral mRNA translation (
      • Komar A.A.
      A pause for thought along the co-translational folding pathway.
      ) but also ensures efficient reverse transcription, potentially by maintaining the flexibility of viral RNAs (
      • Keating C.P.
      • Hill M.K.
      • Hawkes D.J.
      • Smyth R.P.
      • Isel C.
      • Le S.-Y.
      • Palmenberg A.C.
      • Marshall J.A.
      • Marquet R.
      • Nabel G.J.
      • Mak J.
      The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA.
      ). In particular, there is a high frequency of A-ending codons in the protein-coding region of the HIV-1 genome, and these codons are under-represented in the host cell genome (
      • van Weringh A.
      • Ragonnet-Cronin M.
      • Pranckeviciene E.
      • Pavon-Eternod M.
      • Kleiman L.
      • Xia X.
      HIV-1 modulates the tRNA pool to improve translation efficiency.
      ). HIV-1 early genes (tat, rev, and nef) adapt to the host codon usage better than late genes (gag, pol, env, vif, vpu, and vpr), which contain a higher portion of rare codons (
      • van Weringh A.
      • Ragonnet-Cronin M.
      • Pranckeviciene E.
      • Pavon-Eternod M.
      • Kleiman L.
      • Xia X.
      HIV-1 modulates the tRNA pool to improve translation efficiency.
      ). However, HTLV-1 does not exhibit differences in codon adaptation between early and late genes (
      • van Weringh A.
      • Ragonnet-Cronin M.
      • Pranckeviciene E.
      • Pavon-Eternod M.
      • Kleiman L.
      • Xia X.
      HIV-1 modulates the tRNA pool to improve translation efficiency.
      ). Interestingly, tRNAs decoding rare codons are packaged by HIV-1 (
      • Pavon-Eternod M.
      • Wei M.
      • Pan T.
      • Kleiman L.
      Profiling non-lysyl tRNAs in HIV-1.
      ). It is possible that the codon usage in the early HIV-1 genes reflects the tRNA pool present when the host proteins and early HIV-1 proteins are translated, whereas rare tRNAs packaged by HIV-1 reflect the altered tRNA pool for viral mRNA translation and initiation of late gene translation (
      • van Weringh A.
      • Ragonnet-Cronin M.
      • Pranckeviciene E.
      • Pavon-Eternod M.
      • Kleiman L.
      • Xia X.
      HIV-1 modulates the tRNA pool to improve translation efficiency.
      ). It remains unclear whether this change in tRNA pool is induced directly by viral infection or is a consequence of host cell response.
      A link between reverse transcription primer usage and viral translation has been proposed for HIV-1 and MuLV (
      • Palmer M.T.
      • Kirkman R.
      • Kosloff B.R.
      • Eipers P.G.
      • Morrow C.D.
      tRNA isoacceptor preference prior to retrovirus Gag-Pol junction links primer selection and viral translation.
      ). While altering the PBS to be complementary to a tRNA other than tRNALys,3 does not allow optimal HIV-1 replication (
      • Das A.T.
      • Klaver B.
      • Berkhout B.
      Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys).
      ), the virus has a preference for tRNALys1,2, tRNAMet, tRNAGlu, and tRNAHis as alternative primers (
      • Palmer M.T.
      • Kirkman R.
      • Kosloff B.R.
      • Eipers P.G.
      • Morrow C.D.
      tRNA isoacceptor preference prior to retrovirus Gag-Pol junction links primer selection and viral translation.
      ). Interestingly, codons for these tRNAs are enriched near the ribosomal frameshift site at the Gag-Pol junction (
      • Palmer M.T.
      • Kirkman R.
      • Kosloff B.R.
      • Eipers P.G.
      • Morrow C.D.
      tRNA isoacceptor preference prior to retrovirus Gag-Pol junction links primer selection and viral translation.
      ). Similarly, MuLV has enriched codons for tRNAPro, tRNAGly, and tRNAArg at the Gag-Pol junction, and these tRNAs are also favored as alternative primers (
      • Palmer M.T.
      • Kirkman R.
      • Kosloff B.R.
      • Eipers P.G.
      • Morrow C.D.
      tRNA isoacceptor preference prior to retrovirus Gag-Pol junction links primer selection and viral translation.
      ). The observation that primer usage of both HIV-1 and MuLV correlates with the codon distribution at the Gag-Pol junction established a potential link between the primer selection mechanism of these two retroviruses. However, primer selection of HIV-1 is also achieved by selective packaging of LysRS, whereas MuLV, which uses tRNAPro as the primer, does not selectively package ProRS (
      • Cen S.
      • Javanbakht H.
      • Kim S.
      • Shiba K.
      • Craven R.
      • Rein A.
      • Ewalt K.
      • Schimmel P.
      • Musier-Forsyth K.
      • Kleiman L.
      Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs.
      ).

      tRNA-binding proteins as regulators of retroviral replication

      The codon usage bias in lentiviral genomes is a potential target of host cell restriction factors. Indeed, the human Schlafen 11 protein was reported to inhibit HIV-1 gene expression via intrinsic properties of the transcripts (
      • Li M.
      • Kao E.
      • Gao X.
      • Sandig H.
      • Limmer K.
      • Pavon-Eternod M.
      • Jones T.E.
      • Landry S.
      • Pan T.
      • Weitzman M.D.
      • David M.
      Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
      ). Human Schlafen proteins are products of interferon-stimulated genes and are involved in various cellular functions, including cell proliferation and innate immunity (
      • Mavrommatis E.
      • Fish E.N.
      • Platanias L.C.
      The Schlafen family of proteins and their regulation by interferons.
      ). Of the five human Schlafen isoforms, two (Schlafen 11 and Schlafen 13) were identified as inhibitory factors for HIV-1 (
      • Li M.
      • Kao E.
      • Gao X.
      • Sandig H.
      • Limmer K.
      • Pavon-Eternod M.
      • Jones T.E.
      • Landry S.
      • Pan T.
      • Weitzman M.D.
      • David M.
      Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
      ,
      • Yang J.-Y.
      • Deng X.-Y.
      • Li Y.-S.
      • Ma X.-C.
      • Feng J.-X.
      • Yu B.
      • Chen Y.
      • Luo Y.-L.
      • Wang X.
      • Chen M.-L.
      • Fang Z.-X.
      • Zheng F.-X.
      • Li Y.-P.
      • Zhong Q.
      • Kang T.-B.
      • et al.
      Structure of Schlafen13 reveals a new class of tRNA/rRNA-targeting RNase engaged in translational control.
      ). Human Schlafen 11, a putative DNA/RNA helicase with regulatory roles in cancer cell lines (
      • Nogales V.
      • Reinhold W.C.
      • Varma S.
      • Martinez-Cardus A.
      • Moutinho C.
      • Moran S.
      • Heyn H.
      • Sebio A.
      • Barnadas A.
      • Pommier Y.
      • Esteller M.
      Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs.
      ,
      • Zoppoli G.
      • Regairaz M.
      • Leo E.
      • Reinhold W.C.
      • Varma S.
      • Ballestrero A.
      • Doroshow J.H.
      • Pommier Y.
      Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents.
      • Tian L.
      • Song S.
      • Liu X.
      • Wang Y.
      • Xu X.
      • Hu Y.
      • Xu J.
      Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan.
      ), binds to tRNAs and selectively inhibits HIV-1 gene expression in a codon usage–based manner (
      • Li M.
      • Kao E.
      • Gao X.
      • Sandig H.
      • Limmer K.
      • Pavon-Eternod M.
      • Jones T.E.
      • Landry S.
      • Pan T.
      • Weitzman M.D.
      • David M.
      Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
      ). Similarly, equine Schlafen 11 protein restricts the replication of equine infectious anemia virus, another member of the lentivirus genus (
      • Lin Y.-Z.
      • Sun L.-K.
      • Zhu D.-T.
      • Hu Z.
      • Wang X.-F.
      • Du C.
      • Wang Y.-H.
      • Wang X.-J.
      • Zhou J.-H.
      Equine Schlafen 11 restricts the production of equine infectious anemia virus via a codon usage-dependent mechanism.
      ). Interestingly, Schlafen 11 is highly expressed in HIV-1 elite controllers, individuals who have never been exposed to antiretroviral therapy (ART) but naturally suppress HIV-1 viral loads to an undetectable level, compared with noncontrollers and ART-suppressed individuals. This is a unique property of Schlafen 11 among 34 known anti-HIV-1 factors tested (
      • Abdel-Mohsen M.
      • Raposo R.A.
      • Deng X.
      • Li M.
      • Liegler T.
      • Sinclair E.
      • Salama M.S.
      • Ghanem Hel-D
      • Hoh R.
      • Wong J.K.
      • David M.
      • Nixon D.F.
      • Deeks S.G.
      • Pillai S.K.
      Expression profile of host restriction factors in HIV-1 elite controllers.
      ) and suggests that Schlafen 11 may play an important role in HIV-1 elite control in vivo. While the detailed mechanism of Schlafen inhibition of viral replication remains unknown, a recent study on human Schlafen 13 shed light on the structural basis of Schlafen proteins’ tRNA-binding properties. Schlafen 13 is a mammalian tRNA/rRNA-targeting endoribonuclease. The N terminus of human Schlafen 13 is able to cleave tRNAs near the 3′ end in vitro (
      • Yang J.-Y.
      • Deng X.-Y.
      • Li Y.-S.
      • Ma X.-C.
      • Feng J.-X.
      • Yu B.
      • Chen Y.
      • Luo Y.-L.
      • Wang X.
      • Chen M.-L.
      • Fang Z.-X.
      • Zheng F.-X.
      • Li Y.-P.
      • Zhong Q.
      • Kang T.-B.
      • et al.
      Structure of Schlafen13 reveals a new class of tRNA/rRNA-targeting RNase engaged in translational control.
      ). Schlafen 13 also inhibits HIV-1, causing decreased viral protein expression and virion production, and this inhibition depends on the tRNA cleavage activity (
      • Yang J.-Y.
      • Deng X.-Y.
      • Li Y.-S.
      • Ma X.-C.
      • Feng J.-X.
      • Yu B.
      • Chen Y.
      • Luo Y.-L.
      • Wang X.
      • Chen M.-L.
      • Fang Z.-X.
      • Zheng F.-X.
      • Li Y.-P.
      • Zhong Q.
      • Kang T.-B.
      • et al.
      Structure of Schlafen13 reveals a new class of tRNA/rRNA-targeting RNase engaged in translational control.
      ). Thus, Schlafen proteins may inhibit lentivirus replication by sequestering and cleaving primer tRNAs or tRNAs decoding rare codons. Alternatively, Schlafen proteins may indirectly mediate viral replication by generating tRNA fragments that have regulatory effects on the viral lifecycle.
      Human P-element–induced wimpy-like (Piwil) 2 protein, also known as Hili protein, is another tRNA-binding factor that exhibits anti-HIV-1 properties (
      • Peterlin B.M.
      • Liu P.
      • Wang X.
      • Cary D.
      • Shao W.
      • Leoz M.
      • Hong T.
      • Pan T.
      • Fujinaga K.
      Hili inhibits HIV replication in activated T cells.
      ). Piwil proteins belong to the argonaute family and interact with small Piwi-interacting RNAs (piRNAs). The resulting complex can target and restrict transposable elements in the germline (
      • Aravin A.A.
      • Hannon G.J.
      • Brennecke J.
      The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race.
      ,
      • Juliano C.
      • Wang J.
      • Lin H.
      Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms.
      • Ishizu H.
      • Siomi H.
      • Siomi M.C.
      Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines.
      ). The source of piRNAs includes tRNAs and tRFs (
      • García-López J.
      • Hourcade Jde D.
      • Alonso L.
      • Cárdenas D.B.
      • del Mazo J.
      Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes.
      ). A recent study showed that Hili protein expression is induced in activated peripheral blood mononuclear cells and CD4+ T cells (
      • Peterlin B.M.
      • Liu P.
      • Wang X.
      • Cary D.
      • Shao W.
      • Leoz M.
      • Hong T.
      • Pan T.
      • Fujinaga K.
      Hili inhibits HIV replication in activated T cells.
      ). Hili and its mouse equivalent Mili protein restrict HIV-1 protein expression without affecting viral RNA levels. As identified by a tRNA microarray analysis, Mili binds tRNAs, including rare isoacceptors required for HIV-1 translation. Hili also inhibits the retrotransposition of intracisternal A particles, an endogenous retrovirus, in a similar manner (
      • Peterlin B.M.
      • Liu P.
      • Wang X.
      • Cary D.
      • Shao W.
      • Leoz M.
      • Hong T.
      • Pan T.
      • Fujinaga K.
      Hili inhibits HIV replication in activated T cells.
      ). Although there appears to be high similarity between Hili- and Schlafen 11-mediated inhibition of HIV-1, Schlafen 11 expression is induced by interferon, whereas Hili expression is a result of T-cell activation (
      • Li M.
      • Kao E.
      • Gao X.
      • Sandig H.
      • Limmer K.
      • Pavon-Eternod M.
      • Jones T.E.
      • Landry S.
      • Pan T.
      • Weitzman M.D.
      • David M.
      Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
      ,
      • Peterlin B.M.
      • Liu P.
      • Wang X.
      • Cary D.
      • Shao W.
      • Leoz M.
      • Hong T.
      • Pan T.
      • Fujinaga K.
      Hili inhibits HIV replication in activated T cells.
      ).
      Another interesting but incompletely understood finding is the role of tRNAs lacking the 3′ CCA tail in HIV-1 integration. Truncated tRNA species have been reported to promote the nuclear import of the HIV-1 pre-integration complex (
      • Zaitseva L.
      • Myers R.
      • Fassati A.
      tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes.
      ). Transportin 3 (Tnp3), a host RNA-binding protein that participates in nucleocytoplasmic transport of nucleic acids and proteins, is required for efficient HIV-1 integration (
      • Zhou L.
      • Sokolskaja E.
      • Jolly C.
      • James W.
      • Cowley S.A.
      • Fassati A.
      Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration.
      ). Indeed, Tnp3 interacts with HIV-1 CA and tRNAs lacking 3′ CCA ends in the nucleus and facilitates their nuclear export (
      • Zhou L.
      • Sokolskaja E.
      • Jolly C.
      • James W.
      • Cowley S.A.
      • Fassati A.
      Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration.
      ). It has been proposed that the nuclear export of CA and tRNAs displaces them from the viral DNA, exposing the DNA to IN and other factors necessary for integration (
      • Zhou L.
      • Sokolskaja E.
      • Jolly C.
      • James W.
      • Cowley S.A.
      • Fassati A.
      Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration.
      ).

      Multi-omic studies suggest additional potential roles for aminoacyl-tRNA synthetases in retrovirus replication

      Many cellular proteins play facilitative or inhibitory roles in the retroviral lifecycle (
      • Goff S.P.
      Host factors exploited by retroviruses.
      ). Identification of new cellular factors involved in retroviral replication remains an active area of research, as a better understanding of virus–host interaction may inform novel therapeutic strategies. In recent years, cellular factors interacting with HIV-1 proteins and RNAs have been identified using proteomic approaches (
      • Jäger S.
      • Cimermancic P.
      • Gulbahce N.
      • Johnson J.R.
      • McGovern K.E.
      • Clarke S.C.
      • Shales M.
      • Mercenne G.
      • Pache L.
      • Li K.
      • Hernandez H.
      • Jang G.M.
      • Roth S.L.
      • Akiva E.
      • Marlett J.
      • et al.
      Global landscape of HIV–human protein complexes.
      ,
      • Stake M.
      • Singh D.
      • Singh G.
      • Marcela Hernandez J.
      • Kaddis Maldonado R.
      • Parent L.J.
      • Boris-Lawrie K.
      HIV-1 and two avian retroviral 5′ untranslated regions bind orthologous human and chicken RNA binding proteins.
      • Knoener R.A.
      • Becker J.T.
      • Scalf M.
      • Sherer N.M.
      • Smith L.M.
      Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry.
      ). Host proteins with potential functions in the viral lifecycle have also been identified using siRNA-based screens (
      • König R.
      • Zhou Y.
      • Elleder D.
      • Diamond T.L.
      • Bonamy G.M.
      • Irelan J.T.
      • Chiang C.-Y.
      • Tu B.P.
      • De Jesus P.D.
      • Lilley C.E.
      • Seidel S.
      • Opaluch A.M.
      • Caldwell J.S.
      • Weitzman M.D.
      • Kuhen K.L.
      • et al.
      Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication.
      ,
      • Börner K.
      • Hermle J.
      • Sommer C.
      • Brown N.P.
      • Knapp B.
      • Glass B.
      • Kunkel J.
      • Torralba G.
      • Reymann J.
      • Beil N.
      • Beneke J.
      • Pepperkok R.
      • Schneider R.
      • Ludwig T.
      • Hausmann M.
      • Hamprecht F.
      • et al.
      From experimental setup to bioinformatics: An RNAi screening platform to identify host factors involved in HIV-1 replication.
      • Brass A.L.
      • Dykxhoorn D.M.
      • Benita Y.
      • Yan N.
      • Engelman A.
      • Xavier R.J.
      • Lieberman J.
      • Elledge S.J.
      Identification of host proteins required for HIV infection through a functional genomic screen.
      ). A transcriptome-wide study of T-cells infected with HIV-1 revealed a series of host transcripts affected by viral infection (
      • Mohammadi P.
      • Desfarges S.
      • Bartha I.
      • Joos B.
      • Zangger N.
      • Muñoz M.
      • Günthard H.F.
      • Beerenwinkel N.
      • Telenti A.
      • Ciuffi A.
      24 hours in the life of HIV-1 in a T cell line.
      ).
      ARSs are housekeeping proteins, which nevertheless possess a wide variety of alternative functions. Many ARSs respond to stimuli, including viral infection, immune activation, and toxins (
      • Sampath P.
      • Mazumder B.
      • Seshadri V.
      • Gerber C.A.
      • Chavatte L.
      • Kinter M.
      • Ting S.M.
      • Dignam J.D.
      • Kim S.
      • Driscoll D.M.
      • Fox P.L.
      Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation.
      ,
      • Lee E.-Y.
      • Lee H.-C.
      • Kim H.-K.
      • Jang S.Y.
      • Park S.-J.
      • Kim Y.-H.
      • Kim J.H.
      • Hwang J.
      • Kim J.-H.
      • Kim T.-H.
      • Arif A.
      • Kim S.-Y.
      • Choi Y.-K.
      • Lee C.
      • Lee C.-H.
      • et al.
      Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity.
      ,
      • Lee M.-S.
      • Kwon H.
      • Nguyen L.T.
      • Lee E.-Y.
      • Lee C.Y.
      • Choi S.H.
      • Kim M.H.
      Shiga toxins trigger the secretion of lysyl-tRNA synthetase to enhance proinflammatory responses.
      ). They play unique regulatory roles in cellular signaling pathways (
      • Yannay-Cohen N.
      • Carmi-Levy I.
      • Kay G.
      • Yang C.M.
      • Han J.M.
      • Kemeny D.M.
      • Kim S.
      • Nechushtan H.
      • Razin E.
      LysRS serves as a key signaling molecule in the immune response by regulating gene expression.
      ,
      • Lee Y.-N.
      • Nechushtan H.
      • Figov N.
      • Razin E.
      The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcεRI-activated mast cells.
      ), and some ARSs are even secreted and act as cytokines and chemokines (
      • Park S.G.
      • Kim H.J.
      • Min Y.H.
      • Choi E.-C.
      • Shin Y.K.
      • Park B.-J.
      • Lee S.W.
      • Kim S.
      Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response.
      ,
      • Liu J.
      • Shue E.
      • Ewalt K.L.
      • Schimmel P.
      A new γ-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase.
      ). The roles that ARSs play in response to viral infection and the immune response make them potential therapeutic targets and diagnostic biomarkers (
      • Lee E.-Y.
      • Kim S.
      • Kim M.H.
      Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases.
      ). Interestingly, many ARSs have been identified in multi-omic studies focusing on retroviral replication. RNA-binding proteins are highly represented in the interactome of HIV-1 Gag, including all the components of the MSC (
      • Engeland C.E.
      • Brown N.P.
      • Börner K.
      • Schümann M.
      • Krause E.
      • Kaderali L.
      • Müller G.A.
      • Kräusslich H.-G.
      Proteome analysis of the HIV-1 Gag interactome.
      ). The MA domain of Gag is a major interaction partner of the MSC, and MA has also been reported to interact with a few non-MSC ARSs (Table 1) (
      • Jäger S.
      • Cimermancic P.
      • Gulbahce N.
      • Johnson J.R.
      • McGovern K.E.
      • Clarke S.C.
      • Shales M.
      • Mercenne G.
      • Pache L.
      • Li K.
      • Hernandez H.
      • Jang G.M.
      • Roth S.L.
      • Akiva E.
      • Marlett J.
      • et al.
      Global landscape of HIV–human protein complexes.
      ). HIV-1 infection results in an increased fraction of free, non-MSC–associated synthetases (
      • Duchon A.A.
      • St Gelais C.
      • Titkemeier N.
      • Hatterschide J.
      • Wu L.
      • Musier-Forsyth K.
      HIV-1 exploits a dynamic multi-aminoacyl-tRNA synthetase complex to enhance viral replication.
      ). Although the specific viral or host process affecting the assembly state of the MSC is unclear, it is possible that the MA protein of incoming virus or newly synthesized Gag protein interact with the MSC and disrupt its structural stability.
      Table 1Aminoacyl-tRNA synthetases linked to retrovirus replication
      DescriptionAminoacyl-tRNA synthetasesRefs.
      HIV-1 MA interactomeMetRS
      MSC-associated tRNA synthetases are shown.
      , LysRS
      MSC-associated tRNA synthetases are shown.
      , ArgRS
      MSC-associated tRNA synthetases are shown.
      , GlnRS
      MSC-associated tRNA synthetases are shown.
      , LeuRS
      MSC-associated tRNA synthetases are shown.
      , IleRS
      MSC-associated tRNA synthetases are shown.
      , EPRS
      MSC-associated tRNA synthetases are shown.
      , AspRS
      MSC-associated tRNA synthetases are shown.
      , AsnRS, ThrRS, HisRS
      • Goff S.P.
      Host factors exploited by retroviruses.
      HIV-1 Gag interactomeMetRS
      MSC-associated tRNA synthetases are shown.
      , LysRS
      MSC-associated tRNA synthetases are shown.
      , ArgRS
      MSC-associated tRNA synthetases are shown.
      , GlnRS
      MSC-associated tRNA synthetases are shown.
      , LeuRS
      MSC-associated tRNA synthetases are shown.
      , IleRS
      MSC-associated tRNA synthetases are shown.
      , EPRS
      MSC-associated tRNA synthetases are shown.
      , AspRS
      MSC-associated tRNA synthetases are shown.
      ,
      • Mohammadi P.
      • Desfarges S.
      • Bartha I.
      • Joos B.
      • Zangger N.
      • Muñoz M.
      • Günthard H.F.
      • Beerenwinkel N.
      • Telenti A.
      • Ciuffi A.
      24 hours in the life of HIV-1 in a T cell line.
      siRNA depletion decreases HIV-1 replicationLysRS
      MSC-associated tRNA synthetases are shown.
      , LeuRS
      MSC-associated tRNA synthetases are shown.
      • Mohammadi P.
      • Desfarges S.
      • Bartha I.
      • Joos B.
      • Zangger N.
      • Muñoz M.
      • Günthard H.F.
      • Beerenwinkel N.
      • Telenti A.
      • Ciuffi A.
      24 hours in the life of HIV-1 in a T cell line.
      siRNA depletion increases HIV-1 replicationEPRS
      MSC-associated tRNA synthetases are shown.
      • Mohammadi P.
      • Desfarges S.
      • Bartha I.
      • Joos B.
      • Zangger N.
      • Muñoz M.
      • Günthard H.F.
      • Beerenwinkel N.
      • Telenti A.
      • Ciuffi A.
      24 hours in the life of HIV-1 in a T cell line.
      Packaged in HIV-1 virionLysRS
      MSC-associated tRNA synthetases are shown.
      , IleRS
      MSC-associated tRNA synthetases are shown.
      • Kikuchi Y.
      • Ando Y.
      • Shiba T.
      Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila.
      ,
      • Mohammadi P.
      • Desfarges S.
      • Bartha I.
      • Joos B.
      • Zangger N.
      • Muñoz M.
      • Günthard H.F.
      • Beerenwinkel N.
      • Telenti A.
      • Ciuffi A.
      24 hours in the life of HIV-1 in a T cell line.
      Interacts with HIV-1 5′UTRArgRS
      MSC-associated tRNA synthetases are shown.
      , EPRS
      MSC-associated tRNA synthetases are shown.
      • Jäger S.
      • Cimermancic P.
      • Gulbahce N.
      • Johnson J.R.
      • McGovern K.E.
      • Clarke S.C.
      • Shales M.
      • Mercenne G.
      • Pache L.
      • Li K.
      • Hernandez H.
      • Jang G.M.
      • Roth S.L.
      • Akiva E.
      • Marlett J.
      • et al.
      Global landscape of HIV–human protein complexes.
      Interacts with RSV 5′UTRLysRS
      MSC-associated tRNA synthetases are shown.
      , SerRS2
      • Jäger S.
      • Cimermancic P.
      • Gulbahce N.
      • Johnson J.R.
      • McGovern K.E.
      • Clarke S.C.
      • Shales M.
      • Mercenne G.
      • Pache L.
      • Li K.
      • Hernandez H.
      • Jang G.M.
      • Roth S.L.
      • Akiva E.
      • Marlett J.
      • et al.
      Global landscape of HIV–human protein complexes.
      Interacts with unspliced full-length HIV-1 RNALeuRS
      MSC-associated tRNA synthetases are shown.
      • Stake M.
      • Singh D.
      • Singh G.
      • Marcela Hernandez J.
      • Kaddis Maldonado R.
      • Parent L.J.
      • Boris-Lawrie K.
      HIV-1 and two avian retroviral 5′ untranslated regions bind orthologous human and chicken RNA binding proteins.
      Levels of transcripts decrease upon HIV-1 infection
      The five ARSs listed exhibit a significant decrease (≥16-fold) in transcript levels. Five other ARSs, AlaRS, IleRS, LysRS, ValRS, and GlnRS, exhibit a moderate decrease (∼4-fold) in HIV-1–infected cells.
      EPRS
      MSC-associated tRNA synthetases are shown.
      , TyrRS, MetRS
      MSC-associated tRNA synthetases are shown.
      , HisRS, PheRS
      • Brass A.L.
      • Dykxhoorn D.M.
      • Benita Y.
      • Yan N.
      • Engelman A.
      • Xavier R.J.
      • Lieberman J.
      • Elledge S.J.
      Identification of host proteins required for HIV infection through a functional genomic screen.
      Levels of transcripts increase upon HIV-1 infectionAsnRS, CysRS
      • Brass A.L.
      • Dykxhoorn D.M.
      • Benita Y.
      • Yan N.
      • Engelman A.
      • Xavier R.J.
      • Lieberman J.
      • Elledge S.J.
      Identification of host proteins required for HIV infection through a functional genomic screen.
      Mixed pattern of regulation upon HIV-1 infectionGlyRS
      • Brass A.L.
      • Dykxhoorn D.M.
      • Benita Y.
      • Yan N.
      • Engelman A.
      • Xavier R.J.
      • Lieberman J.
      • Elledge S.J.
      Identification of host proteins required for HIV infection through a functional genomic screen.
      a MSC-associated tRNA synthetases are shown.
      b The five ARSs listed exhibit a significant decrease (≥16-fold) in transcript levels. Five other ARSs, AlaRS, IleRS, LysRS, ValRS, and GlnRS, exhibit a moderate decrease (∼4-fold) in HIV-1–infected cells.
      The fate of ARSs released from the MSC is another open question. Based on siRNA screens to identify potential regulatory and inhibitory factors for HIV-1, facilitative roles are proposed for LeuRS and LysRS (see above), and an inhibitory function is proposed for EPRS (
      • Engeland C.E.
      • Brown N.P.
      • Börner K.
      • Schümann M.
      • Krause E.
      • Kaderali L.
      • Müller G.A.
      • Kräusslich H.-G.
      Proteome analysis of the HIV-1 Gag interactome.
      ). EPRS has been shown to inhibit the replication of RNA viruses, including vesicular stomatitis virus and influenza A virus by promoting the innate immune response via up-regulation of the mitochondrial antiviral signaling protein (
      • Lee E.-Y.
      • Lee H.-C.
      • Kim H.-K.
      • Jang S.Y.
      • Park S.-J.
      • Kim Y.-H.
      • Kim J.H.
      • Hwang J.
      • Kim J.-H.
      • Kim T.-H.
      • Arif A.
      • Kim S.-Y.
      • Choi Y.-K.
      • Lee C.
      • Lee C.-H.
      • et al.
      Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity.
      ). The mechanism by which EPRS inhibits the replication of HIV-1 remains unknown. In addition to its positive role in tRNALys primer recruitment and packaging, LysRS has also been reported to inhibit HIV-1 PR activity and thereby alter the level of RT (
      • Guo F.
      • Gabor J.
      • Cen S.
      • Hu K.
      • Mouland A.J.
      • Kleiman L.
      Inhibition of cellular HIV-1 protease activity by lysyl-tRNA synthetase.
      ). IleRS is another synthetase identified in virions (
      • Engeland C.E.
      • Brown N.P.
      • Börner K.
      • Schümann M.
      • Krause E.
      • Kaderali L.
      • Müller G.A.
      • Kräusslich H.-G.
      Proteome analysis of the HIV-1 Gag interactome.
      ); however, the significance of this finding is unknown. The observation that mRNA levels of some tRNA synthetases are altered in CD4+ T-cells infected with HIV-1 (Table 1) suggests a delicate arms race between viral infection and expression of these synthetases (
      • Mohammadi P.
      • Desfarges S.
      • Bartha I.
      • Joos B.
      • Zangger N.
      • Muñoz M.
      • Günthard H.F.
      • Beerenwinkel N.
      • Telenti A.
      • Ciuffi A.
      24 hours in the life of HIV-1 in a T cell line.
      ).
      Uncovering physical interactions between host proteins and viral RNAs provides potential clues for understanding the roles of these host factors in viral replication. Using RNA affinity chromatography, human and avian proteins co-isolated with the 5′UTR of HIV-1, RSV, and spleen necrosis virus were identified (
      • Stake M.
      • Singh D.
      • Singh G.
      • Marcela Hernandez J.
      • Kaddis Maldonado R.
      • Parent L.J.
      • Boris-Lawrie K.
      HIV-1 and two avian retroviral 5′ untranslated regions bind orthologous human and chicken RNA binding proteins.
      ). Interestingly, human EPRS and ArgRS bind to the HIV-1 5′UTR, and avian LysRS and SerRS bind to the 5′UTR of RSV (Table 1). The significance of these findings remains to be explored. In another recent study, a hybridization capture strategy was used to selectively purify unspliced full-length HIV-1 RNA and identify interacting protein partners. Interestingly, LeuRS is among the factors identified, and future studies are required to understand the significance of this finding (
      • Knoener R.A.
      • Becker J.T.
      • Scalf M.
      • Sherer N.M.
      • Smith L.M.
      Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry.
      ).

      Concluding remarks

      Retroviral infection is still a global human health concern. Unfortunately, no cure has been developed to combat HIV-1 or HTLV-1. The high mutation rate of retroviruses adds to the difficulty in developing persistent antiviral therapies.
      ARSs are housekeeping proteins with a wide variety of noncanonical functions. As discussed in this review, both ARSs and their tRNA substrates are emerging as important players in retroviral replication. Future studies to explore the potential of these host cell factors as therapeutic targets may result in the development of novel anti-retroviral therapies.
      Host tRNAs play translational and alternative roles in multiple stages of the retroviral lifecycle, raising the potential of tRNA-binding proteins and tRNA derivatives as regulators for retroviruses. The repertoire of tRNA derivatives in human health is growing. Some tRFs have regulatory functions in the replication cycle of retroelements (
      • Ruggero K.
      • Guffanti A.
      • Corradin A.
      • Sharma V.K.
      • De Bellis G.
      • Corti G.
      • Grassi A.
      • Zanovello P.
      • Bronte V.
      • Ciminale V.
      • D'Agostino D.M.
      Small noncoding RNAs in cells transformed by human T-Cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase.
      ,
      • Yeung M.L.
      • Bennasser Y.
      • Watashi K.
      • Le S.-Y.
      • Houzet L.
      • Jeang K.-T.
      Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid.
      ), but the underlying mechanisms remain unclear. More in-depth studies are needed to uncover the physical interactions between tRNA/tRFs and the viral machinery. For example, although tRNAs were identified as interacting with HIV-1 MA (
      • Kutluay S.B.
      • Zang T.
      • Blanco-Melo D.
      • Powell C.
      • Jannain D.
      • Errando M.
      • Bieniasz P.D.
      Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis.
      ), whether the interaction is specific is not yet clear. An improved understanding for how tRNA binding affects the structure and function of Gag during retroviral assembly is also needed. Studies on a broader range of retrovirus genera will advance our global understanding of retrovirus–host interactions.
      Some caveats of the aforementioned studies and recent advances in the field should also be mentioned. First, tRNA modifications are absent in in vitro–synthesized tRNAs used for the majority of biochemical and structural studies. In addition to potential contributions to the structure and function of tRNA, modifications cause bias in primer extension-based RNA-Seq techniques. A human tRNA microarray has been developed for tRNA quantification and has been applied in tRNA profiling in HIV-1 (
      • Pavon-Eternod M.
      • Wei M.
      • Pan T.
      • Kleiman L.
      Profiling non-lysyl tRNAs in HIV-1.
      ), as well as of specific human tissues and tumor cells, and in identifying the complete interactome of tRNA-binding proteins (
      • Dittmar K.A.
      • Goodenbour J.M.
      • Pan T.
      Tissue-specific differences in human transfer RNA expression.
      ,
      • Pavon-Eternod M.
      • Gomes S.
      • Geslain R.
      • Dai Q.
      • Rosner M.R.
      • Pan T.
      tRNA over-expression in breast cancer and functional consequences.
      • Parisien M.
      • Wang X.
      • Perdrizet 2nd., G.
      • Lamphear C.
      • Fierke C.A.
      • Maheshwari K.C.
      • Wilde M.J.
      • Sosnick T.R.
      • Pan T.
      Discovering RNA-protein interactome by using chemical context profiling of the RNA-protein interface.
      ). More recently, high-throughput tRNA-specific sequencing techniques have also been developed. Enzymatic removal of tRNA modifications and thermostable group II intron reverse transcriptase are combined to overcome the blocks caused by modifications and structure (
      • Zheng G.
      • Qin Y.
      • Clark W.C.
      • Dai Q.
      • Yi C.
      • He C.
      • Lambowitz A.M.
      • Pan T.
      Efficient and quantitative high-throughput tRNA sequencing.
      ). A hydrolysis-based tRNA sequencing method further allowed detection of tRNA precursors (
      • Gogakos T.
      • Brown M.
      • Garzia A.
      • Meyer C.
      • Hafner M.
      • Tuschl T.
      Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP.
      ). AlkB-facilitated RNA methylation sequencing (ARM-seq), a sequencing method that involves treatment with an Escherichia coli demethylase, led to the discovery of novel tRNA fragments that were previously undetected due to the presence of methylation, as well as the development of a transcriptome-wide modification profile (
      • Cozen A.E.
      • Quartley E.
      • Holmes A.D.
      • Hrabeta-Robinson E.
      • Phizicky E.M.
      • Lowe T.M.
      ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments.
      ). The recent advances in tRNA quantification techniques should facilitate future studies of tRNA involvement in retroviral replication. In addition to more accurate tRNA identification and sequencing methods, advances in techniques for visualizing protein–RNA and RNA–RNA interactions in cells will be necessary for improving our understanding of the localization and timing of events such as tRNA primer annealing in the retroviral lifecycle.

      References

        • Weiss R.A.
        How does HIV cause AIDS?.
        Science. 1993; 260 (8493571): 1273-1279
        • Gonçalves D.U.
        • Proietti F.A.
        • Ribas J.G.
        • Araújo M.G.
        • Pinheiro S.R.
        • Guedes A.C.
        • Carneiro-Proietti A.B.
        Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases.
        Clin. Microbiol. Rev. 2010; 23 (20610824): 577-589
      1. Coffin J.M. Hughes S.H. Varmus H. Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY1997: 1-19
        • Vogt V.
        Coffin J. Hughes S. Varmus H. Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY1997: 42-60
        • Mita P.
        • Boeke J.D.
        How retrotransposons shape genome regulation.
        Curr. Opin. Genet. Dev. 2016; 37 (26855260): 90-100
        • Sandmeyer S.B.
        • Hansen L.J.
        • Chalker D.L.
        Integration specificity of retrotransposons and retroviruses.
        Annu. Rev. Genet. 1990; 24 (1965102): 491-518
        • Finnegan D.J.
        Retrotransposons.
        Curr. Biol. 2012; 22 (22677280): R432-R437
        • Duchon A.A.
        • Musier-Forsyth K.
        Parent L. Noncoding RNAs in Retrovirus Replication. Academic Press, New York2018: 421-478
        • Wain-Hobson S.
        • Sonigo P.
        • Danos O.
        • Cole S.
        • Alizon M.
        Nucleotide sequence of the AIDS virus, LAV.
        Cell. 1985; 40 (2981635): 9-17
        • Seiki M.
        • Hattori S.
        • Hirayama Y.
        • Yoshida M.
        Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA.
        Proc. Natl. Acad. Sci. U.S.A. 1983; 80 (6304725): 3618-3622
        • Sawyer R.C.
        • Dahlberg J.E.
        Small RNAs of Rous sarcoma virus: characterization by two-dimensional polyacrylamide gel electrophoresis and fingerprint analysis.
        J. Virol. 1973; 12 (4357505): 1226-1237
        • Kikuchi Y.
        • Ando Y.
        • Shiba T.
        Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila.
        Nature. 1986; 323 (2430190): 824-826
        • Rothnie H.M.
        • McCurrach K.J.
        • Glover L.A.
        • Hardman N.
        Retrotransposon-like nature of Tp1 elements: implications for the organisation of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum.
        Nucleic Acids Res. 1991; 19 (1707520): 279-286
        • Ke N.
        • Gao X.
        • Keeney J.B.
        • Boeke J.D.
        • Voytas D.F.
        The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.
        RNA. 1999; 5 (10411136): 929-938
        • Cen S.
        • Khorchid A.
        • Javanbakht H.
        • Gabor J.
        • Stello T.
        • Shiba K.
        • Musier-Forsyth K.
        • Kleiman L.
        Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1.
        J. Virol. 2001; 75 (11333884): 5043-5048
        • Cen S.
        • Javanbakht H.
        • Kim S.
        • Shiba K.
        • Craven R.
        • Rein A.
        • Ewalt K.
        • Schimmel P.
        • Musier-Forsyth K.
        • Kleiman L.
        Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs.
        J. Virol. 2002; 76 (12438642): 13111-13115
        • Putney S.D.
        • Schimmel P.
        An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription.
        Nature. 1981; 291 (6264314): 632-635
        • Sampath P.
        • Mazumder B.
        • Seshadri V.
        • Gerber C.A.
        • Chavatte L.
        • Kinter M.
        • Ting S.M.
        • Dignam J.D.
        • Kim S.
        • Driscoll D.M.
        • Fox P.L.
        Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation.
        Cell. 2004; 119 (15479637): 195-208
        • Sampath P.
        • Mazumder B.
        • Seshadri V.
        • Fox P.L.
        Transcript-selective translational silencing by γ interferon is directed by a novel structural element in the ceruloplasmin mRNA 3′ untranslated region.
        Mol. Cell. Biol. 2003; 23 (12588972): 1509-1519
        • Jia J.
        • Arif A.
        • Ray P.S.
        • Fox P.L.
        WHEP domains direct noncanonical function of glutamyl-prolyl tRNA synthetase in translational control of gene expression.
        Mol. Cell. 2008; 29 (18374644): 679-690
        • Katsyv I.
        • Wang M.
        • Song W.M.
        • Zhou X.
        • Zhao Y.
        • Park S.
        • Zhu J.
        • Zhang B.
        • Irie H.Y.
        EPRS is a critical regulator of cell proliferation and estrogen signaling in ER(+) breast cancer.
        Oncotarget. 2016; 7 (27612429): 69592-69605
        • Yannay-Cohen N.
        • Carmi-Levy I.
        • Kay G.
        • Yang C.M.
        • Han J.M.
        • Kemeny D.M.
        • Kim S.
        • Nechushtan H.
        • Razin E.
        LysRS serves as a key signaling molecule in the immune response by regulating gene expression.
        Mol. Cell. 2009; 34 (19524539): 603-611
        • Lee E.-Y.
        • Lee H.-C.
        • Kim H.-K.
        • Jang S.Y.
        • Park S.-J.
        • Kim Y.-H.
        • Kim J.H.
        • Hwang J.
        • Kim J.-H.
        • Kim T.-H.
        • Arif A.
        • Kim S.-Y.
        • Choi Y.-K.
        • Lee C.
        • Lee C.-H.
        • et al.
        Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity.
        Nat. Immunol. 2016; 17 (27595231): 1252-1262
        • Das A.T.
        • Klaver B.
        • Berkhout B.
        Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys).
        J. Virol. 1995; 69 (7707537): 3090-3097
        • Wakefield J.K.
        • Kang S.M.
        • Morrow C.D.
        Construction of a type 1 human immunodeficiency virus that maintains a primer binding site complementary to tRNA(His).
        J. Virol. 1996; 70 (8551637): 966-975
        • Li X.
        • Mak J.
        • Arts E.J.
        • Gu Z.
        • Kleiman L.
        • Wainberg M.A.
        • Parniak M.A.
        Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication.
        J. Virol. 1994; 68 (7521916): 6198-6206
        • Hughes S.H.
        Reverse transcription of retroviruses and LTR retrotransposons.
        Microbiol. Spectr. 2015; 3 (MDNA3–0027-2014) (26104704)
        • Wakefield J.K.
        • Wolf A.G.
        • Morrow C.D.
        Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys).
        J. Virol. 1995; 69 (7545240): 6021-6029
        • Isel C.
        • Marquet R.
        • Keith G.
        • Ehresmann C.
        • Ehresmann B.
        Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription.
        J. Biol. Chem. 1993; 268 (7503978): 25269-25272
        • Isel C.
        • Ehresmann C.
        • Keith G.
        • Ehresmann B.
        • Marquet R.
        Initiation of reverse transcripion of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3)(Lys) (template/primer) complex.
        J. Mol. Biol. 1995; 247 (7707372): 236-250
        • Beerens N.
        • Berkhout B.
        The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription.
        J. Virol. 2002; 76 (11836411): 2329-2339
        • Beerens N.
        • Berkhout B.
        Switching the in vitro tRNA usage of HIV-1 by simultaneous adaptation of the PBS and PAS.
        RNA. 2002; 8 (12003495): 357-369
        • Larsen K.P.
        • Mathiharan Y.K.
        • Kappel K.
        • Coey A.T.
        • Chen D.-H.
        • Barrero D.
        • Madigan L.
        • Puglisi J.D.
        • Skiniotis G.
        • Puglisi E.V.
        Architecture of an HIV-1 reverse transcriptase initiation complex.
        Nature. 2018; 557 (29695867): 118-122
        • Goldschmidt V.
        • Ehresmann C.
        • Ehresmann B.
        • Marquet R.
        Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription?.
        Nucleic Acids Res. 2003; 31 (12560480): 850-859
        • Goldschmidt V.
        • Paillart J.-C.
        • Rigourd M.
        • Ehresmann B.
        • Aubertin A.-M.
        • Ehresmann C.
        • Marquet R.
        Structural variability of the initiation complex of HIV-1 reverse transcription.
        J. Biol. Chem. 2004; 279 (15194685): 35923-35931
        • Levin H.L.
        An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex.
        Mol. Cell. Biol. 1996; 16 (8816477): 5645-5654
        • Le Grice S.F.
        “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons.
        Biochemistry. 2003; 42 (14661945): 14349-14355
        • Feng Y.-X.
        • Campbell S.
        • Harvin D.
        • Ehresmann B.
        • Ehresmann C.
        • Rein A.
        The human immunodeficiency virus type 1 Gag polyprotein has nucleic acid chaperone activity: possible role in dimerization of genomic RNA and placement of tRNA on the primer binding site.
        J. Virol. 1999; 73 (10196321): 4251-4256
        • Roldan A.
        • Warren O.U.
        • Russell R.S.
        • Liang C.
        • Wainberg M.A.
        A HIV-1 minimal Gag protein is superior to nucleocapsid at in vitro annealing and exhibits multimerization-induced inhibition of reverse transcription.
        J. Biol. Chem. 2005; 280 (15731102): 17488-17496
        • Guo F.
        • Saadatmand J.
        • Niu M.
        • Kleiman L.
        Roles of Gag and NCp7 in facilitating tRNA(3)(Lys) annealing to viral RNA in human immunodeficiency virus type 1.
        J. Virol. 2009; 83 (19494012): 8099-8107
        • Jones C.P.
        • Datta S.A.
        • Rein A.
        • Rouzina I.
        • Musier-Forsyth K.
        Matrix domain modulates HIV-1 Gag's nucleic acid chaperone activity via inositol phosphate binding.
        J. Virol. 2011; 85 (21123373): 1594-1603
        • Levin J.G.
        • Mitra M.
        • Mascarenhas A.
        • Musier-Forsyth K.
        Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription.
        RNA Biol. 2010; 7 (21160280): 754-774
        • Wu H.
        • Rouzina I.
        • Williams M.C.
        Single-molecule stretching studies of RNA chaperones.
        RNA Biol. 2010; 7 (21045548): 712-723
        • Rein A.
        Nucleic acid chaperone activity of retroviral Gag proteins.
        RNA Biol. 2010; 7 (21045546): 700-705
        • Cen S.
        • Khorchid A.
        • Gabor J.
        • Rong L.
        • Wainberg M.A.
        • Kleiman L.
        Roles of Pr55(gag) and NCp7 in tRNA(3)(Lys) genomic placement and the initiation step of reverse transcription in human immunodeficiency virus type 1.
        J. Virol. 2000; 74 (11044125): 10796-10800
        • Saadatmand J.
        • Kleiman L.
        Aspects of HIV-1 assembly that promote primer tRNA(Lys3) annealing to viral RNA.
        Virus Res. 2012; 169 (22698876): 340-348
        • Seif E.
        • Niu M.
        • Kleiman L.
        In virio SHAPE analysis of tRNA(Lys3) annealing to HIV-1 genomic RNA in wild type and protease-deficient virus.
        Retrovirology. 2015; 12 (25981241): 40
        • Xing L.
        • Liang C.
        • Kleiman L.
        Coordinate roles of Gag and RNA helicase A in promoting the annealing of tRNA(3)(Lys) to HIV-1 RNA.
        J. Virol. 2011; 85 (21106734): 1847-1860
        • Xing L.
        • Niu M.
        • Kleiman L.
        In vitro and in vivo analysis of the interaction between RNA helicase A and HIV-1 RNA.
        J. Virol. 2012; 86 (23015696): 13272-13280
        • Mak J.
        • Jiang M.
        • Wainberg M.A.
        • Hammarskjöld M.L.
        • Rekosh D.
        • Kleiman L.
        Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles.
        J. Virol. 1994; 68 (7511167): 2065-2072
        • Pavon-Eternod M.
        • Wei M.
        • Pan T.
        • Kleiman L.
        Profiling non-lysyl tRNAs in HIV-1.
        RNA. 2010; 16 (20007329): 267-273
        • Gabor J.
        • Cen S.
        • Javanbakht H.
        • Niu M.
        • Kleiman L.
        Effect of altering the tRNA(Lys)(3) concentration in human immunodeficiency virus type 1 upon its annealing to viral RNA, GagPol incorporation, and viral infectivity.
        J. Virol. 2002; 76 (12186893): 9096-9102
        • Kovaleski B.J.
        • Kennedy R.
        • Hong M.K.
        • Datta S.A.
        • Kleiman L.
        • Rein A.
        • Musier-Forsyth K.
        In vitro characterization of the interaction between HIV-1 Gag and human lysyl-tRNA synthetase.
        J. Biol. Chem. 2006; 281 (16702215): 19449-19456
        • Javanbakht H.
        • Halwani R.
        • Cen S.
        • Saadatmand J.
        • Musier-Forsyth K.
        • Gottlinger H.
        • Kleiman L.
        The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly.
        J. Biol. Chem. 2003; 278 (12756246): 27644-27651
        • Dewan V.
        • Wei M.
        • Kleiman L.
        • Musier-Forsyth K.
        Dual role for motif 1 residues of human lysyl-tRNA synthetase in dimerization and packaging into HIV-1.
        J. Biol. Chem. 2012; 287 (23095741): 41955-41962
        • Dewan V.
        • Liu T.
        • Chen K.-M.
        • Qian Z.
        • Xiao Y.
        • Kleiman L.
        • Mahasenan K.V.
        • Li C.
        • Matsuo H.
        • Pei D.
        • Musier-Forsyth K.
        Cyclic peptide inhibitors of HIV-1 capsid-human lysyl-tRNA synthetase interaction.
        ACS Chem. Biol. 2012; 7 (22276994): 761-769
        • Kleiman L.
        • Jones C.P.
        • Musier-Forsyth K.
        Formation of the tRNA(Lys) packaging complex in HIV-1.
        FEBS Lett. 2010; 584 (19914238): 359-365
        • Javanbakht H.
        • Cen S.
        • Musier-Forsyth K.
        • Kleiman L.
        Correlation between tRNA(Lys3) aminoacylation and its incorporation into HIV-1.
        J. Biol. Chem. 2002; 277 (11884398): 17389-17396
        • Cen S.
        • Javanbakht H.
        • Niu M.
        • Kleiman L.
        Ability of wild-type and mutant lysyl-tRNA synthetase to facilitate tRNALys incorporation into human immunodeficiency virus type 1.
        J. Virol. 2004; 78 (14722314): 1595-1601
        • Kim J.H.
        • Han J.M.
        • Kim S.
        Kim S. Aminoacyl-tRNA Synthetases in Biology and Medicine. Springer, Netherlands, Dordrecht, Netherlands2014: 119-144
        • Ray P.S.
        • Arif A.
        • Fox P.L.
        Macromolecular complexes as depots for releasable regulatory proteins.
        Trends Biochem. Sci. 2007; 32 (17321138): 158-164
        • Duchon A.A.
        • St Gelais C.
        • Titkemeier N.
        • Hatterschide J.
        • Wu L.
        • Musier-Forsyth K.
        HIV-1 exploits a dynamic multi-aminoacyl-tRNA synthetase complex to enhance viral replication.
        J. Virol. 2017; 91 (28814526): e01240-17
        • Nathanson L.
        • Deutscher M.P.
        Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex.
        J. Biol. Chem. 2000; 275 (10930398): 31559-31562
        • Tolkunova E.
        • Park H.
        • Xia J.
        • King M.P.
        • Davidson E.
        The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript.
        J. Biol. Chem. 2000; 275 (10952987): 35063-35069
        • Robinson J.-C.
        • Kerjan P.
        • Mirande M.
        Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein–protein interactions and mechanism of complex assembly.
        J. Mol. Biol. 2000; 304 (11124041): 983-994
        • Halwani R.
        • Cen S.
        • Javanbakht H.
        • Saadatmand J.
        • Kim S.
        • Shiba K.
        • Kleiman L.
        Cellular distribution of lysyl-tRNA synthetase and its interaction with gag during human immunodeficiency virus type 1 assembly.
        J. Virol. 2004; 78 (15220430): 7553-7564
        • Kim D.G.
        • Choi J.W.
        • Lee J.Y.
        • Kim H.
        • Oh Y.S.
        • Lee J.W.
        • Tak Y.K.
        • Song J.M.
        • Razin E.
        • Yun S.-H.
        • Kim S.
        Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration.
        FASEB J. 2012; 26 (22751010): 4142-4159
        • Guo F.
        • Cen S.
        • Niu M.
        • Javanbakht H.
        • Kleiman L.
        Specific inhibition of the synthesis of human lysyl-tRNA synthetase results in decreases in tRNA(Lys) incorporation, tRNA(3)(Lys) annealing to viral RNA, and viral infectivity in human immunodeficiency virus type 1.
        J. Virol. 2003; 77 (12941890): 9817-9822
        • Kaminska M.
        • Shalak V.
        • Francin M.
        • Mirande M.
        Viral hijacking of mitochondrial lysyl-tRNA synthetase.
        J. Virol. 2007; 81 (17050605): 68-73
        • Jones C.P.
        • Saadatmand J.
        • Kleiman L.
        • Musier-Forsyth K.
        Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.
        RNA. 2013; 19 (23264568): 219-229
        • Jones C.P.
        • Cantara W.A.
        • Olson E.D.
        • Musier-Forsyth K.
        Small-angle X-ray scattering-derived structure of the HIV-1 5′ UTR reveals 3D tRNA mimicry.
        Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24550473): 3395-3400
        • Liu S.
        • Comandur R.
        • Jones C.P.
        • Tsang P.
        • Musier-Forsyth K.
        Anticodon-like binding of the HIV-1 tRNA-like element to human lysyl-tRNA synthetase.
        RNA. 2016; 22 (27852925): 1828-1835
        • Comandur R.
        • Olson E.D.
        • Musier-Forsyth K.
        Conservation of tRNA mimicry in the 5′-untranslated region of distinct HIV-1 subtypes.
        RNA. 2017; 23 (28860303): 1850-1859
        • Burniston M.T.
        • Cimarelli A.
        • Colgan J.
        • Curtis S.P.
        • Luban J.
        Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and ss promoted by the capsid-dimer interface and the basic region of matrix protein.
        J. Virol. 1999; 73 (10482606): 8527-8540
        • Alfadhli A.
        • McNett H.
        • Tsagli S.
        • Bächinger H.P.
        • Peyton D.H.
        • Barklis E.
        HIV-1 matrix protein binding to RNA.
        J. Mol. Biol. 2011; 410 (21762806): 653-666
        • Kutluay S.B.
        • Zang T.
        • Blanco-Melo D.
        • Powell C.
        • Jannain D.
        • Errando M.
        • Bieniasz P.D.
        Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis.
        Cell. 2014; 159 (25416948): 1096-1109
        • Chukkapalli V.
        • Ono A.
        Molecular determinants that regulate plasma membrane association of HIV-1 Gag.
        J. Mol. Biol. 2011; 410 (21762797): 512-524
        • Chukkapalli V.
        • Oh S.J.
        • Ono A.
        Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain.
        Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20080620): 1600-1605
        • Chukkapalli V.
        • Inlora J.
        • Todd G.C.
        • Ono A.
        Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells.
        J. Virol. 2013; 87 (23552424): 7155-7159
        • Alfadhli A.
        • Still A.
        • Barklis E.
        Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids.
        J. Virol. 2009; 83 (19776118): 12196-12203
        • Todd G.C.
        • Duchon A.
        • Inlora J.
        • Olson E.D.
        • Musier-Forsyth K.
        • Ono A.
        Inhibition of HIV-1 Gag–membrane interactions by specific RNAs.
        RNA. 2017; 23 (27932583): 395-405
        • Carlson L.-A.
        • Bai Y.
        • Keane S.C.
        • Doudna J.A.
        • Hurley J.H.
        Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies.
        Elife. 2016; 5 (27343348)e14663
        • Eckwahl M.J.
        • Arnion H.
        • Kharytonchyk S.
        • Zang T.
        • Bieniasz P.D.
        • Telesnitsky A.
        • Wolin S.L.
        Analysis of the human immunodeficiency virus-1 RNA packageome.
        RNA. 2016; 22 (27247436): 1228-1238
        • Eckwahl M.J.
        • Sim S.
        • Smith D.
        • Telesnitsky A.
        • Wolin S.L.
        A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway.
        Genes Dev. 2015; 29 (25792599): 646-657
        • Sobala A.
        • Hutvagner G.
        Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells.
        RNA Biol. 2013; 10 (23563448): 553-563
        • Anderson P.
        • Ivanov P.
        tRNA fragments in human health and disease.
        FEBS Lett. 2014; 588 (25220675): 4297-4304
        • Wang Q.
        • Lee I.
        • Ren J.
        • Ajay S.S.
        • Lee Y.S.
        • Bao X.
        Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection.
        Mol. Ther. 2013; 21 (23183536): 368-379
        • Saikia M.
        • Krokowski D.
        • Guan B.-J.
        • Ivanov P.
        • Parisien M.
        • Hu G.F.
        • Anderson P.
        • Pan T.
        • Hatzoglou M.
        Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress.
        J. Biol. Chem. 2012; 287 (23086926): 42708-42725
        • Emara M.M.
        • Ivanov P.
        • Hickman T.
        • Dawra N.
        • Tisdale S.
        • Kedersha N.
        • Hu G.-F.
        • Anderson P.
        Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly.
        J. Biol. Chem. 2010; 285 (20129916): 10959-10968
        • Mishima E.
        • Inoue C.
        • Saigusa D.
        • Inoue R.
        • Ito K.
        • Suzuki Y.
        • Jinno D.
        • Tsukui Y.
        • Akamatsu Y.
        • Araki M.
        • Araki K.
        • Shimizu R.
        • Shinke H.
        • Suzuki T.
        • Takeuchi Y.
        • et al.
        Conformational change in transfer RNA ss an early indicator of acute cellular damage.
        J. Am. Soc. Nephrol. 2014; 25 (24833129): 2316-2326
        • Kumar P.
        • Kuscu C.
        • Dutta A.
        Biogenesis and function of transfer RNA-related fragments (tRFs).
        Trends Biochem. Sci. 2016; 41 (27263052): 679-689
        • Sharma U.
        • Conine C.C.
        • Shea J.M.
        • Boskovic A.
        • Derr A.G.
        • Bing X.Y.
        • Belleannee C.
        • Kucukural A.
        • Serra R.W.
        • Sun F.
        • Song L.
        • Carone B.R.
        • Ricci E.P.
        • Li X.Z.
        • Fauquier L.
        • et al.
        Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.
        Science. 2016; 351 (26721685): 391-396
        • Martinez G.
        • Choudury S.G.
        • Slotkin R.K.
        tRNA-derived small RNAs target transposable element transcripts.
        Nucleic Acids Res. 2017; 45 (28335016): 5142-5152
        • Schorn A.J.
        • Gutbrod M.J.
        • LeBlanc C.
        • Martienssen R.
        LTR-retrotransposon control by tRNA-derived small RNAs.
        Cell. 2017; 170 (28666125): 61-71.e11
        • Ruggero K.
        • Guffanti A.
        • Corradin A.
        • Sharma V.K.
        • De Bellis G.
        • Corti G.
        • Grassi A.
        • Zanovello P.
        • Bronte V.
        • Ciminale V.
        • D'Agostino D.M.
        Small noncoding RNAs in cells transformed by human T-Cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase.
        J. Virol. 2014; 88 (24403582): 3612-3622
        • Yeung M.L.
        • Bennasser Y.
        • Watashi K.
        • Le S.-Y.
        • Houzet L.
        • Jeang K.-T.
        Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid.
        Nucleic Acids Res. 2009; 37 (19729508): 6575-6586
        • Ruggero K.
        • Corradin A.
        • Zanovello P.
        • Amadori A.
        • Bronte V.
        • Ciminale V.
        • D'Agostino D.M.
        Role of microRNAs in HTLV-1 infection and transformation.
        Mol. Aspects Med. 2010; 31 (20600265): 367-382
        • Piras G.
        • Dittmer J.
        • Radonovich M.F.
        • Brady J.N.
        Human T-cell leukemia virus type I Tax protein transactivates RNA polymerase III promoter in vitro and in vivo.
        J. Biol. Chem. 1996; 271 (8702791): 20501-20506
        • van Weringh A.
        • Ragonnet-Cronin M.
        • Pranckeviciene E.
        • Pavon-Eternod M.
        • Kleiman L.
        • Xia X.
        HIV-1 modulates the tRNA pool to improve translation efficiency.
        Mol. Biol. Evol. 2011;