Advertisement
JBC Reviews| Volume 294, ISSUE 14, P5408-5419, April 05, 2019

The role of α-ketoglutarate–dependent proteins in pluripotency acquisition and maintenance

  • Khoa A. Tran
    Footnotes
    Affiliations
    From the Wisconsin Institute for Discovery

    Molecular and Cellular Pharmacology Program
    Search for articles by this author
  • Caleb M. Dillingham
    Affiliations
    From the Wisconsin Institute for Discovery

    Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, Wisconsin 53715
    Search for articles by this author
  • Rupa Sridharan
    Correspondence
    To whom correspondence should be addressed:Dept. of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715. Tel.:608-316-4422
    Affiliations
    From the Wisconsin Institute for Discovery

    Department of Cell and Regenerative Biology
    Search for articles by this author
  • Author Footnotes
    1 Supported by an Advanced Opportunity Fellowship at the University of Wisconsin-Madison and by National Science Foundation Graduate Research Fellowship Program Grant DGE-1256259.
    3 The abbreviations used are: ESCembryonic stem cellSCNTsomatic cell nuclear transferOSKMOct4, Sox2, Klf4, and c-MyciPSCinduced pluripotent stem cell2iinhibitors to mitogen-activated protein kinase and glycogen synthase kinaseα-KGα-ketoglutarateVcvitamin CmESCmouse ESCPRCpolycomb repressive complex5mC5-methylcytosine5hmC5-hydroxymethylcytosineJmjdJumonji domainTSStranscription start siteH3K9mehistone H3 lysine 9 methylationKDknockdownKOknockoutDKOdouble KOTKOtriple KOhESChuman ESCEpiSCepiblast stem cellMEFmouse embryonic fibroblastARFADP-ribosylation factorZFzinc fingerMETmesenchymal-to-epithelial transitionFBSfetal bovine serumHIFhypoxia-inducible factormiRmicroRNAERKextracellular signal-regulated kinaseMAPKmitogen-activated protein kinase5fC5-formylcytosine5caC5-carboxylcytosineTetten-eleven-translocation5hmU5-hydroxymethyluracilTSKMTet1, Sox2, Klf, and c-MycOgtO-linked GlcNAc-transferaseN6-mAN6-methyladeninePHDprolyl-hydroxylase domain enzymeFIHfactor inhibiting HIF.
Open AccessPublished:September 04, 2018DOI:https://doi.org/10.1074/jbc.TM118.000831
      α-Ketoglutarate is an important metabolic intermediate that acts as a cofactor for several chromatin-modifying enzymes, including histone demethylases and the Tet family of enzymes that are involved in DNA demethylation. In this review, we focus on the function and genomic localization of these α-ketoglutarate–dependent enzymes in the maintenance of pluripotency during cellular reprogramming to induced pluripotent stem cells and in disruption of pluripotency during in vitro differentiation. The enzymatic function of many of these α-ketoglutarate–dependent proteins is required for pluripotency acquisition and maintenance. A better understanding of their specific function will be essential in furthering our knowledge of pluripotency.

      Introduction

      Pluripotent stem cells have the ability to self-renew indefinitely and give rise to all the cell types of a multicellular organism. Pluripotency appears transiently during early embryonic development and can be captured with the correct culture conditions to obtain embryonic stem cells (ESCs).
      The abbreviations used are: ESC
      embryonic stem cell
      SCNT
      somatic cell nuclear transfer
      OSKM
      Oct4, Sox2, Klf4, and c-Myc
      iPSC
      induced pluripotent stem cell
      2i
      inhibitors to mitogen-activated protein kinase and glycogen synthase kinase
      α-KG
      α-ketoglutarate
      Vc
      vitamin C
      mESC
      mouse ESC
      PRC
      polycomb repressive complex
      5mC
      5-methylcytosine
      5hmC
      5-hydroxymethylcytosine
      Jmjd
      Jumonji domain
      TSS
      transcription start site
      H3K9me
      histone H3 lysine 9 methylation
      KD
      knockdown
      KO
      knockout
      DKO
      double KO
      TKO
      triple KO
      hESC
      human ESC
      EpiSC
      epiblast stem cell
      MEF
      mouse embryonic fibroblast
      ARF
      ADP-ribosylation factor
      ZF
      zinc finger
      MET
      mesenchymal-to-epithelial transition
      FBS
      fetal bovine serum
      HIF
      hypoxia-inducible factor
      miR
      microRNA
      ERK
      extracellular signal-regulated kinase
      MAPK
      mitogen-activated protein kinase
      5fC
      5-formylcytosine
      5caC
      5-carboxylcytosine
      Tet
      ten-eleven-translocation
      5hmU
      5-hydroxymethyluracil
      TSKM
      Tet1, Sox2, Klf, and c-Myc
      Ogt
      O-linked GlcNAc-transferase
      N6-mA
      N6-methyladenine
      PHD
      prolyl-hydroxylase domain enzyme
      FIH
      factor inhibiting HIF.
      Pluripotent stem cells can also be derived from somatic cells either by the transfer of a somatic cell nucleus to an oocyte (SCNT) (
      • Bernstein B.E.
      • Mikkelsen T.S.
      • Xie X.
      • Kamal M.
      • Huebert D.J.
      • Cuff J.
      • Fry B.
      • Meissner A.
      • Wernig M.
      • Plath K.
      • Jaenisch R.
      • Wagschal A.
      • Feil R.
      • Schreiber S.L.
      • Lander E.S.
      A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
      ,
      • Yu J.
      • Thomson J.A.
      Pluripotent stem cell lines.
      ) or through reprogramming, which is the overexpression of a small set of factors, usually Oct4, Sox2, Klf4, and c-Myc (OSKM) to generate induced pluripotent stem cells (iPSCs) (
      • Yuan W.
      • Xu M.
      • Huang C.
      • Liu N.
      • Chen S.
      • Zhu B.
      H3K36 methylation antagonizes PRC2-mediated H3K27 methylation.
      • Takahashi K.
      • Yamanaka S.
      Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
      ,
      • Yu J.
      • Vodyanik M.A.
      • Smuga-Otto K.
      • Antosiewicz-Bourget J.
      • Frane J.L.
      • Tian S.
      • Nie J.
      • Jonsdottir G.A.
      • Ruotti V.
      • Stewart R.
      • Slukvin I.I.
      • Thomson J.A.
      Induced pluripotent stem cell lines derived from human somatic cells.
      • Tahiliani M.
      • Koh K.P.
      • Shen Y.
      • Pastor W.A.
      • Bandukwala H.
      • Brudno Y.
      • Agarwal S.
      • Iyer L.M.
      • Liu D.R.
      • Aravind L.
      • Rao A.
      Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
      ) (Fig. 1). In vitro pluripotency is thought to exist in a continuum that is profoundly affected by growth conditions (
      • Weinberger L.
      • Ayyash M.
      • Novershtern N.
      • Hanna J.H.
      Dynamic stem cell states: naive to primed pluripotency in rodents and humans.
      ) For example, when ESCs are grown in the presence of signaling inhibitors to mitogen-activated protein kinase and glycogen synthase kinase (2i), their transcriptional profile better resembles the in vivo equivalent from the blastocyst stage of early embryonic development than that of ESCs grown in serum. Both the maintenance of pluripotency and its acquisition from somatic cells are affected by culture conditions. α-Ketoglutarate (α-KG)–dependent enzymes are important regulators of chromatin structure and are particularly sensitive to levels of intracellular metabolites as well as external components of the growth medium. Pluripotent cells can be grown in serum replacement medium, which contain vitamin C (Vc), that can affect the rate of catalysis of α-KG enzymes (Fig. 2) (
      • Beshiri M.L.
      • Holmes K.B.
      • Richter W.F.
      • Hess S.
      • Islam A.B.
      • Yan Q.
      • Plante L.
      • Litovchick L.
      • Gévry N.
      • Lopez-Bigas N.
      • Kaelin Jr., W.G.
      • Benevolenskaya E.V.
      Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation.
      ,
      • Monfort A.
      • Wutz A.
      Breathing-in epigenetic change with vitamin C.
      ). In the 2i conditions mentioned above, mouse ESCs (mESCs) utilize both glucose and glutamine in the medium to maintain high levels of α-KG to alter chromatin modifications (
      • Pasini D.
      • Cloos P.A.
      • Walfridsson J.
      • Olsson L.
      • Bukowski J.-P.
      • Johansen J.V.
      • Bak M.
      • Tommerup N.
      • Rappsilber J.
      • Helin K.
      JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells.
      ,
      • Carey B.W.
      • Finley L.W.
      • Cross J.R.
      • Allis C.D.
      • Thompson C.B.
      Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.
      ).
      Figure thumbnail gr1
      Figure 1Pluripotent stem cells can self-renew indefinitely and differentiate into a multitude of cells. Pluripotent cells can be isolated both from the inner cell mass of the blastocyst and the reprogramming of differentiated cells. In the boxes are the α-ketoglutarate–dependent proteins that are known to modulate each process.
      Figure thumbnail gr2
      Figure 2Fe(II) recycling of α-KG–dependent dioxygenases. The catalytic activity of α-KG dioxygenases utilizes oxygen for the decarboxylation of α-KG and oxidation of Fe(II) to Fe(IV), rendering the enzyme inactive. Vitamin C can be used to regenerate iron back to the Fe(II) state, thus restoring catalytic activity.
      The plasticity of pluripotent stem cells is associated with a hyperdynamic chromatin structure where histones and heterochromatin-associated proteins have a higher mobility than in somatic cells (
      • Meshorer E.
      • Yellajoshula D.
      • George E.
      • Scambler P.J.
      • Brown D.T.
      • Misteli T.
      Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.
      ). Pluripotent stem cells also have a reduced amount of heterochromatin, usually associated with gene repression, which is enriched for histone modifications such as histone H3 lysine 9 methylation (H3K9me2 and H3K9me3) (
      • Soufi A.
      • Donahue G.
      • Zaret K.S.
      Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome.
      ,
      • Sridharan R.
      • Gonzales-Cope M.
      • Chronis C.
      • Bonora G.
      • McKee R.
      • Huang C.
      • Patel S.
      • Lopez D.
      • Mishra N.
      • Pellegrini M.
      • Carey M.
      • Garcia B.A.
      • Plath K.
      Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency.
      • Zaidan N.Z.
      • Walker K.J.
      • Brown J.E.
      • Schaffer L.V.
      • Scalf M.
      • Shortreed M.R.
      • Iyer G.
      • Smith L.M.
      • Sridharan R.
      Compartmentalization of HP1 proteins in pluripotency acquisition and maintenance.
      ). Another chromatin feature that is more prevalent in pluripotent cells are the “bivalent” domains. These are regulatory regions that contain both an activating histone modification, histone H3 lysine 4 methylation (H3K4me3), and a repressive modification, histone H3 lysine 27 methylation (H3K27me3), that is mediated by the polycomb repressive complex 2 (PRC2) (
      • Bernstein B.E.
      • Mikkelsen T.S.
      • Xie X.
      • Kamal M.
      • Huebert D.J.
      • Cuff J.
      • Fry B.
      • Meissner A.
      • Wernig M.
      • Plath K.
      • Jaenisch R.
      • Wagschal A.
      • Feil R.
      • Schreiber S.L.
      • Lander E.S.
      A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
      ,
      • Dey B.K.
      • Stalker L.
      • Schnerch A.
      • Bhatia M.
      • Taylor-Papidimitriou J.
      • Wynder C.
      The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation.
      ). Several lineage specification genes are held in such a bivalent state and are resolved into either expression by retaining the H3K4me3 mark or repression by retaining the H3K27me3 mark (
      • Bernstein B.E.
      • Mikkelsen T.S.
      • Xie X.
      • Kamal M.
      • Huebert D.J.
      • Cuff J.
      • Fry B.
      • Meissner A.
      • Wernig M.
      • Plath K.
      • Jaenisch R.
      • Wagschal A.
      • Feil R.
      • Schreiber S.L.
      • Lander E.S.
      A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
      ,
      • Yu J.
      • Thomson J.A.
      Pluripotent stem cell lines.
      ). Thus, the bivalent state can be considered poised for gene transcription. The H3K27me3 mark is usually found in opposition to H3K36me, a mark for active transcription elongation in gene bodies (
      • Yuan W.
      • Xu M.
      • Huang C.
      • Liu N.
      • Chen S.
      • Zhu B.
      H3K36 methylation antagonizes PRC2-mediated H3K27 methylation.
      ,
      • Takahashi K.
      • Yamanaka S.
      Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
      • Yu J.
      • Vodyanik M.A.
      • Smuga-Otto K.
      • Antosiewicz-Bourget J.
      • Frane J.L.
      • Tian S.
      • Nie J.
      • Jonsdottir G.A.
      • Ruotti V.
      • Stewart R.
      • Slukvin I.I.
      • Thomson J.A.
      Induced pluripotent stem cell lines derived from human somatic cells.
      ). In addition to histone modifications, DNA can also be methylated. In general, DNA methylation correlates with gene repression when present at regulatory regions. A pathway to active DNA demethylation can be provided by the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) (
      • Takahashi K.
      • Yamanaka S.
      Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
      ,
      • Yu J.
      • Vodyanik M.A.
      • Smuga-Otto K.
      • Antosiewicz-Bourget J.
      • Frane J.L.
      • Tian S.
      • Nie J.
      • Jonsdottir G.A.
      • Ruotti V.
      • Stewart R.
      • Slukvin I.I.
      • Thomson J.A.
      Induced pluripotent stem cell lines derived from human somatic cells.
      • Tahiliani M.
      • Koh K.P.
      • Shen Y.
      • Pastor W.A.
      • Bandukwala H.
      • Brudno Y.
      • Agarwal S.
      • Iyer L.M.
      • Liu D.R.
      • Aravind L.
      • Rao A.
      Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
      ). The levels of 5hmC are higher in ESCs than most differentiated cells. α-KG–dependent enzymes include the jumonji domain–containing histone demethylases, Tet proteins that modify DNA methylation, and RNA-modifying enzymes of the Alkbh family, thus modulating the delicate state of pluripotency itself.
      In this review, we focus on the changes to genomic localization of the cognate histone or DNA modifications resulting from perturbation of levels of α-KG–dependent enzymes as well as the subsequent changes in transcriptional output. We organize the review based on the phenotypes obtained during 1) the maintenance of the pluripotent state, 2) the acquisition of pluripotency from somatic cells, and 3) its disruption during in vitro differentiation.

      Jumonji domain (Jmjd)-containing histone demethylases

      Kdm5 family: Demethylases of histone H3K4

      Kdm5a, Kdm5b, and Kdm5c share specificity for demethylating H3K4me2/3. Because H3K4me3 is enriched at the transcription start sites (TSSs) of poised or active genes, it is expected that a loss of these enzymes would result in increased gene expression.
      Kdm5a was found to be an interacting partner of the PRC2 complex that contains the H3K27 methyltransferase Ezh2 (
      • Pasini D.
      • Hansen K.H.
      • Christensen J.
      • Agger K.
      • Cloos P.A.
      • Helin K.
      Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive complex 2.
      ). Thus, there is an association between the methyltransferase and demethylase of histone marks that are correlated with opposing effects on gene expression. When bivalent domains are resolved during differentiation of pluripotent cells, the regions that become silenced and retain H3K27me3 have the potential to simultaneously be demethylated at H3K4me3. In mESCs, Kdm5a preferentially binds the TSS of genes that are activated during differentiation (
      • Beshiri M.L.
      • Holmes K.B.
      • Richter W.F.
      • Hess S.
      • Islam A.B.
      • Yan Q.
      • Plante L.
      • Litovchick L.
      • Gévry N.
      • Lopez-Bigas N.
      • Kaelin Jr., W.G.
      • Benevolenskaya E.V.
      Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation.
      ,
      • Monfort A.
      • Wutz A.
      Breathing-in epigenetic change with vitamin C.
      ). Kdm5a-depleted mESCs are pluripotent but display increased expression of specific PRC2 target genes (
      • Pasini D.
      • Hansen K.H.
      • Christensen J.
      • Agger K.
      • Cloos P.A.
      • Helin K.
      Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive complex 2.
      ). Kdm5a depletion does not impact PRC2 binding or the levels of H3K27me3; however, knockdown (KD) of PRC2 component Suz12 leads to a reduction of Kdm5a binding at shared promoters and a subsequent increase in H3K4me3 (
      • Pasini D.
      • Hansen K.H.
      • Christensen J.
      • Agger K.
      • Cloos P.A.
      • Helin K.
      Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive complex 2.
      ) (Fig. 3). Thus, although Kdm5a is recruited to shared locations by PRC2, it does not appear to affect the function of PRC2 (
      • Pasini D.
      • Cloos P.A.
      • Walfridsson J.
      • Olsson L.
      • Bukowski J.-P.
      • Johansen J.V.
      • Bak M.
      • Tommerup N.
      • Rappsilber J.
      • Helin K.
      JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells.
      ,
      • Carey B.W.
      • Finley L.W.
      • Cross J.R.
      • Allis C.D.
      • Thompson C.B.
      Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.
      ).
      Figure thumbnail gr3
      Figure 3A, HIF1 recruits Kdm3a under hypoxic conditions, regulating gene expression by the removal of H3K9me2. B, Kdm2b binds unmethylated CpG islands via a ZF-CXXC domain. Kdm2b is part of the PRC1.1 complex that mediates gene repression through the ubiquitination (Ub) of histone H2A. C, the Kdm4 family of proteins reduce the levels of H3K9me3 at reprogramming-resistant regions, opening the condensed heterochromatin and allowing transcription. D, Kdm5a interacts with the PRC2 complex, removing H3K4me at bivalent genes, leading to gene repression.
      There have been conflicting reports on the role of Kdm5b in pluripotency. Although overexpression of Kdm5b in mESCs led to increased proliferation (
      • Bernstein B.E.
      • Mikkelsen T.S.
      • Xie X.
      • Kamal M.
      • Huebert D.J.
      • Cuff J.
      • Fry B.
      • Meissner A.
      • Wernig M.
      • Plath K.
      • Jaenisch R.
      • Wagschal A.
      • Feil R.
      • Schreiber S.L.
      • Lander E.S.
      A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
      ,
      • Dey B.K.
      • Stalker L.
      • Schnerch A.
      • Bhatia M.
      • Taylor-Papidimitriou J.
      • Wynder C.
      The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation.
      ), there are contradictory reports on the effects of Kdm5b depletion as well as its genomic localization. The KD of Kdm5b compromised self-renewal of ESCs and led to spontaneous differentiation (
      • Xie L.
      • Pelz C.
      • Wang W.
      • Bashar A.
      • Varlamova O.
      • Shadle S.
      • Impey S.
      KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription.
      ). In this study, Kdm5b was found localized intragenically and seemed to be recruited by MRG15, a protein that binds to transcription elongation–associated H3K36me. Therefore, a role for Kdm5b activity in suppressing cryptic transcription initiation from within the gene body was proposed (
      • Xie L.
      • Pelz C.
      • Wang W.
      • Bashar A.
      • Varlamova O.
      • Shadle S.
      • Impey S.
      KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription.
      ).
      In contrast to these results, genomic deletion of Kdm5b in ESCs was compatible with self-renewal and pluripotency, but differentiation toward ectoderm was compromised (
      • Schmitz S.U.
      • Albert M.
      • Malatesta M.
      • Morey L.
      • Johansen J.V.
      • Bak M.
      • Tommerup N.
      • Abarrategui I.
      • Helin K.
      Jarid1b targets genes regulating development and is involved in neural differentiation.
      ). Kdm5b was found enriched at both the TSS and intragenic regions that did not coincide with H3K36me. The depletion of Kdm5b increased H3K4me3 at the TSS but did not cause many gene expression changes. Kdm5b-localized promoters had lower levels of H3K4me3, suggesting that it functioned in maintaining levels rather than eliminating this mark (
      • Schmitz S.U.
      • Albert M.
      • Malatesta M.
      • Morey L.
      • Johansen J.V.
      • Bak M.
      • Tommerup N.
      • Abarrategui I.
      • Helin K.
      Jarid1b targets genes regulating development and is involved in neural differentiation.
      ). Corroborating this idea, Kdm5b KD ESCs were refractory to embryoid body differentiation due to continued pluripotency gene expression as well as maintenance of H3K4me3 at bivalent genes (
      • Kidder B.L.
      • Hu G.
      • Zhao K.
      KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation.
      ). During the acquisition of pluripotency by SCNT, the KD of Kdm5b by siRNA led to an increase of cloned embryos arresting in the four-cell stage of the blastocyst, suggesting an essential role for appropriate localization of H3K4me3 (
      • Liu W.
      • Liu X.
      • Wang C.
      • Gao Y.
      • Gao R.
      • Kou X.
      • Zhao Y.
      • Li J.
      • Wu Y.
      • Xiu W.
      • Wang S.
      • Yin J.
      • Liu W.
      • Cai T.
      • Wang H.
      • Zhang Y.
      • Gao S.
      Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.
      ).
      Another study found that Kdm5b was localized to promoters, intragenic regions, and enhancers. Kdm5b KD led to an increase of H3K4me3 at the gene body, a decrease at promoters, and spreading at enhancers (
      • Kidder B.L.
      • Hu G.
      • Zhao K.
      KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation.
      ). Thus, Kdm5b may function in restricting distribution of H3K4me3. Kdm5b KD also increased the expression of alternatively spliced exons in ESCs, suggesting a role for intragenic localization (
      • He R.
      • Kidder B.L.
      H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells.
      ).
      Kdm5c binds to both proximal promoter regions and distal intergenic enhancer regions in mESCs. Upon KD of Kdm5c, pluripotency is maintained, and global H3K4me3 levels remained unchanged. However, at loci that are greatly enriched for Kdm5c binding, H3K4me1 levels were gained at the expense of H3K4me3 levels. This effect was magnified at regions bound by the transcription factor c-Myc, which is a direct interacting partner of Kdm5c (
      • Outchkourov N.S.
      • Muiño J.M.
      • Kaufmann K.
      • van IJcken W.F.
      • Groot Koerkamp M.J.
      • van Leenen D.
      • de Graaf P.
      • Holstege F.C.
      • Grosveld F.G.
      • Timmers H.T.
      Balancing of histone H3K4 methylation states by the Kdm5c/SMCX histone demethylase modulates promoter and enhancer function.
      ).
      Thus, the Kdm5 family is involved in fine-tuning both the degree and localization of H3K4me3. The loss of each individual enzyme seems compatible with pluripotency, suggesting redundancy in function. Site specificity may be conferred by interacting factors other than c-Myc and PRC2. In this regard, it is interesting that in nonpluripotent cells, Kdm5a interacts with the Sin3 histone deacetylase complex specifically at sites that are bound by the transcription factor E2F4 (
      • van Oevelen C.
      • Wang J.
      • Asp P.
      • Yan Q.
      • Kaelin Jr., W.G.
      • Kluger Y.
      • Dynlacht B.D.
      A role for mammalian Sin3 in permanent gene silencing.
      ). The role of such an interaction in pluripotent cells has not been determined.

      Kdm6 family: Demethylases of histone H3K27 methylation

      Kdm6a (UTX) and Kdm6b (JMJD3) can demethylate H3K27me2/me3, whereas the mouse Kdm6a paralog, Kdm6c (UTY), is located on the Y chromosome and lacks this activity (
      • Shpargel K.B.
      • Sengoku T.
      • Yokoyama S.
      • Magnuson T.
      UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development.
      ). Similar to the reciprocal recruitment observed in the case of the Kdm5b–PRC2 complex, Kdm6a, the H3K27 demethylase, is part of the mixed-lineage leukemia H3K4 methyltransferase complex (
      • Lee M.G.
      • Villa R.
      • Trojer P.
      • Norman J.
      • Yan K.-P.
      • Reinberg D.
      • Di Croce L.
      • Shiekhattar R.
      Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination.
      ).
      Both mouse and human Kdm6a, as well as mKdm6b, are dispensable for maintenance of self-renewal as knockout (KO) ESCs display normal morphology, cell proliferation rates, and high levels of pluripotency gene expression (
      • Mansour A.A.
      • Gafni O.
      • Weinberger L.
      • Zviran A.
      • Ayyash M.
      • Rais Y.
      • Krupalnik V.
      • Zerbib M.
      • Amann-Zalcenstein D.
      • Maza I.
      • Geula S.
      • Viukov S.
      • Holtzman L.
      • Pribluda A.
      • Canaani E.
      • et al.
      The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
      • Morales Torres C.
      • Laugesen A.
      • Helin K.
      Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells.
      ,
      • Wang C.
      • Lee J.-E.
      • Cho Y.-W.
      • Xiao Y.
      • Jin Q.
      • Liu C.
      • Ge K.
      UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.
      ,
      • Dhar S.S.
      • Lee S.-H.
      • Chen K.
      • Zhu G.
      • Oh W.
      • Allton K.
      • Gafni O.
      • Kim Y.Z.
      • Tomoiga A.S.
      • Barton M.C.
      • Hanna J.H.
      • Wang Z.
      • Li W.
      • Lee M.G.
      An essential role for UTX in resolution and activation of bivalent promoters.
      ,
      • Shpargel K.B.
      • Starmer J.
      • Yee D.
      • Pohlers M.
      • Magnuson T.
      KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development.
      ,
      • Jiang W.
      • Wang J.
      • Zhang Y.
      Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway.
      ,
      • Burgold T.
      • Voituron N.
      • Caganova M.
      • Tripathi P.P.
      • Menuet C.
      • Tusi B.K.
      • Spreafico F.
      • Bévengut M.
      • Gestreau C.
      • Buontempo S.
      • Simeone A.
      • Kruidenier L.
      • Natoli G.
      • Casola S.
      • Hilaire G.
      • et al.
      The H3K27 Demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival.
      • Ohtani K.
      • Zhao C.
      • Dobreva G.
      • Manavski Y.
      • Kluge B.
      • Braun T.
      • Rieger M.A.
      • Zeiher A.M.
      • Dimmeler S.
      Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells.
      ). Male Kdm6b KO mESCs up-regulate lineage commitment genes upon differentiation and contribute toward adult chimeras (
      • Mansour A.A.
      • Gafni O.
      • Weinberger L.
      • Zviran A.
      • Ayyash M.
      • Rais Y.
      • Krupalnik V.
      • Zerbib M.
      • Amann-Zalcenstein D.
      • Maza I.
      • Geula S.
      • Viukov S.
      • Holtzman L.
      • Pribluda A.
      • Canaani E.
      • et al.
      The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
      ). Unlike the Kdm5 family, there are nonredundant functions of Kdm6a and Kdm6b in pluripotency. Overexpression of the Kdm6b catalytic domain (but not that of Kdm6a) leads to spontaneous differentiation in human ESCs (hESCs) and is accompanied by depleted global levels of H3K27me3 (
      • Xie L.
      • Pelz C.
      • Wang W.
      • Bashar A.
      • Varlamova O.
      • Shadle S.
      • Impey S.
      KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription.
      ,
      • Akiyama T.
      • Wakabayashi S.
      • Soma A.
      • Sato S.
      • Nakatake Y.
      • Oda M.
      • Murakami M.
      • Sakota M.
      • Chikazawa-Nohtomi N.
      • Ko S.B.
      • Ko M.S.
      Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells.
      ). This is surprising given that the catalytic Jumonji domains are the most conserved regions between members of the same subfamily (
      • Cloos P.A.
      • Christensen J.
      • Agger K.
      • Helin K.
      Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease.
      ). Remarkably, ectopic Kdm6b expression in conjunction with lineage-defining transcription factors promotes hESC differentiation into multiple lineages (
      • Xie L.
      • Pelz C.
      • Wang W.
      • Bashar A.
      • Varlamova O.
      • Shadle S.
      • Impey S.
      KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription.
      ,
      • Akiyama T.
      • Wakabayashi S.
      • Soma A.
      • Sato S.
      • Nakatake Y.
      • Oda M.
      • Murakami M.
      • Sakota M.
      • Chikazawa-Nohtomi N.
      • Ko S.B.
      • Ko M.S.
      Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells.
      ). Because directed differentiation of ESCs into specific lineages remains a goal of regenerative therapy, the transient overexpression of Kdm6b could be a useful tool for accelerating differentiation into desirable cell types.
      Figure thumbnail fx1
      Kdm6a and Kdm6b also have opposing roles in generating iPSCs with well-defined mechanisms. Kdm6a promotes the reprogramming of both epiblast stem cells (EpiSCs) to naïve pluripotency (Box 1) and somatic cells to iPSCs in a catalysis-dependent manner (
      • Schmitz S.U.
      • Albert M.
      • Malatesta M.
      • Morey L.
      • Johansen J.V.
      • Bak M.
      • Tommerup N.
      • Abarrategui I.
      • Helin K.
      Jarid1b targets genes regulating development and is involved in neural differentiation.
      ,
      • Mansour A.A.
      • Gafni O.
      • Weinberger L.
      • Zviran A.
      • Ayyash M.
      • Rais Y.
      • Krupalnik V.
      • Zerbib M.
      • Amann-Zalcenstein D.
      • Maza I.
      • Geula S.
      • Viukov S.
      • Holtzman L.
      • Pribluda A.
      • Canaani E.
      • et al.
      The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
      ). In the absence of Kdm6a, several important pluripotency genes (e.g. Sall4) are not activated due to retention of the repressive H3K27me3 that silences their expression in somatic cells such as mouse embryonic fibroblasts (MEFs). Kdm6a is likely to be targeted to these loci by direct interaction with the Oct4, Sox2, and Klf4 reprogramming factors (
      • Schmitz S.U.
      • Albert M.
      • Malatesta M.
      • Morey L.
      • Johansen J.V.
      • Bak M.
      • Tommerup N.
      • Abarrategui I.
      • Helin K.
      Jarid1b targets genes regulating development and is involved in neural differentiation.
      ,
      • Mansour A.A.
      • Gafni O.
      • Weinberger L.
      • Zviran A.
      • Ayyash M.
      • Rais Y.
      • Krupalnik V.
      • Zerbib M.
      • Amann-Zalcenstein D.
      • Maza I.
      • Geula S.
      • Viukov S.
      • Holtzman L.
      • Pribluda A.
      • Canaani E.
      • et al.
      The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
      ). In contrast to Kdm6a, Kdm6b depletion improves reprogramming of MEFs to iPSCs by two independent activities. First, its depletion decreases Ink4/ARF transcription, removing a senescence block and leading to increased reprogramming (
      • Kidder B.L.
      • Hu G.
      • Zhao K.
      KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation.
      ,
      • Zhao W.
      • Li Q.
      • Ayers S.
      • Gu Y.
      • Shi Z.
      • Zhu Q.
      • Chen Y.
      • Wang H.Y.
      • Wang R.-F.
      Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination.
      ). Second, it promotes the TRIM26 ubiquitin ligase–mediated degradation of a particular scaffold protein, Phf20. Phf20 is required to assemble a transcription activation complex at the Oct4 locus during reprogramming (
      • Kidder B.L.
      • Hu G.
      • Zhao K.
      KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation.
      ,
      • Zhao W.
      • Li Q.
      • Ayers S.
      • Gu Y.
      • Shi Z.
      • Zhu Q.
      • Chen Y.
      • Wang H.Y.
      • Wang R.-F.
      Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination.
      ).
      In contrast to their opposing roles in gaining pluripotency, Kdm6a and Kdm6b enhance in vitro differentiation from ESCs (
      • Jiang W.
      • Wang J.
      • Zhang Y.
      Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway.
      ,
      • Kartikasari A.E.
      • Zhou J.X.
      • Kanji M.S.
      • Chan D.N.
      • Sinha A.
      • Grapin-Botton A.
      • Magnuson M.A.
      • Lowry W.E.
      • Bhushan A.
      The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation.
      ,
      • Wang Y.
      • Li Y.
      • Guo C.
      • Lu Q.
      • Wang W.
      • Jia Z.
      • Chen P.
      • Ma K.
      • Reinberg D.
      • Zhou C.
      ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells.
      ). Hox clusters are large bivalent domains that are important for patterning the body plan during development. Surprisingly, the deletion of either Kdm6a alone (
      • He R.
      • Kidder B.L.
      H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells.
      ,
      • Welstead G.G.
      • Creyghton M.P.
      • Bilodeau S.
      • Cheng A.W.
      • Markoulaki S.
      • Young R.A.
      • Jaenisch R.
      X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner.
      ) or combined with Kdm6b (
      • Outchkourov N.S.
      • Muiño J.M.
      • Kaufmann K.
      • van IJcken W.F.
      • Groot Koerkamp M.J.
      • van Leenen D.
      • de Graaf P.
      • Holstege F.C.
      • Grosveld F.G.
      • Timmers H.T.
      Balancing of histone H3K4 methylation states by the Kdm5c/SMCX histone demethylase modulates promoter and enhancer function.
      ,
      • Shpargel K.B.
      • Starmer J.
      • Yee D.
      • Pohlers M.
      • Magnuson T.
      KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development.
      ) in mESCs is accompanied by a loss of H3K27me3 rather than a gain as would be expected when deleting a demethylase. This suggests that the down-regulation of PRC2 expression may contribute to passive dilution of the H3K27me3 mark during differentiation.
      Both the Kdm6a and Kdm6b KOs decrease the levels of the mesoderm-specifying gene Brachyury during differentiation. Interestingly, the introduction of a catalytically inactive mutant of Kdm6a restores Brachyury expression, suggesting functions beyond H3K27 demethylation (
      • Shpargel K.B.
      • Sengoku T.
      • Yokoyama S.
      • Magnuson T.
      UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development.
      ,
      • Morales Torres C.
      • Laugesen A.
      • Helin K.
      Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells.
      ,
      • Wang C.
      • Lee J.-E.
      • Cho Y.-W.
      • Xiao Y.
      • Jin Q.
      • Liu C.
      • Ge K.
      UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.
      ,
      • Ohtani K.
      • Zhao C.
      • Dobreva G.
      • Manavski Y.
      • Kluge B.
      • Braun T.
      • Rieger M.A.
      • Zeiher A.M.
      • Dimmeler S.
      Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells.
      ). Thus, during differentiation, the function of Kdm6a and Kdm6b may be linked to both H3K27 demethylation and the structural role they provide as part of protein complexes.

      Kdm2 family: Demethylases of histone H3K36 methylation

      H3K36me1/2, a histone modification associated with active transcription elongation, can be demethylated by Kdm2a (Jhdm1a) and Kdm2b (Jhdm1b). In mESCs, both Kdm2a and Kdm2b are preferentially recruited to non-DNA–methylated CpG islands (
      • Mansour A.A.
      • Gafni O.
      • Weinberger L.
      • Zviran A.
      • Ayyash M.
      • Rais Y.
      • Krupalnik V.
      • Zerbib M.
      • Amann-Zalcenstein D.
      • Maza I.
      • Geula S.
      • Viukov S.
      • Holtzman L.
      • Pribluda A.
      • Canaani E.
      • et al.
      The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
      • Morales Torres C.
      • Laugesen A.
      • Helin K.
      Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells.
      ,
      • Wang C.
      • Lee J.-E.
      • Cho Y.-W.
      • Xiao Y.
      • Jin Q.
      • Liu C.
      • Ge K.
      UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.
      ,
      • Dhar S.S.
      • Lee S.-H.
      • Chen K.
      • Zhu G.
      • Oh W.
      • Allton K.
      • Gafni O.
      • Kim Y.Z.
      • Tomoiga A.S.
      • Barton M.C.
      • Hanna J.H.
      • Wang Z.
      • Li W.
      • Lee M.G.
      An essential role for UTX in resolution and activation of bivalent promoters.
      ,
      • Shpargel K.B.
      • Starmer J.
      • Yee D.
      • Pohlers M.
      • Magnuson T.
      KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development.
      ,
      • Jiang W.
      • Wang J.
      • Zhang Y.
      Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway.
      ,
      • Burgold T.
      • Voituron N.
      • Caganova M.
      • Tripathi P.P.
      • Menuet C.
      • Tusi B.K.
      • Spreafico F.
      • Bévengut M.
      • Gestreau C.
      • Buontempo S.
      • Simeone A.
      • Kruidenier L.
      • Natoli G.
      • Casola S.
      • Hilaire G.
      • et al.
      The H3K27 Demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival.
      • Ohtani K.
      • Zhao C.
      • Dobreva G.
      • Manavski Y.
      • Kluge B.
      • Braun T.
      • Rieger M.A.
      • Zeiher A.M.
      • Dimmeler S.
      Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells.
      ,
      • Blackledge N.P.
      • Zhou J.C.
      • Tolstorukov M.Y.
      • Farcas A.M.
      • Park P.J.
      • Klose R.J.
      CpG islands recruit a histone H3 lysine 36 demethylase.
      ,
      • Wu X.
      • Johansen J.V.
      • Helin K.
      Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation.
      ). The depletion of Kdm2b, but not Kdm2a, leads to spontaneous differentiation of mESCs, indicating a nonredundant role for Kdm2b in maintaining pluripotency (
      • Wu X.
      • Johansen J.V.
      • Helin K.
      Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation.
      ).
      Both Kdm2a and Kdm2b share a ZF-CXXC domain that targets the enzyme to unmethylated CpG islands throughout the genome; however, they interact with different partners to mediate gene regulation (
      • Blackledge N.P.
      • Zhou J.C.
      • Tolstorukov M.Y.
      • Farcas A.M.
      • Park P.J.
      • Klose R.J.
      CpG islands recruit a histone H3 lysine 36 demethylase.
      ,
      • Blackledge N.P.
      • Farcas A.M.
      • Kondo T.
      • King H.W.
      • McGouran J.F.
      • Hanssen L.L.
      • Ito S.
      • Cooper S.
      • Kondo K.
      • Koseki Y.
      • Ishikura T.
      • Long H.K.
      • Sheahan T.W.
      • Brockdorff N.
      • Kessler B.M.
      • et al.
      Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation.
      ). Kdm2b is part of the noncanonical PRC1 complex, PRC1.1, which has E3 ubiquitin ligase activity that mediates monoubiquitination of histone H2A, leading to gene repression (Fig. 3). In mESCs, Kdm2b recruits PRC1.1 to targets that are not specifically depleted for H3K36me enrichment (
      • Zhou Z.
      • Yang X.
      • He J.
      • Liu J.
      • Wu F.
      • Yu S.
      • Liu Y.
      • Lin R.
      • Liu H.
      • Cui Y.
      • Zhou C.
      • Wang X.
      • Wu J.
      • Cao S.
      • Guo L.
      • et al.
      Kdm2b regulates somatic reprogramming through variant PRC1 complex-dependent function.
      ). Furthermore, spontaneous differentiation of mESC upon Kdm2b depletion can be rescued by the catalytic mutant but not the CXXC-deleted Kdm2b mutant.
      Interestingly, the reverse phenomenon where a PRC1 component, Phf19, recruits H3K36me demethylase NO66 to polycomb-related regions also occurs in mESCs. However, the deletion of NO66 does not have effects on pluripotency or differentiation (
      • Mansour A.A.
      • Gafni O.
      • Weinberger L.
      • Zviran A.
      • Ayyash M.
      • Rais Y.
      • Krupalnik V.
      • Zerbib M.
      • Amann-Zalcenstein D.
      • Maza I.
      • Geula S.
      • Viukov S.
      • Holtzman L.
      • Pribluda A.
      • Canaani E.
      • et al.
      The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
      ,
      • Brien G.L.
      • Gambero G.
      • O'Connell D.J.
      • Jerman E.
      • Turner S.A.
      • Egan C.M.
      • Dunne E.J.
      • Jurgens M.C.
      • Wynne K.
      • Piao L.
      • Lohan A.J.
      • Ferguson N.
      • Shi X.
      • Sinha K.M.
      • Loftus B.J.
      • et al.
      Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation.
      ).
      The role of Kdm2a and Kdm2b has also been assessed in several reprogramming systems. The overexpression of Kdm2b enhances OSKM reprogramming by promoting the mesenchymal-to-epithelial transition (MET) (
      • Liang G.
      • He J.
      • Zhang Y.
      Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming.
      ), an early event in the reprogramming of MEFs in serum (FBS)-containing medium (Box 1). This enhancement occurs in a catalysis-dependent manner by demethylating H3K36me at epithelial genes such as E-cadherin (
      • Liang G.
      • He J.
      • Zhang Y.
      Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming.
      ). The addition of Vc in general can improve reprogramming efficiency, which is further enhanced by the overexpression of either Kdm2a or Kdm2b. However, unlike the FBS condition, under Vc conditions, Kdm2b seems to function in the suppression of the Ink4/Arf senescence block (
      • Wang T.
      • Chen K.
      • Zeng X.
      • Yang J.
      • Wu Y.
      • Shi X.
      • Qin B.
      • Zeng L.
      • Esteban M.A.
      • Pan G.
      • Pei D.
      The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner.
      ). In fact, in the presence of Kdm2b and Vc, Oct4 alone (as compared with the entire set of OSKM) is sufficient to generate iPSCs through the activation of the ESC cell cycle–specific microRNA miR-302 cluster (
      • Wang T.
      • Chen K.
      • Zeng X.
      • Yang J.
      • Wu Y.
      • Shi X.
      • Qin B.
      • Zeng L.
      • Esteban M.A.
      • Pan G.
      • Pei D.
      The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner.
      ). Signaling through BMP4 counteracts this Oct4/Vc/Kdm2b-mediated reprogramming in a PRC1-dependent manner because under these conditions the levels of H2A ubiquitination genome-wide are significantly reduced (
      • Zhou Z.
      • Liu Y.-T.
      • Ma L.
      • Gong T.
      • Hu Y.-N.
      • Li H.-T.
      • Cai C.
      • Zhang L.-L.
      • Wei G.
      • Zhou J.-Q.
      Independent manipulation of histone H3 modifications in individual nucleosomes reveals the contributions of sister histones to transcription.
      ). Taken together, depending on the conditions of reprogramming, the exact targets that are causal for increased reprogramming efficiency may differ, but the activity of Kdm2b is important for this process.
      The Kdm2 family has been less characterized during in vitro differentiation, although Kdm2b-depleted ESCs cannot fully silence pluripotency genes. This may lead to the impaired activation of lineage-specific genes (
      • Wu X.
      • Johansen J.V.
      • Helin K.
      Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation.
      ).

      Kdm3: Demethylases of H3K9me1/me2

      Kdm3a, Kdm3b, and Kdm3c share specificity for demethylating the repressive histone modifications H3K9me1/2 but play different roles during reprogramming and differentiation. The depletion of any of the three Kdm3 family members seems to compromise self-renewal of ESCs (
      • Xiao F.
      • Liao B.
      • Hu J.
      • Li S.
      • Zhao H.
      • Sun M.
      • Gu J.
      • Jin Y.
      JMJD1C ensures mouse embryonic stem cell self-renewal and somatic cell reprogramming through controlling microRNA expression.
      ). Kdm3a depletion down-regulates pluripotency gene Tcl1 expression, which may be causal for the self-renewal phenotype (
      • Loh Y.-H.
      • Zhang W.
      • Chen X.
      • George J.
      • Ng H.-H.
      Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells.
      ). When ESCs are exposed to Vc, germline-associated genes of the blastocyst are up-regulated in a Kdm3a- and Kdm3b-dependent manner (
      • Ebata K.T.
      • Mesh K.
      • Liu S.
      • Bilenky M.
      • Fekete A.
      • Acker M.G.
      • Hirst M.
      • Garcia B.A.
      • Ramalho-Santos M.
      Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.
      ).
      Given the responsiveness of the Jmjd enzymes to the antioxidant Vc, it is not surprising that they may also act as oxygen sensors. Under conditions of low oxygen tension, i.e. hypoxia, proteins called hypoxia-inducible factors (HIFs) are stabilized. Kdm3a has been shown to impact gene expression in an interaction with HIF1 in both cell culture and in vivo systems (
      • Mimura I.
      • Nangaku M.
      • Kanki Y.
      • Tsutsumi S.
      • Inoue T.
      • Kohro T.
      • Yamamoto S.
      • Fujita T.
      • Shimamura T.
      • Suehiro J.
      • Taguchi A.
      • Kobayashi M.
      • Tanimura K.
      • Inagaki T.
      • Tanaka T.
      • et al.
      Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A.
      ) (Fig. 3). The environmental milieu of early development is hypoxic and instructive for placental development. Under such hypoxic conditions, HIF1 is able to recruit Kdm3a to demethylate the promoter of MMP12, a gene important for placental development, spiral artery remodeling, and trophoblast migration. This leads to activation of gene expression specifically under hypoxic conditions (
      • Chakraborty D.
      • Cui W.
      • Rosario G.X.
      • Scott R.L.
      • Dhakal P.
      • Renaud S.J.
      • Tachibana M.
      • Rumi M.A.
      • Mason C.W.
      • Krieg A.J.
      • Soares M.J.
      HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.
      ).
      Depletion of Kdm3c in ESCs leads to disruption of self-renewal and a decrease in the expression of microRNAs of the miR-200 family and the miR-290/295 cluster (
      • Xiao F.
      • Liao B.
      • Hu J.
      • Li S.
      • Zhao H.
      • Sun M.
      • Gu J.
      • Jin Y.
      JMJD1C ensures mouse embryonic stem cell self-renewal and somatic cell reprogramming through controlling microRNA expression.
      ). This miR dysregulation leads to an increase in ERK/MAPK signaling and drives cells toward epithelial-to-mesenchymal transition that can be partially rescued by ectopic miR expression (
      • Xiao F.
      • Liao B.
      • Hu J.
      • Li S.
      • Zhao H.
      • Sun M.
      • Gu J.
      • Jin Y.
      JMJD1C ensures mouse embryonic stem cell self-renewal and somatic cell reprogramming through controlling microRNA expression.
      ). Although the catalytic activity of Kdm3c has been disputed (
      • Brauchle M.
      • Yao Z.
      • Arora R.
      • Thigale S.
      • Clay I.
      • Inverardi B.
      • Fletcher J.
      • Taslimi P.
      • Acker M.G.
      • Gerrits B.
      • Voshol J.
      • Bauer A.
      • Schübeler D.
      • Bouwmeester T.
      • Ruffner H.
      Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation.
      ), there is a global increase of H3K9me1/2/3 upon Kdm3c KD in mESCs.
      Overexpression of Kdm3a improved the efficiency of Oct4 reactivation in ESC fusion-induced reprogramming of neural stem cells (
      • Ma D.K.
      • Chiang C.-H.
      • Ponnusamy K.
      • Ming G.-L.
      • Song H.
      G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells.
      ). This improvement depended on the catalytic activity of Kdm3a as the overexpressing cells exhibited a widespread loss of H3K9me2 (
      • Ma D.K.
      • Chiang C.-H.
      • Ponnusamy K.
      • Ming G.-L.
      • Song H.
      G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells.
      ). Interestingly, only Kdm3b is essential in the Vc-mediated conversion of partially reprogrammed intermediates (pre-iPSCs) to iPSCs (
      • Tran K.A.
      • Jackson S.A.
      • Olufs Z.P.
      • Zaidan N.Z.
      • Leng N.
      • Kendziorski C.
      • Roy S.
      • Sridharan R.
      Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways.
      ,
      • Chen J.
      • Liu H.
      • Liu J.
      • Qi J.
      • Wei B.
      • Yang J.
      • Liang H.
      • Chen Y.
      • Chen J.
      • Wu Y.
      • Guo L.
      • Zhu J.
      • Zhao X.
      • Peng T.
      • Zhang Y.
      • et al.
      H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.
      ). Kdm3b was also recently shown to have activity in demethylating H4R3 arginine methylation in hematopoietic stem cells (
      • Li S.
      • Ali S.
      • Duan X.
      • Liu S.
      • Du J.
      • Liu C.
      • Dai H.
      • Zhou M.
      • Zhou L.
      • Yang L.
      • Chu P.
      • Li L.
      • Bhatia R.
      • Schones D.E.
      • Wu X.
      • et al.
      JMJD1B demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells.
      ). It needs to be determined whether these modifications on H3 and H4 are coordinately regulated. Kdm3c KD in OSKM-mediated reprogramming of MEFs leads to a decrease in obtaining bona fide iPSC colonies (
      • Xiao F.
      • Liao B.
      • Hu J.
      • Li S.
      • Zhao H.
      • Sun M.
      • Gu J.
      • Jin Y.
      JMJD1C ensures mouse embryonic stem cell self-renewal and somatic cell reprogramming through controlling microRNA expression.
      ,
      • Shakya A.
      • Callister C.
      • Goren A.
      • Yosef N.
      • Garg N.
      • Khoddami V.
      • Nix D.
      • Regev A.
      • Tantin D.
      Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion.
      ). These effects could be mediated through the regulation of the Oct4 locus because Kdm3c is enriched at its distal enhancer, reducing H3K9me2 and promoting FACT (facilitates chromatin transcription) chaperone recruitment (
      • Shakya A.
      • Callister C.
      • Goren A.
      • Yosef N.
      • Garg N.
      • Khoddami V.
      • Nix D.
      • Regev A.
      • Tantin D.
      Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion.
      ). Thus, although all three Kdm3 enzymes are required for reprogramming, they seem to contribute to the process in distinct mechanisms.
      Contrary to the phenotype in mESCs, when Kdm3c is knocked down in hESCs, Oct4 and Nanog levels as well as pluripotency are maintained. However, neuronal differentiation is much more rapid due to the reduced expression of ESC-specific miR-302 in these cells (
      • Wang J.
      • Park J.W.
      • Drissi H.
      • Wang X.
      • Xu R.-H.
      Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells.
      ).

      Kdm4 family: Demethylases of histone H3K9me2/me3 and H3K36me3 methylation

      The Kdm4 family consists of four members, Kdm4a–d, which have demethylase activity toward H3K9me2/3 with Kdm4a–c also having specificity to H3K36me3. This substrate specificity is interesting as H3K9me2/3 are repressive modifications, whereas H3K36me3 is associated with actively transcribed genes.
      Conflicting studies complicate the roles of the Kdm4 family in pluripotency. KD of both Kdm4b and Kdm4c in mESCs led to morphological changes that could be partially rescued by the catalytic mutant proteins, suggesting additional roles beyond H3K9 demethylation (
      • Das P.P.
      • Shao Z.
      • Beyaz S.
      • Apostolou E.
      • Pinello L.
      • De Los Angeles A.
      • O'Brien K.
      • Atsma J.M.
      • Fujiwara Y.
      • Nguyen M.
      • Ljuboja D.
      • Guo G.
      • Woo A.
      • Yuan G.-C.
      • Onder T.
      • et al.
      Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity.
      ). Kdm4c was thought to function through demethylating the promoter of the pluripotency gene Nanog (
      • Loh Y.-H.
      • Zhang W.
      • Chen X.
      • George J.
      • Ng H.-H.
      Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells.
      ). However, this was not replicated in another study that instead found a connection between Kdm4b and Nanog target genes (
      • Das P.P.
      • Shao Z.
      • Beyaz S.
      • Apostolou E.
      • Pinello L.
      • De Los Angeles A.
      • O'Brien K.
      • Atsma J.M.
      • Fujiwara Y.
      • Nguyen M.
      • Ljuboja D.
      • Guo G.
      • Woo A.
      • Yuan G.-C.
      • Onder T.
      • et al.
      Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity.
      ). Although Kdm4b and Kdm4c share some locations in ESCs, the unique targets of each protein show differential association: Kdm4c is localized with bivalent and PRC2-occupied promoters in ESCs, whereas Kdm4b is associated with H3K4me and activating marks (
      • Das P.P.
      • Shao Z.
      • Beyaz S.
      • Apostolou E.
      • Pinello L.
      • De Los Angeles A.
      • O'Brien K.
      • Atsma J.M.
      • Fujiwara Y.
      • Nguyen M.
      • Ljuboja D.
      • Guo G.
      • Woo A.
      • Yuan G.-C.
      • Onder T.
      • et al.
      Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity.
      ).
      The phenotypic results of Kdm4 depletion are disputed because individual-KO ESCs of Kdm4a, Kdm4b, and Kdm4c remain pluripotent (
      • Pedersen M.T.
      • Kooistra S.M.
      • Radzisheuskaya A.
      • Laugesen A.
      • Johansen J.V.
      • Hayward D.G.
      • Nilsson J.
      • Agger K.
      • Helin K.
      Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development.
      ,
      • Pedersen M.T.
      • Agger K.
      • Laugesen A.
      • Johansen J.V.
      • Cloos P.A.
      • Christensen J.
      • Helin K.
      The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development.
      • Tomaz R.A.
      • Harman J.L.
      • Karimlou D.
      • Weavers L.
      • Fritsch L.
      • Bou-Kheir T.
      • Bell E.
      • Del Valle Torres I.
      • Niakan K.K.
      • Fisher C.
      • Joshi O.
      • Stunnenberg H.G.
      • Curry E.
      • Ait-Si-Ali S.
      • Jørgensen H.F.
      • et al.
      Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation.
      ). Only the combined deletion of Kdm4a and Kdm4c (DKO) impaired proliferation of mESCs in a catalytic activity–dependent manner (
      • Pedersen M.T.
      • Kooistra S.M.
      • Radzisheuskaya A.
      • Laugesen A.
      • Johansen J.V.
      • Hayward D.G.
      • Nilsson J.
      • Agger K.
      • Helin K.
      Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development.
      ). Nonetheless, all three proteins are localized to H3K4me3-enriched regions. At highly enriched Kdm4a/4c sites, there is an increase in H3K9me3 levels upon Kdm4a/4c deletion. Furthermore, the DKO cells display a propensity to express endoderm markers when grown in serum but not 2i conditions (
      • Pedersen M.T.
      • Kooistra S.M.
      • Radzisheuskaya A.
      • Laugesen A.
      • Johansen J.V.
      • Hayward D.G.
      • Nilsson J.
      • Agger K.
      • Helin K.
      Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development.
      ). This sensitivity to culture conditions was further borne out when the localization of Kdm4c switched from largely TSS-enriched in 2i to more distally located in serum-grown ESCs (
      • Tomaz R.A.
      • Harman J.L.
      • Karimlou D.
      • Weavers L.
      • Fritsch L.
      • Bou-Kheir T.
      • Bell E.
      • Del Valle Torres I.
      • Niakan K.K.
      • Fisher C.
      • Joshi O.
      • Stunnenberg H.G.
      • Curry E.
      • Ait-Si-Ali S.
      • Jørgensen H.F.
      • et al.
      Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation.
      ). This switch may be related to the post-transcriptional regulation of Kdm4c because the mitogen-activated protein kinase inhibitor in 2i medium prevents the phosphorylation and degradation of Kdm4c (
      • Sim Y.-J.
      • Kim M.-S.
      • Nayfeh A.
      • Yun Y.-J.
      • Kim S.-J.
      • Park K.-T.
      • Kim C.-H.
      • Kim K.-S.
      2i maintains a naive ground state in ESCs through two distinct epigenetic mechanisms.
      ).
      Although the roles of the Kdm4 proteins in the maintenance of pluripotency remain conflicting, the overexpression of several Kdm4 family members promotes acquisition of pluripotency in several systems. In mice, injection of catalytically competent Kdm4d mRNA during SCNT increases efficiency and improves the developmental potential of SCNT embryos (
      • Matoba S.
      • Liu Y.
      • Lu F.
      • Iwabuchi K.A.
      • Shen L.
      • Inoue A.
      • Zhang Y.
      Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.
      ). Excitingly, the inclusion of the primate Kdm4d resulted in the recent cloning by SCNT of monkeys that survived to term (
      • Liu Z.
      • Cai Y.
      • Wang Y.
      • Nie Y.
      • Zhang C.
      • Xu Y.
      • Zhang X.
      • Lu Y.
      • Wang Z.
      • Poo M.
      • Sun Q.
      Cloning of macaque monkeys by somatic cell nuclear transfer.
      ). The function of Kdm4d seems to be to decrease H3K9me3 levels at so-called “reprogramming-resistant regions” that are repressed in SCNT at the two-cell stage, leading to their expression (
      • Liu W.
      • Liu X.
      • Wang C.
      • Gao Y.
      • Gao R.
      • Kou X.
      • Zhao Y.
      • Li J.
      • Wu Y.
      • Xiu W.
      • Wang S.
      • Yin J.
      • Liu W.
      • Cai T.
      • Wang H.
      • Zhang Y.
      • Gao S.
      Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.
      ,
      • Matoba S.
      • Liu Y.
      • Lu F.
      • Iwabuchi K.A.
      • Shen L.
      • Inoue A.
      • Zhang Y.
      Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.
      ) (Fig. 3). Kdm4a performs a similar function when ectopically expressed during human SCNT (
      • Chung Y.G.
      • Matoba S.
      • Liu Y.
      • Eum J.H.
      • Lu F.
      • Jiang W.
      • Lee J.E.
      • Sepilian V.
      • Cha K.Y.
      • Lee D.R.
      • Zhang Y.
      Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells.
      ). Kdm4b can also improve the developmental potential of SCNT-derived embryos (
      • Wei J.
      • Antony J.
      • Meng F.
      • MacLean P.
      • Rhind R.
      • Laible G.
      • Oback B.
      KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency.
      ,
      • Antony J.
      • Oback F.
      • Chamley L.W.
      • Oback B.
      • Laible G.
      Transient JMJD2B-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos.
      ). Furthermore, depletion of Kdm4b or Kdm4c reduces Vc-mediated conversion of pre-iPSCs to iPSCs, whereas overexpression of Kdm4b promotes MEF reprogramming to iPSCs (
      • Chen J.
      • Liu H.
      • Liu J.
      • Qi J.
      • Wei B.
      • Yang J.
      • Liang H.
      • Chen Y.
      • Chen J.
      • Wu Y.
      • Guo L.
      • Zhu J.
      • Zhao X.
      • Peng T.
      • Zhang Y.
      • et al.
      H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.
      ).
      Deletion of Kdm4c resulted in the misregulation of lineage-specific genes upon differentiation (
      • Tomaz R.A.
      • Harman J.L.
      • Karimlou D.
      • Weavers L.
      • Fritsch L.
      • Bou-Kheir T.
      • Bell E.
      • Del Valle Torres I.
      • Niakan K.K.
      • Fisher C.
      • Joshi O.
      • Stunnenberg H.G.
      • Curry E.
      • Ait-Si-Ali S.
      • Jørgensen H.F.
      • et al.
      Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation.
      ). Interestingly, at distal regions, Kdm4c colocalizes with the H3K9me2 methyltransferase G9a. However, these sites lack H3K9me2, suggesting constant turnover of the modification at such loci (
      • Tomaz R.A.
      • Harman J.L.
      • Karimlou D.
      • Weavers L.
      • Fritsch L.
      • Bou-Kheir T.
      • Bell E.
      • Del Valle Torres I.
      • Niakan K.K.
      • Fisher C.
      • Joshi O.
      • Stunnenberg H.G.
      • Curry E.
      • Ait-Si-Ali S.
      • Jørgensen H.F.
      • et al.
      Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation.
      ).

      Kdm7 family

      The Kdm7 family consists of three family members, Kdm7a (KIAA1718), Kdm7b (PHF8), and Kdm7c (PHF2), that can all demethylate H3K9me2; however, Kdm7b has additional specificity to H4K20me1, and Kdm7c has additional specificity to H3K27me1/2. Kdm7a promotes neural differentiation from mESCs by demethylating H3K27me2 at the FGF4 locus (
      • Huang C.
      • Xiang Y.
      • Wang Y.
      • Li X.
      • Xu L.
      • Zhu Z.
      • Zhang T.
      • Zhu Q.
      • Zhang K.
      • Jing N.
      • Chen C.D.
      Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4.
      ). Deletion of Kdm7b in mESCs does not compromise maintenance of pluripotency, but upon differentiation, Kdm7b KO mESCs showed an increase in expression of mesodermal and cardiac lineage genes by controlling apoptosis (
      • Tang Y.
      • Hong Y.-Z.
      • Bai H.-J.
      • Wu Q.
      • Chen C.D.
      • Lang J.-Y.
      • Boheler K.R.
      • Yang H.-T.
      Plant homeo domain finger protein 8 regulates mesodermal and cardiac differentiation of embryonic stem cells through mediating the histone demethylation of pmaip1.
      ).

      Kdm8

      The demethylase activity of Kdm8 toward H3K36me2 is disputed. Depletion of Kdm8 in hESCs compromises pluripotency and up-regulates lineage specification markers. KD of Kdm8 in hESCs leads to a higher percentage of cells in G1 phase due to elevated levels of the cell cycle gene CDKN1A, but it is unclear whether this is due to direct regulation of H3K36me2 levels. The changes in cell cycle precede down-regulation of pluripotency gene expression upon Kdm8 depletion, suggesting that the disruption of the cell cycle may lead to pluripotency defects. This corroborates the idea that certain phases of the cell cycle are more conducive to exit from pluripotency (
      • Pauklin S.
      • Vallier L.
      The cell-cycle state of stem cells determines cell fate propensity.
      ). Additional regulation of pluripotency by Kdm8 comes from direct binding and regulation of the pluripotency-related miR-302 cluster (
      • Zhu H.
      • Hu S.
      • Baker J.
      JMJD5 regulates cell cycle and pluripotency in human embryonic stem cells.
      ).
      Taken together, several common themes emerge from the studies on the α-KG–dependent histone demethylases in pluripotency thus far. 1) They can have overlapping functions that may rely on interacting proteins. 2) They can have functions that do not rely on catalytic activity. 3) They can localize to the same genomic locations as the mark that they modify. Technically confounding results are obtained between KD and KO studies. With the advent of CRISPR-Cas9 technology it may be preferable to perform KOs to obtain clearer phenotypic results.

      Tet: DNA 5-methylcytosine modifiers

      As mentioned above, DNA can be methylated on the 5th position of cytosine, known as 5mC, which is usually associated with gene repression when found at regulatory regions. Its removal can occur by the iterative oxidation by the ten-eleven-translocation family of enzymes (Tet1, Tet2, and Tet3) from 5mC to 5hmC to 5-formylcytosine (5fC) to 5-carboxylcytosine (5caC). 5fC and 5caC can be excised by thymine-DNA glycosylase to generate cytosine. 5mC is also passively diluted during DNA replication (
      • Wu H.
      • Zhang Y.
      Reversing DNA methylation: mechanisms, genomics, and biological functions.
      ). Tet1 and Tet2 can also oxidize thymine to 5-hydroxymethyluracil (5hmU), although the functional role of this modification is unknown (
      • Pfaffeneder T.
      • Spada F.
      • Wagner M.
      • Brandmayr C.
      • Laube S.K.
      • Eisen D.
      • Truss M.
      • Steinbacher J.
      • Hackner B.
      • Kotljarova O.
      • Schuermann D.
      • Michalakis S.
      • Kosmatchev O.
      • Schiesser S.
      • Steigenberger B.
      • et al.
      Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA.
      ).
      Tet1 and Tet2 are highly expressed in ESCs (
      • Wu H.
      • Zhang Y.
      Reversing DNA methylation: mechanisms, genomics, and biological functions.
      ). Global levels of 5hmC are maintained at higher levels in pluripotent cells as compared with most somatic cells. This suggests that the 5hmC modification may function as an epigenetic mark in addition to being an intermediate for demethylation (
      • Wu H.
      • Zhang Y.
      Reversing DNA methylation: mechanisms, genomics, and biological functions.
      ). Genome-wide 5hmC profiling in mESCs revealed localization at both active and repressed genes. Increased gene expression was associated with low 5hmC at the promoter and high enrichment at gene bodies (
      • Ficz G.
      • Branco M.R.
      • Seisenberger S.
      • Santos F.
      • Krueger F.
      • Hore T.A.
      • Marques C.J.
      • Andrews S.
      • Reik W.
      Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
      • Pastor W.A.
      • Pape U.J.
      • Huang Y.
      • Henderson H.R.
      • Lister R.
      • Ko M.
      • McLoughlin E.M.
      • Brudno Y.
      • Mahapatra S.
      • Kapranov P.
      • Tahiliani M.
      • Daley G.Q.
      • Liu X.S.
      • Ecker J.R.
      • Milos P.M.
      • et al.
      Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.
      ,
      • Williams K.
      • Christensen J.
      • Pedersen M.T.
      • Johansen J.V.
      • Cloos P.A.
      • Rappsilber J.
      • Helin K.
      TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.
      ,
      • Wu H.
      • D'Alessio A.C.
      • Ito S.
      • Xia K.
      • Wang Z.
      • Cui K.
      • Zhao K.
      • Sun Y.E.
      • Zhang Y.
      Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.
      • Xu Y.
      • Wu F.
      • Tan L.
      • Kong L.
      • Xiong L.
      • Deng J.
      • Barbera A.J.
      • Zheng L.
      • Zhang H.
      • Huang S.
      • Min J.
      • Nicholson T.
      • Chen T.
      • Xu G.
      • Shi Y.
      • et al.
      Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.
      ). At distal enhancers, 5hmC, 5fc, and 5caC are enriched at regions bound by pluripotency factors (
      • Ficz G.
      • Branco M.R.
      • Seisenberger S.
      • Santos F.
      • Krueger F.
      • Hore T.A.
      • Marques C.J.
      • Andrews S.
      • Reik W.
      Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
      ,
      • Pastor W.A.
      • Pape U.J.
      • Huang Y.
      • Henderson H.R.
      • Lister R.
      • Ko M.
      • McLoughlin E.M.
      • Brudno Y.
      • Mahapatra S.
      • Kapranov P.
      • Tahiliani M.
      • Daley G.Q.
      • Liu X.S.
      • Ecker J.R.
      • Milos P.M.
      • et al.
      Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.
      ,
      • Wu H.
      • D'Alessio A.C.
      • Ito S.
      • Xia K.
      • Wang Z.
      • Cui K.
      • Zhao K.
      • Sun Y.E.
      • Zhang Y.
      Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.
      ,
      • Shen L.
      • Wu H.
      • Diep D.
      • Yamaguchi S.
      • D'Alessio A.C.
      • Fung H.-L.
      • Zhang K.
      • Zhang Y.
      Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
      ).
      Initial KD of Tet1 alone or both Tet1 and Tet2 in mESCs decreased the expression of pluripotency genes (
      • Ficz G.
      • Branco M.R.
      • Seisenberger S.
      • Santos F.
      • Krueger F.
      • Hore T.A.
      • Marques C.J.
      • Andrews S.
      • Reik W.
      Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
      ,
      • Ito S.
      • D'Alessio A.C.
      • Taranova O.V.
      • Hong K.
      • Sowers L.C.
      • Zhang Y.
      Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.
      ). However, both the Tet1 KO or Tet1 and Tet2 DKO mESCs remain pluripotent despite a global loss of 5hmC (
      • Dawlaty M.M.
      • Ganz K.
      • Powell B.E.
      • Hu Y.-C.
      • Markoulaki S.
      • Cheng A.W.
      • Gao Q.
      • Kim J.
      • Choi S.-W.
      • Page D.C.
      • Jaenisch R.
      Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development.
      ,
      • Dawlaty M.M.
      • Breiling A.
      • Le T.
      • Raddatz G.
      • Barrasa M.I.
      • Cheng A.W.
      • Gao Q.
      • Powell B.E.
      • Li Z.
      • Xu M.
      • Faull K.F.
      • Lyko F.
      • Jaenisch R.
      Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development.
      ). Both mouse and human triple-Tet KO ESCs are able to self-renew but have impaired differentiation potential (
      • Dawlaty M.M.
      • Breiling A.
      • Le T.
      • Barrasa M.I.
      • Raddatz G.
      • Gao Q.
      • Powell B.E.
      • Cheng A.W.
      • Faull K.F.
      • Lyko F.
      • Jaenisch R.
      Loss of Tet enzymes compromises proper differentiation of embryonic stem cells.
      ,
      • Verma N.
      • Pan H.
      • Doré L.C.
      • Shukla A.
      • Li Q.V.
      • Pelham-Webb B.
      • Teijeiro V.
      • González F.
      • Krivtsov A.
      • Chang C.J.
      • Papapetrou E.P.
      • He C.
      • Elemento O.
      • Huangfu D.
      TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells.
      ). Further functional diversity is also provided by a full-length pluripotency Tet1 isoform and a shorter isoform that lacks the CXXC DNA-binding domain that is up-regulated during differentiation (
      • Zhang W.
      • Xia W.
      • Wang Q.
      • Towers A.J.
      • Chen J.
      • Gao R.
      • Zhang Y.
      • Yen C.-A.
      • Lee A.Y.
      • Li Y.
      • Zhou C.
      • Liu K.
      • Zhang J.
      • Gu T.-P.
      • Chen X.
      • et al.
      Isoform switch of TET1 regulates DNA demethylation and mouse development.
      ).
      Tet proteins and 5hmC are enriched at bivalent domains (
      • Ficz G.
      • Branco M.R.
      • Seisenberger S.
      • Santos F.
      • Krueger F.
      • Hore T.A.
      • Marques C.J.
      • Andrews S.
      • Reik W.
      Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
      ,
      • Pastor W.A.
      • Pape U.J.
      • Huang Y.
      • Henderson H.R.
      • Lister R.
      • Ko M.
      • McLoughlin E.M.
      • Brudno Y.
      • Mahapatra S.
      • Kapranov P.
      • Tahiliani M.
      • Daley G.Q.
      • Liu X.S.
      • Ecker J.R.
      • Milos P.M.
      • et al.
      Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.
      ,
      • Wu H.
      • D'Alessio A.C.
      • Ito S.
      • Xia K.
      • Wang Z.
      • Cui K.
      • Zhao K.
      • Sun Y.E.
      • Zhang Y.
      Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.
      ,
      • Xu Y.
      • Wu F.
      • Tan L.
      • Kong L.
      • Xiong L.
      • Deng J.
      • Barbera A.J.
      • Zheng L.
      • Zhang H.
      • Huang S.
      • Min J.
      • Nicholson T.
      • Chen T.
      • Xu G.
      • Shi Y.
      • et al.
      Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.
      ). Upon deletion of Tet proteins, an increase of 5mC at bivalent domains is observed (
      • Dawlaty M.M.
      • Ganz K.
      • Powell B.E.
      • Hu Y.-C.
      • Markoulaki S.
      • Cheng A.W.
      • Gao Q.
      • Kim J.
      • Choi S.-W.
      • Page D.C.
      • Jaenisch R.
      Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development.
      ,
      • Dawlaty M.M.
      • Breiling A.
      • Le T.
      • Raddatz G.
      • Barrasa M.I.
      • Cheng A.W.
      • Gao Q.
      • Powell B.E.
      • Li Z.
      • Xu M.
      • Faull K.F.
      • Lyko F.
      • Jaenisch R.
      Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development.
      ,
      • Verma N.
      • Pan H.
      • Doré L.C.
      • Shukla A.
      • Li Q.V.
      • Pelham-Webb B.
      • Teijeiro V.
      • González F.
      • Krivtsov A.
      • Chang C.J.
      • Papapetrou E.P.
      • He C.
      • Elemento O.
      • Huangfu D.
      TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells.
      ). Interestingly, depletion of Tet1 in mESCs decreased PRC2 binding at bivalent regions (
      • Wu H.
      • D'Alessio A.C.
      • Ito S.
      • Xia K.
      • Wang Z.
      • Cui K.
      • Zhao K.
      • Sun Y.E.
      • Zhang Y.
      Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.
      ). Furthermore, the Tet DKO resulted in the loss of H3K27me3 in a large subset of bivalent CpG islands, whereas H3K4me3 remained unchanged (
      • Kong L.
      • Tan L.
      • Lv R.
      • Shi Z.
      • Xiong L.
      • Wu F.
      • Rabidou K.
      • Smith M.
      • He C.
      • Zhang L.
      • Qian Y.
      • Ma D.
      • Lan F.
      • Shi Y.
      • Shi Y.G.
      A primary role of TET proteins in establishment and maintenance of de novo bivalency at CpG islands.
      ). These observations may explain the differentiation defects observed in the Tet KO ESCs. Deletion of Tet2 in mESCs led to hypermethylation at a few enhancers, a subset of which also lost H3K27 acetylation, leading to reduced expression of associated genes (
      • Hon G.C.
      • Song C.-X.
      • Du T.
      • Jin F.
      • Selvaraj S.
      • Lee A.Y.
      • Yen C.-A.
      • Ye Z.
      • Mao S.-Q.
      • Wang B.-A.
      • Kuan S.
      • Edsall L.E.
      • Zhao B.S.
      • Xu G.-L.
      • He C.
      • et al.
      5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.
      ). Tet1 depletion led to a reduction of 5hmC at both the TSS and gene body, whereas Tet2 KD decreased 5hmC within the gene body but increased levels at the TSS. Furthermore, 5hmC enrichment is reduced at exon boundaries in high- and low-expressed genes upon Tet2 and Tet1 depletion, respectively. However, there is no specific pattern of 5hmC that correlates with gene expression changes upon Tet1 or Tet2 depletion, suggesting a complex relationship with transcription (
      • Huang Y.
      • Chavez L.
      • Chang X.
      • Wang X.
      • Pastor W.A.
      • Kang J.
      • Zepeda-Martínez J.A.
      • Pape U.J.
      • Jacobsen S.E.
      • Peters B.
      • Rao A.
      Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells.
      ).
      In addition to protein-coding gene expression, the Tet enzymes also regulate telomere stability, although the telomere length in Tet TKO is variable (
      • Lu F.
      • Liu Y.
      • Jiang L.
      • Yamaguchi S.
      • Zhang Y.
      Role of Tet proteins in enhancer activity and telomere elongation.
      ). Tet1 is specifically enriched at young L1 transposable elements and regulates their silencing in a 5hmC-independent manner through the recruitment of Sin3a that is independent of catalytic function (
      • de la Rica L.
      • Deniz Ö.
      • Cheng K.C.
      • Todd C.D.
      • Cruz C.
      • Houseley J.
      • Branco M.R.
      TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells.
      ).
      The Tet proteins also seem to regulate transition to cell types that resemble other developmental stages in vitro. Tet TKO mESCs show increased expression of Zscan4, which is a marker for the totipotent two-cell stage of development. ESCs in culture go through a two cell–like state at low frequency (
      • Macfarlan T.S.
      • Gifford W.D.
      • Driscoll S.
      • Lettieri K.
      • Rowe H.M.
      • Bonanomi D.
      • Firth A.
      • Singer O.
      • Trono D.
      • Pfaff S.L.
      Embryonic stem cell potency fluctuates with endogenous retrovirus activity.
      ) that is enhanced in the Tet TKO (
      • Lu F.
      • Liu Y.
      • Jiang L.
      • Yamaguchi S.
      • Zhang Y.
      Role of Tet proteins in enhancer activity and telomere elongation.
      ). The addition of Vc increases global levels of 5hmC in mESCs and up-regulates a subset of germline-related genes through Tet-mediated 5hmC conversion at these genes (
      • Blaschke K.
      • Ebata K.T.
      • Karimi M.M.
      • Zepeda-Martínez J.A.
      • Goyal P.
      • Mahapatra S.
      • Tam A.
      • Laird D.J.
      • Hirst M.
      • Rao A.
      • Lorincz M.C.
      • Ramalho-Santos M.
      Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.
      ). Supplementing retinol in 2i-containing medium can also modulate 5hmC through up-regulation of Tet2 and promote the reprogramming of EpiSCs to naïve iPSCs. Moreover, low retinol concentrations and Vc can synergistically promote EpiSC reprogramming (
      • Hore T.A.
      • von Meyenn F.
      • Ravichandran M.
      • Bachman M.
      • Ficz G.
      • Oxley D.
      • Santos F.
      • Balasubramanian S.
      • Jurkowski T.P.
      • Reik W.
      Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms.
      ) (Box 1).
      Tet function has a supportive role in reprogramming of somatic cells to iPSCs. Ectopic expression of Tet1 promotes reprogramming that depends on catalytic function. Tet1 is localized to both the promoter and enhancer region of Oct4, leading to elevated 5hmC and decreased 5mC levels, resulting in endogenous Oct4 activation. Interestingly, Tet1 can replace Oct4 in the OSKM mixture to generate TSKM-derived pluripotent iPSCs (
      • Gao Y.
      • Chen J.
      • Li K.
      • Wu T.
      • Huang B.
      • Liu W.
      • Kou X.
      • Zhang Y.
      • Huang H.
      • Jiang Y.
      • Yao C.
      • Liu X.
      • Lu Z.
      • Xu Z.
      • Kang L.
      • et al.
      Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming.
      ). Global analysis of TSKM reprogramming showed a gradual increase of 5hmC during reprogramming, whereas 5mC levels transiently increase followed by a reduction in the late stage of reprogramming (
      • Gao Y.
      • Chen J.
      • Li K.
      • Wu T.
      • Huang B.
      • Liu W.
      • Kou X.
      • Zhang Y.
      • Huang H.
      • Jiang Y.
      • Yao C.
      • Liu X.
      • Lu Z.
      • Xu Z.
      • Kang L.
      • et al.
      Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming.
      ). Furthermore, depletion of Tet1 also reduces human OSKM reprogramming efficiency (
      • Wang T.
      • Wu H.
      • Li Y.
      • Szulwach K.E.
      • Lin L.
      • Li X.
      • Chen I.-P.
      • Goldlust I.S.
      • Chamberlain S.J.
      • Dodd A.
      • Gong H.
      • Ananiev G.
      • Han J.W.
      • Yoon Y.-S.
      • Rudd M.K.
      • et al.
      Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency.
      ). Tet2 can promote reprogramming by binding to regulatory regions of pluripotency genes Nanog and Esrrb to promote 5hmC accumulation (
      • Doege C.A.
      • Inoue K.
      • Yamashita T.
      • Rhee D.B.
      • Travis S.
      • Fujita R.
      • Guarnieri P.
      • Bhagat G.
      • Vanti W.B.
      • Shih A.
      • Levine R.L.
      • Nik S.
      • Chen E.I.
      • Abeliovich A.
      Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.
      ). Tet TKO MEFs could not be reprogrammed as they fail to undergo MET but can be rescued by ectopic expression of the catalytic domain of any Tet protein. Failed activation of MET in TKO is due to lack of DNA demethylation of the miR-200 family that down-regulate mesenchymal genes (
      • Hu X.
      • Zhang L.
      • Mao S.-Q.
      • Li Z.
      • Chen J.
      • Zhang R.-R.
      • Wu H.-P.
      • Gao J.
      • Guo F.
      • Liu W.
      • Xu G.-F.
      • Dai H.-Q.
      • Shi Y.G.
      • Li X.
      • Hu B.
      • et al.
      Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming.
      ). Surprisingly, overexpression of Tet1 (but not Tet2) in conjunction with Vc inhibited OSK reprogramming by prohibiting MET (
      • Chen J.
      • Guo L.
      • Zhang L.
      • Wu H.
      • Yang J.
      • Liu H.
      • Wang X.
      • Hu X.
      • Gu T.
      • Zhou Z.
      • Liu J.
      • Liu J.
      • Wu H.
      • Mao S.-Q.
      • Mo K.
      • et al.
      Vitamin C modulates TET1 function during somatic cell reprogramming.
      ). Tet proteins also promote reprogramming of pre-iPSCs, which have undergone MET. Tet1 and Tet2 can interact with Nanog, and the overexpression of both Nanog and Tet1 synergistically promotes pre-iPSC to iPSC conversion. This is mediated at least in part by elevating 5hmC levels at the Esrrb locus (
      • Costa Y.
      • Ding J.
      • Theunissen T.W.
      • Faiola F.
      • Hore T.A.
      • Shliaha P.V.
      • Fidalgo M.
      • Saunders A.
      • Lawrence M.
      • Dietmann S.
      • Das S.
      • Levasseur D.N.
      • Li Z.
      • Xu M.
      • Reik W.
      • et al.
      NANOG-dependent function of TET1 and TET2 in establishment of pluripotency.
      ). Pre-iPSCs can be robustly converted into iPSCs in the presence of Vc and 2i (
      • Tran K.A.
      • Jackson S.A.
      • Olufs Z.P.
      • Zaidan N.Z.
      • Leng N.
      • Kendziorski C.
      • Roy S.
      • Sridharan R.
      Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways.
      ), and this is diminished by combined depletion of Tet1 and Tet2 (
      • Tran K.A.
      • Jackson S.A.
      • Olufs Z.P.
      • Zaidan N.Z.
      • Leng N.
      • Kendziorski C.
      • Roy S.
      • Sridharan R.
      Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways.
      ).
      Tet enzymes can interact with a multitude of different proteins that alter their localization and function. Tet proteins in conjunction with pluripotency-related protein Prdm14 can promote active demethylation at germline genes (
      • Okashita N.
      • Sakashita N.
      • Ito K.
      • Mitsuya A.
      • Suwa Y.
      • Seki Y.
      PRDM14 maintains pluripotency of embryonic stem cells through TET-mediated active DNA demethylation.
      ). Idax can modulate Tet2 stability during differentiation by interacting with Tet2 and triggers its degradation through caspase activation (
      • Ko M.
      • An J.
      • Bandukwala H.S.
      • Chavez L.
      • Aijö T.
      • Pastor W.A.
      • Segal M.F.
      • Li H.
      • Koh K.P.
      • Lähdesmäki H.
      • Hogan P.G.
      • Aravind L.
      • Rao A.
      Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX.
      ). Interestingly, certain proteins can bind to 5hmC and regulate Tet function. Mbd3 is reported to bind 5hmC, and deletion of Mbd3 disrupts localization of Tet proteins (
      • Yildirim O.
      • Li R.
      • Hung J.-H.
      • Chen P.B.
      • Dong X.
      • Ee L.-S.
      • Weng Z.
      • Rando O.J.
      • Fazzio T.G.
      Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells.
      ,
      • Hainer S.J.
      • McCannell K.N.
      • Yu J.
      • Ee L.-S.
      • Zhu L.J.
      • Rando O.J.
      • Fazzio T.G.
      DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells.
      ). In addition, pluripotency-related Sall4 binds 5hmC and promotes 5hmC oxidation and active demethylation (
      • Xiong J.
      • Zhang Z.
      • Chen J.
      • Huang H.
      • Xu Y.
      • Ding X.
      • Zheng Y.
      • Nishinakamura R.
      • Xu G.-L.
      • Wang H.
      • Chen S.
      • Gao S.
      • Zhu B.
      Cooperative action between SALL4A and TET proteins in stepwise oxidation of 5-methylcytosine.
      ). Tet regulation can also occur at the expression level as several enzymes and microRNA have been shown to regulate Tet expression and influence pluripotency and differentiation (
      • Fidalgo M.
      • Huang X.
      • Guallar D.
      • Sanchez-Priego C.
      • Valdes V.J.
      • Saunders A.
      • Ding J.
      • Wu W.-S.
      • Clavel C.
      • Wang J.
      Zfp281 coordinates opposing functions of Tet1 and Tet2 in pluripotent states.
      ,
      • Etchegaray J.-P.
      • Chavez L.
      • Huang Y.
      • Ross K.N.
      • Choi J.
      • Martinez-Pastor B.
      • Walsh R.M.
      • Sommer C.A.
      • Lienhard M.
      • Gladden A.
      • Kugel S.
      • Silberman D.M.
      • Ramaswamy S.
      • Mostoslavsky G.
      • Hochedlinger K.
      • et al.
      The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine.
      • Tu J.
      • Ng S.H.
      • Shui Luk A.C.
      • Liao J.
      • Jiang X.
      • Feng B.
      • Lun Mak K.K.
      • Rennert O.M.
      • Chan W.-Y.
      • Lee T.-L.
      MicroRNA-29b/Tet1 regulatory axis epigenetically modulates mesendoderm differentiation in mouse embryonic stem cells.
      ). Non-5hmC–related functions of the Tets can be mediated by their association with O-linked GlcNAc-transferase (Ogt) and the repressor Sin3a complex in mESCs (
      • Williams K.
      • Christensen J.
      • Pedersen M.T.
      • Johansen J.V.
      • Cloos P.A.
      • Rappsilber J.
      • Helin K.
      TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.
      ,
      • de la Rica L.
      • Deniz Ö.
      • Cheng K.C.
      • Todd C.D.
      • Cruz C.
      • Houseley J.
      • Branco M.R.
      TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells.
      ,
      • Vella P.
      • Scelfo A.
      • Jammula S.
      • Chiacchiera F.
      • Williams K.
      • Cuomo A.
      • Roberto A.
      • Christensen J.
      • Bonaldi T.
      • Helin K.
      • Pasini D.
      Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.
      ,
      • Yamaguchi S.
      • Hong K.
      • Liu R.
      • Inoue A.
      • Shen L.
      • Zhang K.
      • Zhang Y.
      Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming.
      • Chen Q.
      • Chen Y.
      • Bian C.
      • Fujiki R.
      • Yu X.
      TET2 promotes histone O-GlcNAcylation during gene transcription.
      ). Ogt alters the post-translational modification of the Tet proteins, which could impact the function of these enzymes. Although inhibition of Ogt does not alter global 5hmC levels, the interaction of Ogt and Tet proteins has a significant role in targeting these proteins to the genome. In mESCs, Ogt can recruit Tet1 to regulate developmental genes. The depletion of Ogt diminishes Tet1 recruitment and decreases 5hmC levels at targeted genes. By contrast, Tet2, recruits Ogt to the genome and mediates gene regulation through O-GlcNAc on histone H2B, which is independent of the catalytic activity of Tet2. Depletion of Tet2 abolishes Ogt recruitment to these specific sites and leads to gene repression. Furthermore, in nonpluripotent cells, the recruitment of Ogt by Tet2 can promote binding of SET1/COMPASS (Complex of Proteins Associated with Set1) to promote H3K4me3 and gene activation. Whether similar mechanisms are utilized in mESCs requires further investigation.
      Figure thumbnail fx2

      Alkbh1: DNA N6-methyladenine modifier

      Beyond cytosine methylation, adenine methylation on DNA N6-methyladenine (N6-mA) was recently identified in mESCs (
      • Wu T.P.
      • Wang T.
      • Seetin M.G.
      • Lai Y.
      • Zhu S.
      • Lin K.
      • Liu Y.
      • Byrum S.D.
      • Mackintosh S.G.
      • Zhong M.
      • Tackett A.
      • Wang G.
      • Hon L.S.
      • Fang G.
      • Swenberg J.A.
      • et al.
      DNA methylation on N6-adenine in mammalian embryonic stem cells.
      ). Alkbh1 has been shown to demethylate N6-mA in mESCs (
      • Wu T.P.
      • Wang T.
      • Seetin M.G.
      • Lai Y.
      • Zhu S.
      • Lin K.
      • Liu Y.
      • Byrum S.D.
      • Mackintosh S.G.
      • Zhong M.
      • Tackett A.
      • Wang G.
      • Hon L.S.
      • Fang G.
      • Swenberg J.A.
      • et al.
      DNA methylation on N6-adenine in mammalian embryonic stem cells.
      ). Alkbh1 KO ESCs maintain pluripotent traits, exhibiting unchanged (
      • Wu T.P.
      • Wang T.
      • Seetin M.G.
      • Lai Y.
      • Zhu S.
      • Lin K.
      • Liu Y.
      • Byrum S.D.
      • Mackintosh S.G.
      • Zhong M.
      • Tackett A.
      • Wang G.
      • Hon L.S.
      • Fang G.
      • Swenberg J.A.
      • et al.
      DNA methylation on N6-adenine in mammalian embryonic stem cells.
      ) or higher (
      • Ougland R.
      • Lando D.
      • Jonson I.
      • Dahl J.A.
      • Moen M.N.
      • Nordstrand L.M.
      • Rognes T.
      • Lee J.T.
      • Klungland A.
      • Kouzarides T.
      • Larsen E.
      ALKBH1 is a histone H2A dioxygenase involved in neural differentiation.
      ) Nanog and Oct4 expression. However, Alkbh1 KO ESCs show defects in their ability to differentiate, especially to the neuroectoderm lineage (
      • Ougland R.
      • Lando D.
      • Jonson I.
      • Dahl J.A.
      • Moen M.N.
      • Nordstrand L.M.
      • Rognes T.
      • Lee J.T.
      • Klungland A.
      • Kouzarides T.
      • Larsen E.
      ALKBH1 is a histone H2A dioxygenase involved in neural differentiation.
      ,
      • Wu J.
      • Ocampo A.
      • Belmonte J.C.I.
      Cellular metabolism and induced pluripotency.
      ). This could be due to the inability of the Alkbh1 KO ESCs to remove N6-mA from pluripotent genes during differentiation because higher levels of N6-mA correlate with gene silencing (
      • Wu T.P.
      • Wang T.
      • Seetin M.G.
      • Lai Y.
      • Zhu S.
      • Lin K.
      • Liu Y.
      • Byrum S.D.
      • Mackintosh S.G.
      • Zhong M.
      • Tackett A.
      • Wang G.
      • Hon L.S.
      • Fang G.
      • Swenberg J.A.
      • et al.
      DNA methylation on N6-adenine in mammalian embryonic stem cells.
      ).

      Prolyl-hydroxylase domain enzyme (PHD) and factor inhibiting HIF (FIH): Regulators of hypoxia-inducible factor

      The HIF proteins are regulated by the α-KG–dependent dioxygenases PHD1–3 and FIH-1. HIF protein stability has both positive and negative effects on pluripotency (
      • Mathieu J.
      • Zhou W.
      • Xing Y.
      • Sperber H.
      • Ferreccio A.
      • Agoston Z.
      • Kuppusamy K.T.
      • Moon R.T.
      • Ruohola-Baker H.
      Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency.
      ,
      • Jeong C.-H.
      • Lee H.-J.
      • Cha J.-H.
      • Kim J.H.
      • Kim K.R.
      • Kim J.-H.
      • Yoon D.-K.
      • Kim K.-W.
      Hypoxia-inducible factor-1α inhibits self-renewal of mouse embryonic stem cells in vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway.
      • Covello K.L.
      • Kehler J.
      • Yu H.
      • Gordan J.D.
      • Arsham A.M.
      • Hu C.-J.
      • Labosky P.A.
      • Simon M.C.
      • Keith B.
      HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth.
      ). PHDs hydroxylate proline residues within the oxygen-dependent domains, resulting in degradation of the HIF proteins. In contrast, FIH-1 hydroxylates asparagine residues within the C-terminal transactivation domain of HIF, which prohibits the interaction with its coactivator, p300. Under hypoxic conditions, PHD and FIH-1 function is blocked, allowing HIF nuclear translocation to regulate hypoxia-related genes. Chemical inhibition of PHD or the α-KG analog dimethyloxalylglycine can regulate Oct4 expression (
      • Binó L.
      • Kučera J.
      • Štefková K.
      • Šindlerová L.Š.
      • Lánová M.
      • Kudová J.
      • Kubala L.
      • Pacherník J.
      The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells.
      ), and PHD inhibitors can increase OSKM-mediated human reprogramming (
      • Zhu S.
      • Li W.
      • Zhou H.
      • Wei W.
      • Ambasudhan R.
      • Lin T.
      • Kim J.
      • Zhang K.
      • Ding S.
      Reprogramming of human primary somatic cells by OCT4 and chemical compounds.
      ,
      • Prigione A.
      • Rohwer N.
      • Hoffmann S.
      • Mlody B.
      • Drews K.
      • Bukowiecki R.
      • Blümlein K.
      • Wanker E.E.
      • Ralser M.
      • Cramer T.
      • Adjaye J.
      HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1–3 and PKM2.
      ). Taken together, the myriad functions of α-KG–dependent enzymes in pluripotency are only beginning to be uncovered and will be interesting to investigate in the future (Box 2).

      Acknowledgments

      We thank Coral Willie, Nur Zafirah Zaidan, Stefan Pietrzak, Edwin Neumann, Simone Shen, and Nikita Patel for critical reading of the manuscript.

      References

        • Bernstein B.E.
        • Mikkelsen T.S.
        • Xie X.
        • Kamal M.
        • Huebert D.J.
        • Cuff J.
        • Fry B.
        • Meissner A.
        • Wernig M.
        • Plath K.
        • Jaenisch R.
        • Wagschal A.
        • Feil R.
        • Schreiber S.L.
        • Lander E.S.
        A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
        Cell. 2006; 125 (16630819): 315-326
        • Yu J.
        • Thomson J.A.
        Pluripotent stem cell lines.
        Genes Dev. 2008; 22 (18676805): 1987-1997
        • Yuan W.
        • Xu M.
        • Huang C.
        • Liu N.
        • Chen S.
        • Zhu B.
        H3K36 methylation antagonizes PRC2-mediated H3K27 methylation.
        J. Biol. Chem. 2011; 286 (21239496): 7983-7989
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126 (16904174): 663-676
        • Yu J.
        • Vodyanik M.A.
        • Smuga-Otto K.
        • Antosiewicz-Bourget J.
        • Frane J.L.
        • Tian S.
        • Nie J.
        • Jonsdottir G.A.
        • Ruotti V.
        • Stewart R.
        • Slukvin I.I.
        • Thomson J.A.
        Induced pluripotent stem cell lines derived from human somatic cells.
        Science. 2007; 318 (18029452): 1917-1920
        • Tahiliani M.
        • Koh K.P.
        • Shen Y.
        • Pastor W.A.
        • Bandukwala H.
        • Brudno Y.
        • Agarwal S.
        • Iyer L.M.
        • Liu D.R.
        • Aravind L.
        • Rao A.
        Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
        Science. 2009; 324 (19372391): 930-935
        • Weinberger L.
        • Ayyash M.
        • Novershtern N.
        • Hanna J.H.
        Dynamic stem cell states: naive to primed pluripotency in rodents and humans.
        Nat. Rev. Mol. Cell Biol. 2016; 17 (26860365): 155-169
        • Beshiri M.L.
        • Holmes K.B.
        • Richter W.F.
        • Hess S.
        • Islam A.B.
        • Yan Q.
        • Plante L.
        • Litovchick L.
        • Gévry N.
        • Lopez-Bigas N.
        • Kaelin Jr., W.G.
        • Benevolenskaya E.V.
        Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation.
        Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (23093672): 18499-18504
        • Monfort A.
        • Wutz A.
        Breathing-in epigenetic change with vitamin C.
        EMBO Rep. 2013; 14 (23492828): 337-346
        • Pasini D.
        • Cloos P.A.
        • Walfridsson J.
        • Olsson L.
        • Bukowski J.-P.
        • Johansen J.V.
        • Bak M.
        • Tommerup N.
        • Rappsilber J.
        • Helin K.
        JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells.
        Nature. 2010; 464 (20075857): 306-310
        • Carey B.W.
        • Finley L.W.
        • Cross J.R.
        • Allis C.D.
        • Thompson C.B.
        Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.
        Nature. 2015; 518 (25487152): 413-416
        • Meshorer E.
        • Yellajoshula D.
        • George E.
        • Scambler P.J.
        • Brown D.T.
        • Misteli T.
        Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.
        Dev. Cel. 2006; 10 (16399082): 105-116
        • Soufi A.
        • Donahue G.
        • Zaret K.S.
        Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome.
        Cell. 2012; 151 (23159369): 994-1004
        • Sridharan R.
        • Gonzales-Cope M.
        • Chronis C.
        • Bonora G.
        • McKee R.
        • Huang C.
        • Patel S.
        • Lopez D.
        • Mishra N.
        • Pellegrini M.
        • Carey M.
        • Garcia B.A.
        • Plath K.
        Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency.
        Nat. Cell Biol. 2013; 15 (23748610): 872-882
        • Zaidan N.Z.
        • Walker K.J.
        • Brown J.E.
        • Schaffer L.V.
        • Scalf M.
        • Shortreed M.R.
        • Iyer G.
        • Smith L.M.
        • Sridharan R.
        Compartmentalization of HP1 proteins in pluripotency acquisition and maintenance.
        Stem Cell Rep. 2018; 10 (29358085): 627-641
        • Dey B.K.
        • Stalker L.
        • Schnerch A.
        • Bhatia M.
        • Taylor-Papidimitriou J.
        • Wynder C.
        The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation.
        Mol. Cell. Biol. 2008; 28 (18591252): 5312-5327
        • Pasini D.
        • Hansen K.H.
        • Christensen J.
        • Agger K.
        • Cloos P.A.
        • Helin K.
        Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive complex 2.
        Genes Dev. 2008; 22 (18483221): 1345-1355
        • Xie L.
        • Pelz C.
        • Wang W.
        • Bashar A.
        • Varlamova O.
        • Shadle S.
        • Impey S.
        KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription.
        EMBO J. 2011; 30 (21448134): 1473-1484
        • Schmitz S.U.
        • Albert M.
        • Malatesta M.
        • Morey L.
        • Johansen J.V.
        • Bak M.
        • Tommerup N.
        • Abarrategui I.
        • Helin K.
        Jarid1b targets genes regulating development and is involved in neural differentiation.
        EMBO J. 2011; 30 (22020125): 4586-4600
        • Kidder B.L.
        • Hu G.
        • Zhao K.
        KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation.
        Genome Biol. 2014; 15 (24495580): R32
        • Liu W.
        • Liu X.
        • Wang C.
        • Gao Y.
        • Gao R.
        • Kou X.
        • Zhao Y.
        • Li J.
        • Wu Y.
        • Xiu W.
        • Wang S.
        • Yin J.
        • Liu W.
        • Cai T.
        • Wang H.
        • Zhang Y.
        • Gao S.
        Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.
        Cell Discov. 2016; 2 (27462457)16010
        • He R.
        • Kidder B.L.
        H3K4 demethylase KDM5B regulates global dynamics of transcription elongation and alternative splicing in embryonic stem cells.
        Nucleic Acids Res. 2017; 45 (28402433): 6427-6441
        • Outchkourov N.S.
        • Muiño J.M.
        • Kaufmann K.
        • van IJcken W.F.
        • Groot Koerkamp M.J.
        • van Leenen D.
        • de Graaf P.
        • Holstege F.C.
        • Grosveld F.G.
        • Timmers H.T.
        Balancing of histone H3K4 methylation states by the Kdm5c/SMCX histone demethylase modulates promoter and enhancer function.
        Cell Rep. 2013; 3 (23545502): 1071-1079
        • van Oevelen C.
        • Wang J.
        • Asp P.
        • Yan Q.
        • Kaelin Jr., W.G.
        • Kluger Y.
        • Dynlacht B.D.
        A role for mammalian Sin3 in permanent gene silencing.
        Mol. Cell. 2008; 32 (18995834): 359-370
        • Shpargel K.B.
        • Sengoku T.
        • Yokoyama S.
        • Magnuson T.
        UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development.
        PLoS Genet. 2012; 8 (23028370)e1002964
        • Lee M.G.
        • Villa R.
        • Trojer P.
        • Norman J.
        • Yan K.-P.
        • Reinberg D.
        • Di Croce L.
        • Shiekhattar R.
        Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination.
        Science. 2007; 318 (17761849): 447-450
        • Mansour A.A.
        • Gafni O.
        • Weinberger L.
        • Zviran A.
        • Ayyash M.
        • Rais Y.
        • Krupalnik V.
        • Zerbib M.
        • Amann-Zalcenstein D.
        • Maza I.
        • Geula S.
        • Viukov S.
        • Holtzman L.
        • Pribluda A.
        • Canaani E.
        • et al.
        The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
        Nature. 2012; 488 (22801502): 409-413
        • Morales Torres C.
        • Laugesen A.
        • Helin K.
        Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells.
        PLoS One. 2013; 8 (23573229)e60020
        • Wang C.
        • Lee J.-E.
        • Cho Y.-W.
        • Xiao Y.
        • Jin Q.
        • Liu C.
        • Ge K.
        UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.
        Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22949634): 15324-15329
        • Dhar S.S.
        • Lee S.-H.
        • Chen K.
        • Zhu G.
        • Oh W.
        • Allton K.
        • Gafni O.
        • Kim Y.Z.
        • Tomoiga A.S.
        • Barton M.C.
        • Hanna J.H.
        • Wang Z.
        • Li W.
        • Lee M.G.
        An essential role for UTX in resolution and activation of bivalent promoters.
        Nucleic Acids Res. 2016; 44 (26762983): 3659-3674
        • Shpargel K.B.
        • Starmer J.
        • Yee D.
        • Pohlers M.
        • Magnuson T.
        KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development.
        PLoS Genet. 2014; 10 (25101834)e1004507
        • Jiang W.
        • Wang J.
        • Zhang Y.
        Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway.
        Cell Res. 2013; 23 (22907667): 122-130
        • Burgold T.
        • Voituron N.
        • Caganova M.
        • Tripathi P.P.
        • Menuet C.
        • Tusi B.K.
        • Spreafico F.
        • Bévengut M.
        • Gestreau C.
        • Buontempo S.
        • Simeone A.
        • Kruidenier L.
        • Natoli G.
        • Casola S.
        • Hilaire G.
        • et al.
        The H3K27 Demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival.
        Cell Rep. 2012; 2 (23103168): 1244-1258
        • Ohtani K.
        • Zhao C.
        • Dobreva G.
        • Manavski Y.
        • Kluge B.
        • Braun T.
        • Rieger M.A.
        • Zeiher A.M.
        • Dimmeler S.
        Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells.
        Circ. Res. 2013; 113 (23856522): 856-862
        • Akiyama T.
        • Wakabayashi S.
        • Soma A.
        • Sato S.
        • Nakatake Y.
        • Oda M.
        • Murakami M.
        • Sakota M.
        • Chikazawa-Nohtomi N.
        • Ko S.B.
        • Ko M.S.
        Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells.
        Development. 2016; 143 (27802135): 3674-3685
        • Cloos P.A.
        • Christensen J.
        • Agger K.
        • Helin K.
        Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease.
        Genes Dev. 2008; 22 (18451103): 1115-1140
        • Zhao W.
        • Li Q.
        • Ayers S.
        • Gu Y.
        • Shi Z.
        • Zhu Q.
        • Chen Y.
        • Wang H.Y.
        • Wang R.-F.
        Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination.
        Cell. 2013; 152 (23452852): 1037-1050
        • Kartikasari A.E.
        • Zhou J.X.
        • Kanji M.S.
        • Chan D.N.
        • Sinha A.
        • Grapin-Botton A.
        • Magnuson M.A.
        • Lowry W.E.
        • Bhushan A.
        The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation.
        EMBO J. 2013; 32 (23584530): 1393-1408
        • Wang Y.
        • Li Y.
        • Guo C.
        • Lu Q.
        • Wang W.
        • Jia Z.
        • Chen P.
        • Ma K.
        • Reinberg D.
        • Zhou C.
        ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells.
        Nucleic Acids Res. 2016; 44 (27105846): 6741-6755
        • Welstead G.G.
        • Creyghton M.P.
        • Bilodeau S.
        • Cheng A.W.
        • Markoulaki S.
        • Young R.A.
        • Jaenisch R.
        X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner.
        Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22826230): 13004-13009
        • Blackledge N.P.
        • Zhou J.C.
        • Tolstorukov M.Y.
        • Farcas A.M.
        • Park P.J.
        • Klose R.J.
        CpG islands recruit a histone H3 lysine 36 demethylase.
        Mol. Cell. 2010; 38 (20417597): 179-190
        • Wu X.
        • Johansen J.V.
        • Helin K.
        Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation.
        Mol. Cell. 2013; 49 (23395003): 1134-1146
        • Blackledge N.P.
        • Farcas A.M.
        • Kondo T.
        • King H.W.
        • McGouran J.F.
        • Hanssen L.L.
        • Ito S.
        • Cooper S.
        • Kondo K.
        • Koseki Y.
        • Ishikura T.
        • Long H.K.
        • Sheahan T.W.
        • Brockdorff N.
        • Kessler B.M.
        • et al.
        Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation.
        Cell. 2014; 157 (24856970): 1445-1459
        • Zhou Z.
        • Yang X.
        • He J.
        • Liu J.
        • Wu F.
        • Yu S.
        • Liu Y.
        • Lin R.
        • Liu H.
        • Cui Y.
        • Zhou C.
        • Wang X.
        • Wu J.
        • Cao S.
        • Guo L.
        • et al.
        Kdm2b regulates somatic reprogramming through variant PRC1 complex-dependent function.
        Cell Rep. 2017; 21 (29166607): 2160-2170
        • Brien G.L.
        • Gambero G.
        • O'Connell D.J.
        • Jerman E.
        • Turner S.A.
        • Egan C.M.
        • Dunne E.J.
        • Jurgens M.C.
        • Wynne K.
        • Piao L.
        • Lohan A.J.
        • Ferguson N.
        • Shi X.
        • Sinha K.M.
        • Loftus B.J.
        • et al.
        Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation.
        Nat. Struct. Mol. Biol. 2012; 19 (23160351): 1273-1281
        • Liang G.
        • He J.
        • Zhang Y.
        Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming.
        Nat. Cell Biol. 2012; 14 (22522173): 457-466
        • Wang T.
        • Chen K.
        • Zeng X.
        • Yang J.
        • Wu Y.
        • Shi X.
        • Qin B.
        • Zeng L.
        • Esteban M.A.
        • Pan G.
        • Pei D.
        The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner.
        Cell Stem Cell. 2011; 9 (22100412): 575-587
        • Zhou Z.
        • Liu Y.-T.
        • Ma L.
        • Gong T.
        • Hu Y.-N.
        • Li H.-T.
        • Cai C.
        • Zhang L.-L.
        • Wei G.
        • Zhou J.-Q.
        Independent manipulation of histone H3 modifications in individual nucleosomes reveals the contributions of sister histones to transcription.
        Elife. 2017; 6 (29027902)e30178
        • Xiao F.
        • Liao B.
        • Hu J.
        • Li S.
        • Zhao H.
        • Sun M.
        • Gu J.
        • Jin Y.
        JMJD1C ensures mouse embryonic stem cell self-renewal and somatic cell reprogramming through controlling microRNA expression.
        Stem Cell Rep. 2017; 9 (28826851): 927-942
        • Loh Y.-H.
        • Zhang W.
        • Chen X.
        • George J.
        • Ng H.-H.
        Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells.
        Genes Dev. 2007; 21 (17938240): 2545-2557
        • Ebata K.T.
        • Mesh K.
        • Liu S.
        • Bilenky M.
        • Fekete A.
        • Acker M.G.
        • Hirst M.
        • Garcia B.A.
        • Ramalho-Santos M.
        Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.
        Epigenetics Chromatin. 2017; 10 (28706564): 36
        • Mimura I.
        • Nangaku M.
        • Kanki Y.
        • Tsutsumi S.
        • Inoue T.
        • Kohro T.
        • Yamamoto S.
        • Fujita T.
        • Shimamura T.
        • Suehiro J.
        • Taguchi A.
        • Kobayashi M.
        • Tanimura K.
        • Inagaki T.
        • Tanaka T.
        • et al.
        Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A.
        Mol. Cell. Biol. 2012; 32 (22645302): 3018-3032
        • Chakraborty D.
        • Cui W.
        • Rosario G.X.
        • Scott R.L.
        • Dhakal P.
        • Renaud S.J.
        • Tachibana M.
        • Rumi M.A.
        • Mason C.W.
        • Krieg A.J.
        • Soares M.J.
        HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia.
        Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27807143): E7212-E7221
        • Brauchle M.
        • Yao Z.
        • Arora R.
        • Thigale S.
        • Clay I.
        • Inverardi B.
        • Fletcher J.
        • Taslimi P.
        • Acker M.G.
        • Gerrits B.
        • Voshol J.
        • Bauer A.
        • Schübeler D.
        • Bouwmeester T.
        • Ruffner H.
        Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation.
        PLoS One. 2013; 8 (23593242)e60549
        • Ma D.K.
        • Chiang C.-H.
        • Ponnusamy K.
        • Ming G.-L.
        • Song H.
        G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells.
        Stem Cells. 2008; 26 (18535151): 2131-2141
        • Tran K.A.
        • Jackson S.A.
        • Olufs Z.P.
        • Zaidan N.Z.
        • Leng N.
        • Kendziorski C.
        • Roy S.
        • Sridharan R.
        Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways.
        Nat. Commun. 2015; 6 (25650115)6188
        • Chen J.
        • Liu H.
        • Liu J.
        • Qi J.
        • Wei B.
        • Yang J.
        • Liang H.
        • Chen Y.
        • Chen J.
        • Wu Y.
        • Guo L.
        • Zhu J.
        • Zhao X.
        • Peng T.
        • Zhang Y.
        • et al.
        H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.
        Nat. Genet. 2013; 45 (23202127): 34-42
        • Li S.
        • Ali S.
        • Duan X.
        • Liu S.
        • Du J.
        • Liu C.
        • Dai H.
        • Zhou M.
        • Zhou L.
        • Yang L.
        • Chu P.
        • Li L.
        • Bhatia R.
        • Schones D.E.
        • Wu X.
        • et al.
        JMJD1B demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells.
        Cell Rep. 2018; 23 (29641999): 389-403
        • Shakya A.
        • Callister C.
        • Goren A.
        • Yosef N.
        • Garg N.
        • Khoddami V.
        • Nix D.
        • Regev A.
        • Tantin D.
        Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion.
        Mol. Cell. Biol. 2015; 35 (25582194): 1014-1025
        • Wang J.
        • Park J.W.
        • Drissi H.
        • Wang X.
        • Xu R.-H.
        Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells.
        J. Biol. Chem. 2014; 289 (24318875): 2384-2395
        • Das P.P.
        • Shao Z.
        • Beyaz S.
        • Apostolou E.
        • Pinello L.
        • De Los Angeles A.
        • O'Brien K.
        • Atsma J.M.
        • Fujiwara Y.
        • Nguyen M.
        • Ljuboja D.
        • Guo G.
        • Woo A.
        • Yuan G.-C.
        • Onder T.
        • et al.
        Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity.
        Mol. Cell. 2014; 53 (24361252): 32-48
        • Pedersen M.T.
        • Kooistra S.M.
        • Radzisheuskaya A.
        • Laugesen A.
        • Johansen J.V.
        • Hayward D.G.
        • Nilsson J.
        • Agger K.
        • Helin K.
        Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development.
        EMBO J. 2016; 35 (27266524): 1550-1564
        • Pedersen M.T.
        • Agger K.
        • Laugesen A.
        • Johansen J.V.
        • Cloos P.A.
        • Christensen J.
        • Helin K.
        The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development.
        Mol. Cell. Biol. 2014; 34 (24396064): 1031-1045
        • Tomaz R.A.
        • Harman J.L.
        • Karimlou D.
        • Weavers L.
        • Fritsch L.
        • Bou-Kheir T.
        • Bell E.
        • Del Valle Torres I.
        • Niakan K.K.
        • Fisher C.
        • Joshi O.
        • Stunnenberg H.G.
        • Curry E.
        • Ait-Si-Ali S.
        • Jørgensen H.F.
        • et al.
        Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation.
        Development. 2017; 144 (28087629): 567-579
        • Sim Y.-J.
        • Kim M.-S.
        • Nayfeh A.
        • Yun Y.-J.
        • Kim S.-J.
        • Park K.-T.
        • Kim C.-H.
        • Kim K.-S.
        2i maintains a naive ground state in ESCs through two distinct epigenetic mechanisms.
        Stem Cell Rep. 2017; 8 (28457889): 1312-1328
        • Matoba S.
        • Liu Y.
        • Lu F.
        • Iwabuchi K.A.
        • Shen L.
        • Inoue A.
        • Zhang Y.
        Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.
        Cell. 2014; 159 (25417163): 884-895
        • Liu Z.
        • Cai Y.
        • Wang Y.
        • Nie Y.
        • Zhang C.
        • Xu Y.
        • Zhang X.
        • Lu Y.
        • Wang Z.
        • Poo M.
        • Sun Q.
        Cloning of macaque monkeys by somatic cell nuclear transfer.
        Cell. 2018; 172 (29395327): 881-887.e7
        • Chung Y.G.
        • Matoba S.
        • Liu Y.
        • Eum J.H.
        • Lu F.
        • Jiang W.
        • Lee J.E.
        • Sepilian V.
        • Cha K.Y.
        • Lee D.R.
        • Zhang Y.
        Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells.
        Cell Stem Cell. 2015; 17 (26526725): 758-766
        • Wei J.
        • Antony J.
        • Meng F.
        • MacLean P.
        • Rhind R.
        • Laible G.
        • Oback B.
        KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency.
        Sci. Rep. 2017; 7 (28790329)7514
        • Antony J.
        • Oback F.
        • Chamley L.W.
        • Oback B.
        • Laible G.
        Transient JMJD2B-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos.
        Mol. Cell. Biol. 2013; 33 (23263990): 974-983
        • Huang C.
        • Xiang Y.
        • Wang Y.
        • Li X.
        • Xu L.
        • Zhu Z.
        • Zhang T.
        • Zhu Q.
        • Zhang K.
        • Jing N.
        • Chen C.D.
        Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4.
        Cell Res. 2010; 20 (20084082): 154-165
        • Tang Y.
        • Hong Y.-Z.
        • Bai H.-J.
        • Wu Q.
        • Chen C.D.
        • Lang J.-Y.
        • Boheler K.R.
        • Yang H.-T.
        Plant homeo domain finger protein 8 regulates mesodermal and cardiac differentiation of embryonic stem cells through mediating the histone demethylation of pmaip1.
        Stem Cells. 2016; 34 (26866517): 1527-1540
        • Pauklin S.
        • Vallier L.
        The cell-cycle state of stem cells determines cell fate propensity.
        Cell. 2013; 155 (24074866): 135-147
        • Zhu H.
        • Hu S.
        • Baker J.
        JMJD5 regulates cell cycle and pluripotency in human embryonic stem cells.
        Stem Cells. 2014; 32 (24740926): 2098-2110
        • Wu H.
        • Zhang Y.
        Reversing DNA methylation: mechanisms, genomics, and biological functions.
        Cell. 2014; 156 (24439369): 45-68
        • Pfaffeneder T.
        • Spada F.
        • Wagner M.
        • Brandmayr C.
        • Laube S.K.
        • Eisen D.
        • Truss M.
        • Steinbacher J.
        • Hackner B.
        • Kotljarova O.
        • Schuermann D.
        • Michalakis S.
        • Kosmatchev O.
        • Schiesser S.
        • Steigenberger B.
        • et al.
        Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA.
        Nat. Chem. Biol. 2014; 10 (24838012): 574-581
        • Ficz G.
        • Branco M.R.
        • Seisenberger S.
        • Santos F.
        • Krueger F.
        • Hore T.A.
        • Marques C.J.
        • Andrews S.
        • Reik W.
        Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
        Nature. 2011; 473 (21460836): 398-402
        • Pastor W.A.
        • Pape U.J.
        • Huang Y.
        • Henderson H.R.
        • Lister R.
        • Ko M.
        • McLoughlin E.M.
        • Brudno Y.
        • Mahapatra S.
        • Kapranov P.
        • Tahiliani M.
        • Daley G.Q.
        • Liu X.S.
        • Ecker J.R.
        • Milos P.M.
        • et al.
        Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.
        Nature. 2011; 473 (21552279): 394-397
        • Williams K.
        • Christensen J.
        • Pedersen M.T.
        • Johansen J.V.
        • Cloos P.A.
        • Rappsilber J.
        • Helin K.
        TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.
        Nature. 2011; 473 (21490601): 343-348