Introduction
Metabolism in PSCs and somatic cells
Glycolysis and oxidative phosphorylation

Glutamine
Lipids
Regulation of PSC metabolism
Core pluripotency transcription factors
Regulators of mitochondrial carbon routing

Mitochondrial network
- Guido C.
- Whitaker-Menezes D.
- Lin Z.
- Pestell R.G.
- Howell A.
- Zimmers T.A.
- Casimiro M.C.
- Aquila S.
- Ando' S.
- Martinez-Outschoorn U.E.
- Sotgia F.
- Lisanti M.P.
Metabolism in pluripotent cell-fate transitions
Metabolic events during iPSC generation
- Panopoulos A.D.
- Yanes O.
- Ruiz S.
- Kida Y.S.
- Diep D.
- Tautenhahn R.
- Herrerías A.
- Batchelder E.M.
- Plongthongkum N.
- Lutz M.
- Berggren W.T.
- Zhang K.
- Evans R.M.
- Siuzdak G.
- Izpisua Belmonte J.C.
Hypoxia-related pathways in PSC fate transitions
Lipid metabolism and mitochondrial dynamics in somatic cell reprogramming
Metabolism in pluripotency exit and early differentiation
Metabolic remodeling during PSC differentiation
Metabolites supporting pluripotency exit
- Moussaieff A.
- Rouleau M.
- Kitsberg D.
- Cohen M.
- Levy G.
- Barasch D.
- Nemirovski A.
- Shen-Orr S.
- Laevsky I.
- Amit M.
- Bomze D.
- Elena-Herrmann B.
- Scherf T.
- Nissim-Rafinia M.
- Kempa S.
- et al.
- Moussaieff A.
- Rouleau M.
- Kitsberg D.
- Cohen M.
- Levy G.
- Barasch D.
- Nemirovski A.
- Shen-Orr S.
- Laevsky I.
- Amit M.
- Bomze D.
- Elena-Herrmann B.
- Scherf T.
- Nissim-Rafinia M.
- Kempa S.
- et al.
Metabolic shift kinetics linked with cell fate
Hexosamine biosynthesis and fate transitions

Metabolism modulates epigenetic remodeling
TCA cycle–derived metabolites
- Moussaieff A.
- Rouleau M.
- Kitsberg D.
- Cohen M.
- Levy G.
- Barasch D.
- Nemirovski A.
- Shen-Orr S.
- Laevsky I.
- Amit M.
- Bomze D.
- Elena-Herrmann B.
- Scherf T.
- Nissim-Rafinia M.
- Kempa S.
- et al.
O-GlcNAcylation
S-Adenosylmethionine (SAM)
Ascorbate
NAD
Metabolism in naïve and primed pluripotency
Metabolism and the naïve PSC epigenome
Conclusions
References
- Oxygen consumption and energy metabolism of the early mouse embryo.Mol. Reprod. Dev. 1996; 44 (8844690): 476-485
- UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells.EMBO J. 2011; 30 (22085932): 4860-4873
- Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells.Nat. Clin. Pract. Cardiovasc. Med. 2007; 4 (17230217): S60-67
- The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.Stem Cells. 2010; 28 (20201066): 721-733
- Energy metabolism in human pluripotent stem cells and their differentiated counterparts.PLoS ONE. 2011; 6 (21698063)e20914
- Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits.J. Reprod. Fertil. 1993; 99 (8107053): 673-679
- Human embryonic stem cells express elevated levels of multiple pro-apoptotic BCL-2 family members.PLoS ONE. 2011; 6 (22174832)e28530
- P53 regulates rapid apoptosis in human pluripotent stem cells.J. Mol. Biol. 2016; 428 (26239243): 1465-1475
- Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose.Stem Cells. 2010; 28 (20506541): 1132-1142
- Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2.Am. J. Physiol. Cell Physiol. 2009; 296 (19036941): C711-C723
- Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells.Biochem. Biophys. Res. Commun. 2006; 348 (16920071): 1472-1478
- Glutamine oxidation is indispensable for survival of human pluripotent stem cells.Cell Metab. 2016; 23 (27050306): 663-674
- Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions.Cell Rep. 2016; 16 (27477285): 1536-1547
- Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission.EMBO J. 2017; 36 (28377463): 1330-1347
- The pathophysiology of mitochondrial cell death.Science. 2004; 305 (15286356): 626-629
- Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells.Stem Cells. 2010; 28 (20073085): 661-673
- Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells.J. Biol. Chem. 2008; 283 (18713735): 28506-28512
- Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming.Stem Cells. 2016; 34 (26388522): 83-92
- The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.Cell Cycle. 2013; 12 (23287468): 207-218
- Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency.Stem Cells. 2015; 33 (26059508): 2699-2711
- Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.Cell Metab. 2011; 14 (21803296): 264-271
- UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24395786): 960-965
- A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth.Mol. Cell. 2014; 56 (25458841): 400-413
- Lactate dehydrogenase activity drives hair follicle stem cell activation.Nat. Cell Biol. 2017; 19 (28812580): 1017-1026
- Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.Nat. Cell Biol. 2017; 19 (28812582): 1027-1036
- Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency.Cell Death Differ. 2015; 22 (25882047): 1957-1969
- Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency.Stem Cells. 2013; 31 (23939908): 2374-2387
- Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.Oncotarget. 2012; 3 (22878233): 798-810
- The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming.Cell Res. 2012; 22 (22064701): 168-177
- Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal.Cell Stem Cell. 2012; 11 (23122286): 589-595
- Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency.Cell. 2015; 162 (26186193): 412-424
- Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency.Cell Rep. 2012; 2 (23260666): 1579-1592
- HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1–3 and PKM2.Stem Cells. 2014; 32 (24123565): 364-376
- Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency.Cell Stem Cell. 2014; 14 (24656769): 592-605
- ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency.Cell Stem Cell. 2015; 16 (25865501): 547-555
- NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming.Cell Rep. 2016; 14 (26904936): 1883-1891
- A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity.Nature. 2009; 460 (19668189): 1149-1153
- Linking the p53 tumour suppressor pathway to somatic cell reprogramming.Nature. 2009; 460 (19668186): 1140-1144
- Suppression of induced pluripotent stem cell generation by the p53–p21 pathway.Nature. 2009; 460 (19668191): 1132-1135
- Immortalization eliminates a roadblock during cellular reprogramming into iPS cells.Nature. 2009; 460 (19668190): 1145-1148
- Hypoxia enhances the generation of induced pluripotent stem cells.Cell Stem Cell. 2009; 5 (19716359): 237-241
- Hypoxia induces re-entry of committed cells into pluripotency.Stem Cells. 2013; 31 (23765801): 1737-1748
- Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells.Stem Cells Dev. 2012; 21 (21875341): 1344-1355
- Hypoxia enhances differentiation of mouse embryonic stem cells into definitive endoderm and distal lung cells.Stem Cells Dev. 2015; 24 (25226206): 663-676
- Defining the role of oxygen tension in human neural progenitor fate.Stem Cell Rep. 2014; 3: 743-757
- Hypoxia epigenetically confers astrocytic differentiation potential on human pluripotent cell-derived neural precursor cells.Stem Cell Rep. 2017; 8: 1743-1756
- Improvement in Mouse iPSC induction by Rab32 reveals the importance of lipid metabolism during reprogramming.Sci. Rep. 2015; 5 (26559473)16539
- Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition.Int. J. Biochem. Cell Biol. 2013; 45 (23939289): 2512-2518
- Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells.Stem Cells. 2008; 26 (18055443): 455-464
- Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation.FASEB J. 2006; 20 (16636108): 1182-1184
- Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling.Science. 2013; 342 (24091702): 734-737
- Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells.Cell Metab. 2015; 21 (25738455): 392-402
- MYC Controls human pluripotent stem cell fate decisions through regulation of metabolic flux.Cell Stem Cell. 2017; 21 (28965765): 502-516.e9
- Pluripotent stem cell energy metabolism: an update.EMBO J. 2014; 34 (25476451): 138-153
- Protein O-GlcNAcylation: emerging mechanisms and functions.Nat. Rev. Mol. Cell Biol. 2017; 18 (28488703): 452-465
- Elevated O-GlcNAc levels activate epigenetically repressed genes and delay mouse ESC differentiation without affecting naive to primed cell transition.Stem Cells. 2014; 32 (24898611): 2605-2615
- O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network.Cell Stem Cell. 2012; 11 (22608532): 62-74
- Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.Mol. Cell. 2013; 49 (23352454): 645-656
- Nutrient regulation of gene expression by O-GlcNAcylation of chromatin.Curr. Opin. Chem. Biol. 2016; 33 (27322399): 88-94
- Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells.J. Biol. Chem. 2013; 288 (23729667): 20776-20784
- O-GlcNAc transferase regulates transcriptional activity of human Oct4.Glycobiology. 2017; 27 (28922739): 927-937
- An Oct4-centered protein interaction network in embryonic stem cells.Cell Stem Cell. 2010; 6 (20362541): 369-381
- Chemical modulation of protein O-GlcNAcylation via OGT inhibition promotes human neural cell differentiation.ACS Chem. Biol. 2017; 12 (28541657): 2030-2039
- Epigenetic regulation of a brain-specific glycosyltransferase N-acetylglucosaminyltransferase-IX (GnT-IX) by specific chromatin modifiers.J. Biol. Chem. 2014; 289 (24619417): 11253-11261
- Epigenetic switching by the metabolism-sensing factors in the generation of orexin neurons from mouse embryonic stem cells.J. Biol. Chem. 2013; 288 (23625921): 17099-17110
- Core transcriptional regulatory circuitry in human embryonic stem cells.Cell. 2005; 122 (16153702): 947-956
- Control of developmental regulators by Polycomb in human embryonic stem cells.Cell. 2006; 125 (16630818): 301-313
- The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny.Proc. Natl. Acad. Sci. U.S.A. 2000; 97 (10801981): 5735-5739
- O-GlcNAcase is essential for embryonic development and maintenance of genomic stability.Aging Cell. 2012; 11 (22314054): 439-448
- Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism.J. Biol. Chem. 2017; 292 (28246173): 6076-6085
- Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy.Sci. Rep. 2017; 7 (28894244)11107
- Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.Nature. 2015; 518 (25487152): 413-416
- α-Ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells.Cell Metab. 2016; 24 (27476976): 485-493
- RING1B O-GlcNAcylation regulates gene targeting of polycomb repressive complex 1 in human embryonic stem cells.Stem Cell Res. 2015; 15 (26100231): 182-189
- Influence of threonine metabolism on S-adenosylmethionine and histone methylation.Science. 2013; 339 (23118012): 222-226
- Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.Cell Metab. 2014; 19 (24746804): 780-794
- Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naive pluripotency by complementary mechanisms.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27729528): 12202-12207
- Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.Cell Stem Cell. 2010; 6 (20036631): 71-79
- Vitamin C modulates TET1 function during somatic cell reprogramming.Nat. Genet. 2013; 45 (24162740): 1504-1509
- Sirtuin 1 regulation of developmental genes during differentiation of stem cells.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20631301): 13736-13741
- Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes.Stem Cell Rep. 2017; 8: 803-812
- New cell lines from mouse epiblast share defining features with human embryonic stem cells.Nature. 2007; 448 (17597760): 196-199
- Embryonic stem cell lines derived from human blastocysts.Science. 1998; 282 (9804556): 1145-1147
- Establishment in culture of pluripotential cells from mouse embryos.Nature. 1981; 292 (7242681): 154-156
- Derivation of novel human ground state naive pluripotent stem cells.Nature. 2013; 504 (24172903): 282-286
- HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition.EMBO J. 2012; 31 (22446391): 2103-2116
- Hybrid cellular metabolism coordinated by Zic3 and Esrrb synergistically enhances induction of naive pluripotency.Cell Metab. 2017; 25 (28467928): 1103-1117.e6
- Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state.Cell Stem Cell. 2016; 19 (27618217): 476-490
- Derivation of naive human embryonic stem cells.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24623855): 4484-4489
- Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20442331): 9222-9227
- A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell. 2006; 125 (16630819): 315-326
- Resetting transcription factor control circuitry toward ground-state pluripotency in human.Cell. 2015; 162 (28843285): 452-453
- Naive pluripotency is associated with global DNA hypomethylation.Nat. Struct. Mol. Biol. 2013; 20 (23416945): 311-316
- Linking metabolism to epigenetics through O-GlcNAcylation.Nat. Rev. Mol. Cell Biol. 2012; 13 (22522719): 312-321
- O-GlcNAc is required for the survival of primed pluripotent stem cells and their reversion to the naïve state.Biochem. Biophys. Res. Commun. 2016; 480 (27983978): 655-661
- Vitamin C and l-proline antagonistic effects capture alternative states in the pluripotency continuum.Stem Cell Rep. 2017; 8: 1-10
- X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18339804): 4709-4714
- The metabolome regulates the epigenetic landscape during naïve to primed human embryonic stem cell transition.Nat. Cell Biol. 2015; 17 (26571212): 1523-1535
- Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27729528): 12202-12207
Article Info
Publication History
Footnotes
This work was supported by National Institutes of Health Grants CA90571 , GM073981 , CA18589 , and GM114188 and Air Force Office of Scientific Research Grant FA9550-15-1-0406 (to M. A. T.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy