Introduction
- Kuhaudomlarp S.
- Walpole S.
- Stevenson C.E.M.
- Nepogodiev S.A.
- Lawson D.M.
- Angulo J.
- Field R.A.

- Kroth P.G.
- Chiovitti A.
- Gruber A.
- Martin-Jezequel V.
- Mock T.
- Parker M.S.
- Stanley M.S.
- Kaplan A.
- Caron L.
- Weber T.
- Maheswari U.
- Armbrust E.V.
- Bowler C.
- Kuhaudomlarp S.
- Walpole S.
- Stevenson C.E.M.
- Nepogodiev S.A.
- Lawson D.M.
- Angulo J.
- Field R.A.
Results
Analysis of the heterokont genomes reveals candidate genes encoding β-(1→3)-d-glucan phosphorylases
Query | Subject | Hit ID | Query coverage | E-value | Identity |
---|---|---|---|---|---|
% | % | ||||
WP_020936056.1|LBP GH94| (Halorhabdus tiamatea) | Ochromonas sp. strain BG-1 transcriptome (MMETSP1105) | CAMPEP_0173148212 | 65 | 3e−06 | 21 |
CAMPEP_0173133844 | 65 | 8e−06 | 21 | ||
CAMPEP_0173155066 (OcP1) | 65 | 8e−06 | 21 | ||
EgP1|GH149 (Euglena gracilis) | Ochromonas sp. strain BG-1 transcriptome (MMETSP1105) | CAMPEP_0173148212 | 31 | 3e−08 | 24 |
CAMPEP_0173133844 | 31 | 3e−08 | 24 | ||
CAMPEP_0173155066 (OcP1) | 31 | 3e−08 | 24 |


- Kroth P.G.
- Chiovitti A.
- Gruber A.
- Martin-Jezequel V.
- Mock T.
- Parker M.S.
- Stanley M.S.
- Kaplan A.
- Caron L.
- Weber T.
- Maheswari U.
- Armbrust E.V.
- Bowler C.
Biochemical characterization of recombinant GH161 proteins reveal phosphorylase activity on β-(1→3)-glucan chains

Acceptor | PapP | EgP1 | Pro_7066 | ||||||
---|---|---|---|---|---|---|---|---|---|
kcat | Km | kcat/Km | kcat | Km | kcat/Km | kcat (s−1) | Km | kcat/Km | |
s−1 | mm | s−1 mm−1 | s−1 | mm | s−1 mm−1 | s−1 | mm | s−1 mm−1 | |
Glc | NA | NA | NA | 1.10 α 0.03 | 0.56 α 0.06 | 1.99 | 1.66 α 0.04 | 0.29 α 0.03 | 5.79 |
G2 | 31.6 α 1.0 | 1.58 α 0.17 | 20.0 | 1.08 α 0.03 | 0.67 α 0.08 | 1.62 | 1.54 α 0.01 | 0.25 α 0.02 | 6.03 |
G3 | 33.3 α 1.6 | 1.05 α 0.19 | 31.6 | 1.12 α 0.02 | 1.26 α 0.09 | 0.89 | 1.53 α 0.02 | 0.37 α 0.03 | 4.16 |
G4 | 33.3 α 1.7 | 1.82 α 0.29 | 18.3 | 1.12 α 0.03 | 1.41 α 0.13 | 0.79 | 1.39 α 0.01 | 0.36 α 0.02 | 3.89 |
G5 | 27.4 α 0.7 | 1.61 α 0.13 | 17.0 | 1.13 α 0.03 | 2.29 α 0.19 | 0.50 | 1.27 α 0.01 | 0.32 α 0.02 | 4.04 |
G6 | 30.0 α 0.6 | 2.31 α 0.56 | 13.0 | 1.10 α 0.03 | 2.88 α 0.23 | 0.38 | 1.18 α 0.04 | 0.26 α 0.04 | 4.62 |


The identities of genes in bacterial gene clusters containing GH161 genes suggest specialized roles in carbohydrate degradation


Discussion
Experimental procedures
Recombinant PapP protein expression and purification
Recombinant TaCDP protein expression and purification
Enzymatic assays
Oligosaccharide analyses
Bioinformatic analysis and phylogeny
Author contributions
Acknowledgments
Supplementary Material
References
- Detection of two loci involved in (1→3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene.Glycobiology. 1999; 9 (9884404): 31-41
- Cell wall β-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis.J. Biol. Chem. 2009; 284 (19279004): 13401-13412
- Glycosyltransferases and cell wall biosynthesis: novel players and insights.Curr. Opin. Plant Biol. 2004; 7 (15134749): 285-295
- Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis: effects of growth conditions.J. Appl. Phycol. 2001; 13: 59-65
- Studies of the metabolism of the Chrysophyceae: comparative structural investigations of leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae.Biochem. J. 1961; 79 (13688276): 531-537
- Structural studies of the reserve glucan produced by the marine diatom Skeletonema costatum (grev.) Cleve.Carbohydr. Res. 1978; 62: 386-388
- New developments and prospective applications for β(1,3) glucans.Recent Pat. Biotechnol. 2007; 1 (19075833): 59-73
- Chemistry, physico-chemistry and applications linked to biological activities of β-glucans.Nat. Prod. Rep. 2011; 28 (21240441): 457-466
- Dietary supplementation with laminarin, a fermentable marine β(1–3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue.Int. Immunopharmacol. 2007; 7 (17920526): 1497-1506
- Dietary modulation of immune function by β-glucans.Physiol. Behav. 2008; 94 (18222501): 276-284
- Fungal β-glucan interacts with vitronectin and stimulates tumor necrosis factor α release from macrophages.Infect. Immun. 1996; 64 (8751898): 3548-3554
- Glycan phosphorylases in multi-enzyme synthetic processes.Protein Pept. Lett. 2017; 24 (28799504): 696-709
- Enzymatic synthesis using glycoside phosphorylases.Carbohydr. Res. 2015; 403 (25060838): 23-37
- Characterization of a bacterial laminaribiose phosphorylase.Biosci. Biotechnol. Biochem. 2012; 76 (22313784): 343-348
- Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-d-glucosyl disaccharides.Carbohydr. Res. 2012; 361 (22982171): 49-54
- The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics.Nucleic Acids Res. 2009; 37 (18838391): D233-D238
- The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42 (24270786): D490-D495
- Laminaribiose phosphorylase from Euglena gracilis.Biochem. Biophys. Res. Commun. 1963; 13: 106-109
- β-1,3-oligoglucan: orthophosphate glucosyltransferases from Euglena gracilis I: isolation and some properties of a β-1,3-oligoglucan phosphorylase.Biochim. Biophys. Acta. 1967; 146 (6066291): 417-430
- Purification and properties of laminaribiose phosphorylase (EC 2.4.1.31) from Euglena gracilis Z.Arch. Biochem. Biophys. 1993; 304 (8346926): 508-514
- Purification and characterization of 1,3-β-d-glucan phosphorylase from Ochromonas danica.Biosci. Biotechnol. Biochem. 2013; 77 (24018693): 1949-1954
- Purification, crystallization and properties of a β-(1→3)-glucan phosphorylase from Ochromonas malhamensis.Phytochemistry. 1971; 10: 1293-1298
- Unravelling the specificity of laminaribiose phosphorylase from Paenibacillus sp. YM-1 towards donor substrates glucose/mannose 1-phosphate by using X-ray crystallography and saturation transfer difference NMR spectroscopy.ChemBioChem. 2019; 20 (29856496): 181-192
- Identification of Euglena gracilis β-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149.J. Biol. Chem. 2018; 293 (29317507): 2865-2876
- Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum.Algal Res. 2016; 20: 180-188
- Structural characterization of β-d-(1→3)-glucans from different growth phases of the marine diatoms Chaetoceros mülleri and Thalassiosira weissflogii.Carbohydr. Res. 2005; 340 (15797131): 1159-1164
- A simple combined method for determination of β-1,3-glucan and cell wall polysaccharides in diatoms.Hydrobiologia. 2002; 477: 155-161
- A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.PLoS One. 2008; 3 (18183306)e1426
- The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway.Plant J. 2012; 70 (22332784): 1004-1014
- The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism.Science. 2004; 306 (15459382): 79-86
- Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis.Carbohydr. Res. 2017; 451 (28760417): 118-132
- Reduced vacuolar β-1,3-glucan synthesis affects carbohydrate metabolism as well as plastid homeostasis and structure in Phaeodactylum tricornutum.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (29669920): 4791-4796
- Cloning and functional characterization of a complex endo-β-1,3-glucanase from Paenibacillus sp.Appl. Microbiol. Biotechnol. 2009; 81 (18802694): 1051-1061
- A 1,3–1,4-β-glucan utilization regulon in Paenibacillus sp. strain JDR-2.Appl. Environ. Microbiol. 2016; 82 (26746717): 1789-1798
- Cloning and overexpression of a Paenibacillus β-glucanase in Pichia pastoris: purification and characterization of the recombinant enzyme.J. Microbiol. Biotechnol. 2007; 17 (18051354): 58-66
- A versatile ligation-independent cloning method suitable for high-throughput expression screening applications.Nucleic Acids Res. 2007; 35 (17317681): e45
- Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity.Sci. Rep. 2017; 7 (28687766)4849
- Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation.Sci. Rep. 2016; 6 (27901120)38248
- The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity.Biochem. Soc. Trans. 2015; 43 (26517916): 1011-1017
- Structural dissection of the reaction mechanism of cellobiose phosphorylase.Biochem. J. 2006; 398 (16646954): 37-43
- Crystal structure and substrate recognition of cellobionic acid phosphorylase, which plays a key role in oxidative cellulose degradation by microbes.J. Biol. Chem. 2015; 290 (26041776): 18281-18292
- Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (α/α)(6) barrel fold.Structure. 2004; 12 (15274915): 937-947
- Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose.Appl. Environ. Microbiol. 2003; 69 (12513973): 24-32
- Discovery of β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase involved in the metabolism of N-glycans.J. Biol. Chem. 2013; 288 (23943617): 27366-27374
- PULDB: the expanded database of polysaccharide utilization loci.Nucleic Acids Res. 2018; 46 (29088389): D677-D683
- Polysaccharide utilization loci: fuelling microbial communities.J. Bacteriol. 2017; 199 (28138099): e00816-e00860
- Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms.ISME J. 2018; 12 (30061707): 2894-2906
- Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514.PLoS One. 2014; 9 (25500577)e114882
- Structure, function, and evolution of bacterial ATP-binding cassette systems.Microbiol. Mol. Biol. Rev. 2008; 72 (table of contents) (18535149): 317-364
- Inventory, assembly and analysis of Bacillus subtilis ABC transport systems.J. Mol. Biol. 1999; 287 (10092453): 467-484
- Structural and thermodynamics insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua.J. Biol. Chem. 2018; 293 (29678880): 8812-8828
- Development and application of a screening assay for glycoside phosphorylases.Anal. Biochem. 2010; 401 (20188057): 162-167
- Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.Mol. Syst. Biol. 2011; 7 (21988835): 539-549
- trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Bioinformatics. 2009; 25 (19505945): 1972-1973
- Jalview version 2—a multiple sequence alignment editor and analysis workbench.Bioinformatics. 2009; 25 (19151095): 1189-1191
- PHYML online—a web server for fast maximum likelihood-based phylogenetic inference.Nucleic Acids Res. 2005; 33 (15980534): W557-W559
- Interactive tree of life (iTOL) v3: an online tool for phylogenetic tree display and annotation.Bioinformatics. 2016; 44 (27095192): W242-W245
Article info
Publication history
Footnotes
This work was supported by UK BBSRC Institute Strategic Program Molecules from Nature (MfN) Grant BB/PO12523/1, Open Plant Synthetic Biology Centre Grant BB/LO1413/1, the John Innes Foundation, and the Royal Thai government scholarship program. The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Tables S1–S3, Figs. S1–S5, and Files S1 and S2.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy