Introduction
- Homburger J.R.
- Green E.M.
- Caleshu C.
- Sunitha M.S.
- Taylor R.E.
- Ruppel K.M.
- Metpally R.P.
- Colan S.D.
- Michels M.
- Day S.M.
- Olivotto I.
- Bustamante C.D.
- Dewey F.E.
- Ho C.Y.
- Spudich J.A.
- Ashley E.A.

Results
Expression and purification of myosin V constructs
Impact of the mutations on steady-state motor properties
WT | R712G | F750L | |
---|---|---|---|
Steady-state ATPase values ± S.D. (n = 4) | |||
v0 (s−1) | 0.09 ± 0.11 | 0.04 ± 0.03 | 0.07 ± 0.05 |
kcat (s−1) | 9.4 ± 0.3 | 8.9 ± 0.7 | *10.3 ± 0.5 |
KATPase (μm) | 2.4 ± 0.4 | 2.6 ± 0.7 | 1.8 ± 0.5 |
Rate/equilibrium constants ± S.E. | |||
ATP binding/hydrolysis (myosin) | |||
K1Tk+2T (μm·s−1) | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.5 ± 0.1 |
k+H + k−H (maximum rate, s−1) | 397 ± 46 | 230 ± 23 | 484 ± 25 |
ATP binding (actomyosin) | |||
1/K′1Tk′+2T (μm·s−1) | 1.6 ± 0.2 | 1.7 ± 0.2 | 1.6 ± 0.2 |
k′+2T (s−1) | 660 ± 50 | 699 ± 46 | 631 ± 34 |
Recovery stroke (n = 3–4) | |||
k+H + k−H (maximum rate, s−1) | 290 ± 8 | *219 ± 14 | **596 ± 44 |
Actin-activated phosphate release (n = 3) | |||
k+Pi (maximum rate) | 206 ± 35 | 270 ± 69 | 181 ± 56 |
Power stroke (n = 3) | |||
Kactin × kPWF (actin concentration dependence, μm·s−1) | 7.9 ± 0.5 | 8.1 ± 0.6 | 7.3 ± 0.6 |
k+PWF (maximum rate, s−1) | ≥276 | ≥288 | ≥314 |
k+PWS (maximum rate, s−1) | 78 ± 33 | 109 ± 75 | 38 ± 12 |
Actomyosin ADP release | |||
k′+D (s−1) | 26.9 ± 0.4 | 25.3 ± 0.3 | 33.0 ± 0.6 |

Transient kinetic analysis



Structural kinetics of lever arm swing


Structural dynamics of the lever arm

![]() |
![]() |
Discussion
Impact on mechanosensitivity
Impact of converter mutations on the recovery stroke

Impact of converter mutations on the power stroke
Conclusions
Experimental procedures
Reagents
Protein construction, expression, and purification
In vitro motility
Steady-state ATPase measurements
Transient kinetic measurements
Transient time-resolved FRET
Author contributions
Acknowledgment
Supplementary Material
References
- Relating biochemistry and function in the myosin superfamily.Curr. Opin. Cell Biol. 2004; 16 (15037306): 61-67
- Structural and functional insights on the Myosin superfamily.Bioinform. Biol. Insights. 2012; 6 (22399849): 11-21
- Myosin light chains: Teaching old dogs new tricks.Bioarchitecture. 2014; 4 (26155737): 169-188
- Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27247418): 6701-6706
- New perspectives on the prevalence of hypertrophic cardiomyopathy.J. Am. Coll. Cardiol. 2015; 65 (25814232): 1249-1254
- Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States National Registry.Am. J. Med. 2016; 129 (27039955): 1170-1177
- Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases.Biophys. J. 2014; 106 (24655499): 1236-1249
- Inherited cardiomyopathies.N. Engl. J. Med. 2011; 364 (21524215): 1643-1656
- Hypertrophic cardiomyopathy.Lancet. 2013; 381 (22874472): 242-255
- Hereditary dilated cardiomyopathy: recent advances in genetic diagnostics.Korean Circ. J. 2017; 47 (28567076): 291-298
- Genetics and genomics of dilated cardiomyopathy and systolic heart failure.Genome Med. 2017; 9 (28228157): 20
- Structural and functional insights into the myosin motor mechanism.Annu. Rev. Biophys. 2010; 39 (20192767): 539-557
- Three conformational states of scallop myosin S1.Proc. Natl. Acad. Sci. U.S.A. 2000; 97 (11016966): 11238-11243
- Myosin structure, allostery, and mechano-chemistry.Structure. 2013; 21 (24210227): 1911-1922
- How myosin generates force on actin filaments.Trends Biochem. Sci. 2016; 41 (27717739): 989-997
- Molecular engineering of myosin.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004; 359 (15647166): 1907-1912
- The motor mechanism of myosin V: insights for muscle contraction.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004; 359 (15647159): 1829-1841
- Myosin-V is a processive actin-based motor.Nature. 1999; 400 (10448864): 590-593
- Myosin-V stepping kinetics: a molecular model for processivity.Proc. Natl. Acad. Sci. U.S.A. 2000; 97 (10944217): 9482-9486
- Myosin V from head to tail.Cell Mol. Life Sci. 2008; 65 (18239852): 1378-1389
- Malignant hypertrophic cardiomyopathy caused by the Arg723Gly mutation in beta-myosin heavy chain gene.J. Mol. Cell Cardiol. 2000; 32 (11113006): 2307-2313
- Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy.N. Engl. J. Med. 2000; 343 (11106718): 1688-1696
- Kinetics and thermodynamics of the rate-limiting conformational change in the actomyosin V mechanochemical cycle.J. Mol. Biol. 2011; 407 (21315083): 716-730
- Magnesium modulates actin binding and ADP release in myosin motors.J. Biol. Chem. 2014; 289 (25006251): 23977-23991
- Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26553992): 14593-14598
- Magnesium impacts myosin V motor activity by altering key conformational changes in the mechanochemical cycle.Biochemistry. 2013; 52 (23725637): 4710-4722
- Kinetic characterization of the weak binding states of myosin V.Biochemistry. 2002; 41 (12081502): 8508-8517
- Functional role of loop 2 in myosin V.Biochemistry. 2004; 43 (14992598): 2605-2612
- Kinetic and equilibrium analysis of the myosin ATPase.Methods Enzymol. 2009; 455 (19289206): 157-192
- The kinetic mechanism of myosin V.Proc. Natl. Acad. Sci. U.S.A. 1999; 96 (10570140): 13726-13731
- Direct real-time detection of the structural and biochemical events in the myosin power stroke.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26578772): 14272-14277
- Structural kinetics of myosin by transient time-resolved FRET.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21245357): 1891-1896
- A perspective on the role of myosins as mechanosensors.Biophys. J. 2016; 110 (27332116): 2568-2576
- The relation between the work performed and the energy liberated in muscular contraction.J. Physiol. 1924; 58 (16993634): 373-395
- High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (29358376): 1292-1297
- A vertebrate myosin-I structure reveals unique insights into myosin mechanochemical tuning.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24469830): 2116-2121
- Mechanochemical tuning of myosin-I by the N-terminal region.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26056287): E3337-E3344
- Force-producing ADP state of myosin bound to actin.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (26976594): E1844-E1852
- Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy.Sci. Adv. 2017; 3 (28246639): e1601959
- Adenosine diphosphate and strain sensitivity in myosin motors.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004; 359 (15647162): 1867-1877
- Familial hypertrophic cardiomyopathy: functional variance among individual cardiomyocytes as a trigger of FHC-phenotype development.Front. Physiol. 2014; 5 (25346696): 392
- Mutation of the myosin converter domain alters cross-bridge elasticity.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (11904418): 3557-3562
- Cardiomyopathy mutations reveal variable region of myosin converter as major element of cross-bridge compliance.Biophys. J. 2009; 97 (19651039): 806-824
- Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse α-cardiac myosin in the laser trap assay.Am. J. Physiol. Heart Circ. Physiol. 2007; 293 (17351073): H284-H291
- Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function.Proc. Natl. Acad. Sci. U.S.A. 2006; 103 (16983074): 14525-14530
- How actin initiates the motor activity of Myosin.Dev. Cell. 2015; 33 (25936506): 401-412
- Structural mechanism of the recovery stroke in the myosin molecular motor.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (15863618): 6873-6878
- Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C.Elife. 2017; 6 (29256864): e32742
- The relay/converter interface influences hydrolysis of ATP by skeletal muscle myosin II.J. Biol. Chem. 2016; 291 (26586917): 1763-1773
- Mapping interactions between myosin relay and converter domains that power muscle function.J. Biol. Chem. 2014; 289 (24627474): 12779-12790
- Actin and light chain isoform dependence of myosin V kinetics.Biochemistry. 2000; 39 (11087368): 14196-14202
- Human myosin Vc is a low duty ratio, nonprocessive molecular motor.J. Biol. Chem. 2008; 283 (18201966): 8527-8537
- A 35-A movement of smooth muscle myosin on ADP release.Nature. 1995; 378 (7501026): 748-751
- Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.Biochemistry. 1997; 36 (9305974): 11828-11836
- Switch II mutants reveal coupling between the nucleotide- and actin-binding regions in myosin V.Biophys. J. 2012; 102 (22713570): 2545-2555
- Purification of muscle actin.Methods Enzymol. 1982; 85 (7121269): 164-181
- The use of actin labelled with N-(1-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin.Biochem. J. 1985; 232 (3911945): 343-349
- Structure-mutation analysis of the ATPase site of Dictyostelium discoideum myosin II.Adv. Biophys. 1998; 35 (9949764): 1-24
- Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector.Cell Rep. 2015; 11 (25937279): 910-920
- ADP inhibition of myosin V ATPase activity.Biophys. J. 2000; 79 (10969013): 1524-1529
- Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23589853): 7211-7216
- High-performance time-resolved fluorescence by direct waveform recording.Rev. Sci. Instrum. 2010; 81 (21034069): 103101
- Determination of the dead time of a stopped-flow fluorometer.Anal. Biochem. 1989; 181 (2510550): 234-238
- Kinetic characterization of a monomeric unconventional myosin V construct.J. Biol. Chem. 1999; 274 (10488077): 27448-27456
- Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles.J. Mol. Biol. 1980; 139 (6447797): 573-600
- Omecamtiv Mecarbil modulates the kinetic and motile properties of porcine β-cardiac myosin.Biochemistry. 2015; 54 (25680381): 1963-1975
- Comparative kinetic and functional characterization of the motor domains of human nonmuscle myosin-2C isoforms.J. Biol. Chem. 2011; 286 (21478157): 21191-21202
- Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance.J. Biol. Chem. 2003; 278 (12704189): 27439-27448
- Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform.J. Biol. Chem. 2003; 278 (12847096): 38132-38140
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grant HL127699 (to C. M. Y.) and Grants R01AR32961 and R37AG26160 (to D. D. T.) and American Heart Association Grant 14SDG20480032 (to J. M. M.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Tables S1 and S2 and Figs. S1–S8.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy