Introduction
Results
Overall structure of MbR
Rubisco form | Source organism | Quarternary structure | No. of amino acids per LSu | No. of amino acids per LSu in structure | Sequence similarity to MbR | Superposition with MbR LSu | Superposition with R. rubrum LSu | ||
---|---|---|---|---|---|---|---|---|---|
No. of aligned residues | r.m.s.d. | No. of aligned residues | r.m.s.d. | ||||||
% | Å | Å | |||||||
Form II | R. rubrum | L2 | 490 | 436 | 39 | 351 | 1.40 | ||
R. palustris | L6 | 481 | 457 | 40 | 424 | 1.30 | 364 | 0.95 | |
Gallionellaceae sp. | L6 | 479 | 461 | 38 | 424 | 1.25 | 368 | 0.92 | |
Form II (?) | M. burtonii | L2, L4 … L10 | 474 | 473 | 352 | 1.42 | |||
Form III | T. kodakarensis | L10 | 444 | 427 | 33 | 395 | 1.59 | 339 | 1.67 |
P. horikoshii | L8 | 430 | 424 | 34 | 385 | 1.45 | 342 | 1.63 |

- Allen M.A.
- Lauro F.M.
- Williams T.J.
- Burg D.
- Siddiqui K.S.
- De Francisci D.
- Chong K.W.
- Pilak O.
- Chew H.H.
- De Maere M.Z.
- Ting L.
- Katrib M.
- Ng C.
- Sowers K.R.
- Galperin M.Y.
- et al.
MbR assembly domain, an inbuilt SSu mimic

MbR oligomerization

Substrate-induced oligomerization; the ligand is important

How may substrate binding affect the lock site?

Structural comparison with other Rubisco enzymes of bacterial and archaeal origin
Distribution of the assembly domain sequence

Rubisco sequence identity and Rubisco classification
Discussion
Re-evaluating Rubisco classification
Rubisco and inhibitory ligands
RAD as a Rubisco concentrating mechanism
- Mackinder L.C.
- Meyer M.T.
- Mettler-Altmann T.
- Chen V.K.
- Mitchell M.C.
- Caspari O.
- Freeman Rosenzweig E.S.
- Pallesen L.
- Reeves G.
- Itakura A.
- Roth R.
- Sommer F.
- Geimer S.
- Mühlhaus T.
- Schroda M.
- et al.
Experimental procedures
DNA cloning
Protein expression
Protein purification
Oligomerization experiments
PAGE analyses
Crystallization
2-CABP-bound MbR data collection and structure determination
- Winn M.D.
- Ballard C.C.
- Cowtan K.D.
- Dodson E.J.
- Emsley P.
- Evans P.R.
- Keegan R.M.
- Krissinel E.B.
- Leslie A.G.
- McCoy A.
- McNicholas S.J.
- Murshudov G.N.
- Pannu N.S.
- Potterton E.A.
- Powell H.R.
- et al.
- Adams P.D.
- Afonine P.V.
- Bunkóczi G.
- Chen V.B.
- Davis I.W.
- Echols N.
- Headd J.J.
- Hung L.-W.
- Kapral G.J.
- Grosse-Kunstleve R.W.
- McCoy A.J.
- Moriarty N.W.
- Oeffner R.
- Read R.J.
- Richardson D.C.
- et al.
- Adams P.D.
- Afonine P.V.
- Bunkóczi G.
- Chen V.B.
- Davis I.W.
- Echols N.
- Headd J.J.
- Hung L.-W.
- Kapral G.J.
- Grosse-Kunstleve R.W.
- McCoy A.J.
- Moriarty N.W.
- Oeffner R.
- Read R.J.
- Richardson D.C.
- et al.
Data collection | |
Beamline | ID29, ESRF |
Wavelength (Å) | 0.9763 |
Space group | P321 |
Unit cell parameters (Å, °) | a = b = 273.8, c = 96.7, γ = 120.0 |
Resolution range (Å) | 48.4–2.6 (2.69–2.60) |
Total no. of observations | 1,293,072 (49,370) |
No. of unique reflections | 126,745 |
Rmeas | 0.238 (2.059) |
I/σ(I) | 10.8 (1.3) |
CC1/2 | 0.994 (0.231) |
Completeness (%) | 99.7 (93.7) |
Multiplicity | 10.2 (8.5) |
Refinement | |
Resolution range (Å) | 48.4–2.6 (2.65–2.60) |
No. of reflections | 12,6739 |
Rcryst | 0.189 |
Rfree | 0.225 |
Residues in model | A1–473, B1–473, C1–472, D1–473, E2–473 |
No. of atoms | 19,003 |
Protein | 18,589 |
Waters | 294 |
Mg2+ | 10 |
Cl− | 5 |
2-CABP | 105 |
Average B-values (Å2) | |
Estimated from Wilson plot | 78.8 |
r.m.s. deviations from ideal values | |
Bond lengths (Å) | 0.010 |
Bond angles (°) | 1.29 |
Ramachandran analysis | |
Outliers (%) | 1.0 |
XuBP-bound MbR data collection and structure determination
Sequence and structure comparison
Phylogenetic analyses
Electrostatic surface analysis
Other software
Author contributions
Acknowledgments
Supplementary Material
Author Profile
Laura H. Gunn
References
- Catalysis and regulation in Rubisco.J. Exp. Bot. 2008; 59: 1555-1568
- Can improvement in photosynthesis increase crop yields?.Plant Cell Environ. 2006; 29: 315-330
- Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized.Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 7246-7251
- Opposing effects of folding and assembly chaperones on evolvability of Rubisco.Nat. Chem. Biol. 2015; 11: 148-155
- Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco.Plant Physiol. 2011; 155: 27-35
- Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.Sci. Rep. 2016; 6: 22284
- Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs.Microbiol. Mol. Biol. Rev. 2007; 71: 576-599
- Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function.J. Bacteriol. 1993; 175: 2871-2879
- Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea.J. Bacteriol. 2003; 185: 3049-3059
- Substrate-induced assembly of Methanococcoides burtonii d-ribulose-1,5-bisphosphate carboxylase/oxygenase dimers into decamers.J. Biol. Chem. 2009; 284: 33876-33882
- Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea.J. Bacteriol. 2004; 186: 6360-6366
- Archaeal type III RuBisCOs function in a pathway for AMP metabolism.Science. 2007; 315: 1003-1006
- Crystal structure of a novel-type archaeal Rubisco with pentagonal symmetry.Structure. 2001; 9: 473-481
- The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability.J. Biol. Chem. 2002; 277: 31656-31662
- The Ohio State University, Columbus2012 (Ph.D. thesis) Taming the Wild RubisCO: Explorations in Functional Metagenomics.
- The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications.Biochemistry. 1976; 15: 529-536
- Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008; 363: 2629-2640
- Dali server: conservation mapping in 3D.Nucleic Acids Res. 2010; 38: W545-W549
- Geometry of metal-ligand interactions in proteins.Acta Crystallogr. D Biol. Crystallogr. 2001; 57: 401-411
- Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server.Nat. Protoc. 2014; 9: 156-170
- The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation.ISME J. 2009; 3: 1012-1035
- Functional similarity between archaeal and bacterial CorA magnesium transporters.J. Bacteriol. 1998; 180: 2788-2791
- Enzyme thermostability and thermoactivity.Protein Eng. 1996; 9: 629-630
- Status of the substrate binding sites of ribulose bisphosphate carboxylase as determined with 2-C-carboxyarabinitol 1,5-bisphosphate.Plant Physiol. 1990; 93: 244-249
- Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity: decarbamylation of catalytic sites depends on pH.Plant Physiol. 1991; 97: 1354-1358
- A common structural basis for the inhibition of ribulose 1, 5-bisphosphate carboxylase by 4-carboxyarabinitol 1, 5-bisphosphate and xylulose 1, 5-bisphosphate.J. Biol. Chem. 1996; 271: 32894-32899
- Structure of a product complex of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase.Biochemistry. 1997; 36: 4041-4046
- Comparison of the crystal structures of L2 and L8S8 Rubisco suggests a functional role for the small subunit.EMBO J. 1990; 9: 2045-2050
- Tracing the thread of plastid diversity through the tapestry of life.Am. Nat. 1999; 154: S164-S177
- Linking crystallographic model and data quality.Science. 2012; 336: 1030-1033
- Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids.Mol. Biol. Evol. 1996; 13: 873-882
- New roads lead to Rubisco in archaebacteria.Bioessays. 2007; 29: 722-724
- Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site.J. Mol. Biol. 1990; 215: 113-160
- The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2-A resolution.J. Biol. Chem. 1993; 268: 25876-25886
- First crystal structure of Rubisco from a green alga, Chlamydomonas reinhardtii.J. Biol. Chem. 2001; 276: 48159-48164
- Rubisco regulation: a role for inhibitors.J. Exp. Bot. 2008; 59: 1569-1580
Smrcka, A. V. (1990) Structural and Evolutionary Factors Affecting the Tight Binding of Inhibitors by Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase, Ph.D. thesis, University of Arizona
- Perturbation of reaction-intermediate partitioning by a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase.J. Biol. Chem. 1993; 268: 26583-26591
- Structural and functional similarities between a ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-like protein from Bacillus subtilis and photosynthetic RuBisCO.J. Biol. Chem. 2009; 284: 13256-13264
- Specificity for activase is changed by a Pro-89 to Arg substitution in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase.J. Biol. Chem. 1997; 272: 17033-17037
- Two residues of Rubisco activase involved in recognition of the Rubisco substrate.J. Biol. Chem. 2005; 280: 24864-24869
- A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.Proc. Natl. Acad. Sci. U.S.A. 2016; 113: 5958-5963
- Towards engineering carboxysomes into C3 plants.Plant J. 2016; 87: 38-50
- An efficient system for high-level expression and easy purification of authentic recombinant proteins.Protein Sci. 2004; 13: 1331-1339
- Using deubiquitylating enzymes as research tools.Methods Enzymol. 2005; 398: 540-554
- Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogs.Biochemistry. 1980; 19: 934-942
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 125-132
- How good are my data and what is the resolution?.Acta Crystallogr. D Biol. Crystallogr. 2013; 69: 1204-1214
- Overview of the CCP 4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67: 235-242
- Solvent content of protein crystals.J. Mol. Biol. 1968; 33: 491-497
- Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8060-8065
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40: 658-674
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 213-221
- Global Phasing Ltd., Cambridge, UK2011 BUSTER, version 2.10.0.
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 486-501
- Improved methods for building protein models in electron density maps and the location of errors in these models.Acta Crystallogr. A. 1991; 47: 110-119
- Towards automated crystallographic structure refinement with phenix.refine.Acta Crystallogr. D Biol. Crystallogr. 2012; 68: 352-367
- Announcing the worldwide Protein Data Bank.Nat. Struct. Biol. 2003; 10: 980
- VIROME: a standard operating procedure for analysis of viral metagenome sequences.Stand. Genomic Sci. 2012; 6: 427-439
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 1997; 25: 3389-3402
- Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements.Nucleic Acids Res. 2001; 29: 2994-3005
- Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.Mol. Syst. Biol. 2011; 7: 539
- Deciphering key features in protein structures with the new ENDscript server.Nucleic Acids Res. 2014; 42: W320-W324
- COBALT: constraint-based alignment tool for multiple protein sequences.Bioinformatics. 2007; 23: 1073-1079
- MEGA6: molecular evolutionary genetics analysis, version 6.0.Mol. Biol. Evol. 2013; 30: 2725-2729
- A simple method for estimating and testing minimum-evolution trees.Mol. Biol. Evol. 1992; 9: 945
- Oxford University Press, New York2000: 33-35 (99–103) Molecular Evolution and Phylogenetics.
- The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 1987; 4: 406-425
- Improved R-factors for diffraction data analysis in macromolecular crystallography.Nat. Struct. Biol. 1997; 4: 269-275
Article info
Publication history
Footnotes
This work was supported by grants from the Swedish Research Council. The authors declare that they have no conflicts of interest with the contents of this article.
This article was selected as one of our Editors' Picks.
This article contains supplemental Figs. S1–S3 and Table S1 and S2.
The atomic coordinates and structure factors (code 5MAC) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy