Introduction
Proteostasis begins at the ribosome
Nonuniform rates of translation elongation drive proteostasis

Determinants of translation kinetics

Elongation speed regulates co-translational protein folding
- Cabrita L.D.
- Cassaignau A.M.E.
- Launay H.M.M.
- Waudby C.A.
- Wlodarski T.
- Camilloni C.
- Karyadi M.-E.
- Robertson A.L.
- Wang X.
- Wentink A.S.
- Goodsell L.
- Woolhead C.A.
- Vendruscolo M.
- Dobson C.M.
- Christodoulou J.
Ribosome stalling dictates gene expression
- Yonashiro R.
- Tahara E.B.
- Bengtson M.H.
- Khokhrina M.
- Lorenz H.
- Chen K.-C.
- Kigoshi-Tansho Y.
- Savas J.N.
- Yates 3rd., J.R.
- Kay S.A.
- Craig E.A.
- Mogk A.
- Bukau B.
- Joazeiro C.A.

Conclusions and future perspectives
Acknowledgments
References
- Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade.Annu. Rev. Biochem. 2017; 86 (28498720): 27-68
- Principles that govern the folding of protein chains.Science. 1973; 181 (4124164): 223-230
- Molecular chaperone functions in protein folding and proteostasis.Annu. Rev. Biochem. 2013; 82 (23746257): 323-355
- The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins.Nat. Struct. Mol. Biol. 2009; 16 (19491936): 589-597
- The ribosome as a hub for protein quality control.Mol. Cell. 2013; 49 (23395271): 411-421
- Recombination of protein domains facilitated by co-translational folding in eukaryotes.Nature. 1997; 388 (9237751): 343-349
- Folding up and moving on-nascent protein folding on the ribosome.J. Mol. Biol. 2018; 430 (29981746): 4580-4591
- Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones.Nature. 1994; 370 (8022479): 111-117
- Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase.Nat. Struct. Biol. 1999; 6 (10404229): 697-705
- Ribosome-associated chaperones as key players in proteostasis.Trends Biochem. Sci. 2012; 37 (22503700): 274-283
- Widespread cotranslational formation of protein complexes.PLoS Genet. 2011; 7 (22144913): e1002398
- Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling.Nature. 2018; 561 (30158700): 268-272
- Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.Science. 2009; 324 (19213877): 218-223
- Cotranslational protein folding on the ribosome monitored in real time.Science. 2015; 350 (26612953): 1104-1107
- The ribosome in action: tuning of translational efficiency and protein folding.Protein Sci. 2016; 25 (27198711): 1390-1406
- Roles for synonymous codon usage in protein biogenesis.Annu. Rev. Biophys. 2015; 44 (25747594): 143-166
- Synonymous codons: choose wisely for expression.Trends Genet. 2017; 33 (28292534): 283-297
- Cotranslational response to proteotoxic stress by elongation pausing of ribosomes.Mol. Cell. 2013; 49 (23290916): 453-463
- Widespread regulation of translation by elongation pausing in heat shock.Mol. Cell. 2013; 49 (23290915): 439-452
- Translation inhibitors cause abnormalities in ribosome profiling experiments.Nucleic Acids Res. 2014; 42 (25056308): e134
- Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast.PLoS Genet. 2015; 11 (26656907): e1005732
- Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding.Nat. Struct. Mol. Biol. 2013; 20 (23262490): 237-243
- Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats.RNA. 2015; 21 (25792604): 935-945
- Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution.Cell. 2008; 134 (18662548): 341-352
- How messenger RNA and nascent chain sequences regulate translation elongation.Annu. Rev. Biochem. 2018; 87 (29925264): 421-449
- Exposing synonymous mutations.Trends Genet. 2014; 30 (24954581): 308-321
- Synonymous mutations frequently act as driver mutations in human cancers.Cell. 2014; 156 (24630730): 1324-1335
- Synonymous codons direct cotranslational folding toward different protein conformations.Mol. Cell. 2016; 61 (26849192): 341-351
- Protein folding. Translational tuning optimizes nascent protein folding in cells.Science. 2015; 348 (25908822): 444-448
- A “Silent” polymorphism in the MDR1 gene changes substrate specificity.Science. 2007; 315 (17185560): 525-528
- Alteration of protein function by a silent polymorphism linked to tRNA abundance.PLoS Biol. 2017; 15 (28510592): e2000779
- Prediction of variable translation rate effects on cotranslational protein folding.Nat. Commun. 2012; 3 (22643895): 868
- Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design.J. Am. Chem. Soc. 2014; 136 (24392935): 858-861
- Codon usage influences the local rate of translation elongation to regulate co-translational protein folding.Mol. Cell. 2015; 59 (26321254): 744-754
- Transient ribosomal attenuation coordinates protein synthesis and co-translational folding.Nat. Struct. Mol. Biol. 2009; 16 (19198590): 274-280
- A pause for thought along the co-translational folding pathway.Trends Biochem. Sci. 2009; 34 (18996013): 16-24
- A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae.RNA. 2010; 16 (20651030): 1797-1808
- Fidelity at the molecular level: lessons from protein synthesis.Cell. 2009; 136 (19239893): 746-762
- Codon usage and tRNA content in unicellular and multicellular organisms.Mol. Biol. Evol. 1985; 2 (3916708): 13-34
- An evolutionarily conserved mechanism for controlling the efficiency of protein translation.Cell. 2010; 141 (20403328): 344-354
- Determinants of translation efficiency and accuracy.Mol. Syst. Biol. 2011; 7 (21487400): 481
- Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis.Comput. Biol. Chem. 2007; 31 (17897886): 335-346
- Codon optimality, bias and usage in translation and mRNA decay.Nat. Rev. Mol. Cell Biol. 2018; 19 (29018283): 20-30
- Wobble base-pairing slows in vivo translation elongation in metazoans.RNA. 2011; 17 (22045228): 2063-2073
- Control of translation efficiency in yeast by codon-anticodon interactions.RNA. 2010; 16 (20971810): 2516-2528
- Measurement of average decoding rates of the 61 sense codons in vivo.eLife. 2014; 3 (2014, 25347064)
- Optimization of codon translation rates via tRNA modifications maintains proteome integrity.Cell. 2015; 161 (26052047): 1606-1618
- A dual program for translation regulation in cellular proliferation and differentiation.Cell. 2014; 158 (25215487): 1281-1292
- Tissue- and time-specific expression of otherwise identical tRNA genes.PLoS Genet. 2016; 12 (27560950): e1006264
- Modulated expression of specific tRNAs drives gene expression and cancer progression.Cell. 2016; 165 (27259150): 1416-1427
- Differential translation efficiency of orthologous genes is involved in phenotypic divergence of yeast species.Nat. Genet. 2007; 39 (17277776): 415-421
- tRNA genes rapidly change in evolution to meet novel translational demands.eLife. 2013; 2 (24363105): e01339
- Translation regulation via nascent polypeptide-mediated ribosome stalling.Curr. Opin. Struct. Biol. 2016; 37 (26859868): 123-133
- Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates.J. Biol. Chem. 2008; 283 (18809677): 32229-32235
- Adjacent codons act in concert to modulate translation efficiency in yeast.Cell. 2016; 166 (27374328): 679-690
- High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP.Cell Rep. 2015; 11 (25843707): 13-21
- EF-P is essential for rapid synthesis of proteins containing consecutive proline residues.Science. 2013; 339 (23239624): 85-88
- eIF5A promotes translation of polyproline motifs.Mol. Cell. 2013; 51 (23727016): 35-45
- eIF5A functions globally in translation elongation and termination.Mol. Cell. 2017; 66 (28392174): 194-205.e5
- A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress.Cell. 2012; 151 (23178123): 1042-1054
- Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome.J. Biol. Chem. 2009; 284 (19204001): 10343-10352
- A comparative genomics study on the effect of individual amino acids on ribosome stalling.BMC Genomics. 2015; 16 (26449596): S5
- Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation.Cell Rep. 2016; 14 (26876183): 1787-1799
- Electrostatics in the ribosomal tunnel modulate chain elongation rates.J. Mol. Biol. 2008; 384 (18822297): 73-86
- Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1.RNA. 2013; 19 (23825054): 1208-1217
- Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (29967153): E6731-E6740
- Co-translational protein folding: progress and methods.Curr. Opin. Struct. Biol. 2017; 42 (27940242): 83-89
- Silent substitutions predictably alter translation elongation rates and protein folding efficiencies.J. Mol. Biol. 2012; 422 (22705285): 328-335
- tRNA concentration fine tunes protein solubility.FEBS Lett. 2012; 586 (22819830): 3336-3340
- Non-optimal codon usage affects expression, structure and function of clock protein FRQ.Nature. 2013; 495 (23417067): 111-115
- Translationally optimal codons associate with structurally sensitive sites in proteins.Mol. Biol. Evol. 2009; 26 (19349643): 1571-1580
- The effect of tRNA levels on decoding times of mRNA codons.Nucleic Acids Res. 2014; 42 (25056313): 9171-9181
- Translationally optimal codons associate with aggregation-prone sites in proteins.Proteomics. 2010; 10 (21046618): 4163-4171
- Widespread position-specific conservation of synonymous rare codons within coding sequences.PLoS Comput. Biol. 2017; 13 (28475588): e1005531
- The ribosome modulates nascent protein folding.Science. 2011; 334 (22194581): 1723-1727
- Folding zones inside the ribosomal exit tunnel.Nat. Struct. Mol. Biol. 2005; 12 (16299515): 1123-1129
- Small protein domains fold inside the ribosome exit tunnel.FEBS Lett. 2016; 590 (26879042): 655-660
- Cotranslational protein folding inside the ribosome exit tunnel.Cell Rep. 2015; 12 (26321634): 1533-1540
- Tertiary interactions within the ribosomal exit tunnel.Nat. Struct. Mol. Biol. 2009; 16 (19270700): 405-411
- Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima.J. Mol. Biol. 2008; 383 (18722384): 281-291
- A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding.Nat. Struct. Mol. Biol. 2016; 23 (26926436): 278-285
- Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23959879): 14640-14645
- Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo.Science. 2015; 348 (25908824): 457-460
- Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding.Cell. 2017; 170 (28708998): 298-311.e20
- Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo.Nat. Struct. Mol. Biol. 2014; 21 (25420103): 1100-1105
- Cotranslational signal-independent SRP preloading during membrane targeting.Nature. 2016; 536 (27487213): 224-228
- Global profiling of SRP interaction with nascent polypeptides.Nature. 2016; 536 (27487212): 219-223
- Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation.Nat. Commun. 2018; 9 (29725062): 1781
- GroEL dependency affects codon usage–support for a critical role of misfolding in gene evolution.Mol. Syst. Biol. 2010; 6 (20087338): 340
- The Yin and Yang of codon usage.Hum. Mol. Genet. 2016; 25 (27354349): R77-R85
- Translation elongation can control translation initiation on eukaryotic mRNAs.EMBO J. 2014; 33 (24357599): 21-34
- Rapid generation of hypomorphic mutations.Nat. Commun. 2017; 8 (28106166): 14112
- Roadblocks and resolutions in eukaryotic translation.Nat. Rev. Mol. Cell Biol. 2018; 19 (29760421): 526-541
- Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control.Annu. Rev. Cell Dev. Biol. 2017; 33 (28715909): 343-368
- Pausing on polyribosomes: make way for elongation in translational control.Cell. 2015; 163 (26451481): 292-300
- RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration.Science. 2014; 345 (25061210): 455-459
- Ribosome-associated protein quality control.Nat. Struct. Mol. Biol. 2016; 23 (26733220): 7-15
- Translation drives mRNA quality control.Nat. Struct. Mol. Biol. 2012; 19 (22664987): 594-601
- Codon optimality is a major determinant of mRNA stability.Cell. 2015; 160 (25768907): 1111-1124
- The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality.Cell. 2016; 167 (27641505): 122-132.e9
- Translation elongation and mRNA stability are coupled through the ribosomal A-site.RNA. 2018; 24 (29997263): 1377-1389
- Role of a ribosome-associated E3 ubiquitin ligase in protein quality control.Nature. 2010; 467 (20835226): 470-473
- Translation readthrough mitigation.Nature. 2016; 534 (27281202): 719-723
- Ribosome collision is critical for quality control during no-go decay.Mol. Cell. 2017; 68 (28943311): 361-373.e5
- ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation.Mol. Cell. 2017; 65 (28132843): 751-760.e4
- Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination.Mol. Cell. 2017; 65 (28065601): 743-750.e4
- ZNF598 is a quality control sensor of collided ribosomes.Mol. Cell. 2018; 72 (30293783): 469-481.e7
- Ubiquitination of stalled ribosome triggers ribosome-associated quality control.Nat. Commun. 2017; 8 (28757607): 159
- Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA.Mol. Cell. 2012; 46 (22503425): 518-529
- Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae.Mol. Cell. Biol. 2014; 34 (25154418): 4062-4076
- Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (25349383): 15981-15986
- Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation.Mol. Cell. 2013; 50 (23685075): 637-648
- Structure and assembly pathway of the ribosome quality control complex.Mol. Cell. 2015; 57 (25578875): 433-444
- Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains.Science. 2015; 347 (25554787): 75-78
- Failure of RQC machinery causes protein aggregation and proteotoxic stress.Nature. 2016; 531 (26934223): 191-195
- The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation.eLife. 2016; 5 (26943317): e11794
- A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19196968): 2097-2103
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grants AG047126 (to K. C. S.) and GM056433 (to J. F.). This is the first article in the JBC Reviews series “Molecular chaperones and protein quality control.” The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy