Introduction
- Ihara S.
- Miyoshi E.
- Nakahara S.
- Sakiyama H.
- Ihara H.
- Akinaga A.
- Honke K.
- Dickson R.B.
- Lin C.Y.
- Taniguchi N.
- Wandall H.H.
- Hassan H.
- Mirgorodskaya E.
- Kristensen A.K.
- Roepstorff P.
- Bennett E.P.
- Nielsen P.A.
- Hollingsworth M.A.
- Burchell J.
- Taylor-Papadimitriou J.
- Clausen H.
Results
In silico identification of cleavage sites proximal to O-glycosylation sites

Enrichment of N termini using TAILS

Determination of O-glycan–dependent changes in MMP9 and neutrophil elastase substrates

![]() |

Changes in the cellular N-terminome with loss of GalNAc-T2
![]() |
![]() |

GalNAc-T2–induced changes in regulators of lipid homeostasis
GALNT2 deletion perturbs the protease web
Discussion
- Stavenhagen K.
- Hinneburg H.
- Thaysen-Andersen M.
- Hartmann L.
- Varón Silva D.
- Fuchser J.
- Kaspar S.
- Rapp E.
- Seeberger P.H.
- Kolarich D.
Experimental procedures
In silico screen
Consensus sequence analysis
Glycoengineered cell models
TAILS
N-terminal peptide enrichment
In-line liquid chromatography and mass spectrometry analysis
Data analysis
Peptide maps
Substrate winnowing
Author contributions
Supplementary Material
References
- Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.Biochimie. 2016; 122 (26542287): 110-118
- Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors.Nucleic Acids Res. 2016; 44 (26527717): D343-D350
- New approaches for dissecting protease functions to improve probe development and drug discovery.Nat. Struct. Mol. Biol. 2012; 19 (22218294): 9-16
- Missing the target: matrix metalloproteinase antitargets in inflammation and cancer.Trends Pharmacol. Sci. 2013; 34 (23541335): 233-242
- In search of partners: linking extracellular proteases to substrates.Nat. Rev. Mol. Cell Biol. 2007; 8 (17299501): 245-257
- Targeting proteases: successes, failures and future prospects.Nat. Rev. Drug Discov. 2006; 5 (16955069): 785-799
- Waterfall sequence for intrinsic blood clotting.Science. 1964; 145 (14173416): 1310-1312
- Ectodomain shedding and ADAMs in development.Development. 2012; 139 (22991436): 3693-3709
- The generation of endostatin is mediated by elastase.Cancer Res. 1999; 59 (10626789): 6052-6056
- Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis.Cell Rep. 2014; 9 (25310974): 618-632
- Systems-level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation.Sci. Signal. 2013; 6 (23322905): rs2
- Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics.Biol. Chem. 2002; 383 (12437088): 1059-1066
- Accessing protein methyltransferase and demethylase enzymology using microfluidic capillary electrophoresis.Chem. Biol. 2010; 17 (20659682): 695-704
- An unbiased proteomic screen reveals caspase cleavage is positively and negatively regulated by substrate phosphorylation.Mol. Cell Proteomics. 2014; 13 (24556848): 1184-1197
- Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome.Cell. 2012; 150 (22817901): 426-440
- Site-selective chemical protein glycosylation protects from autolysis and proteolytic degradation.Carbohydr. Res. 2009; 344 (19608158): 1508-1514
- A general approach to the synthesis of O- and N-linked glycopeptides.Glycoconj. J. 1994; 11 (7804007): 59-63
- Addition of β1–6 GlcNAc branching to the oligosaccharide attached to Asn 772 in the serine protease domain of matriptase plays a pivotal role in its stability and resistance against trypsin.Glycobiology. 2004; 14 (14551220): 139-146
- Use of a mutant cell line to study the kinetics and function of O-linked glycosylation of low density lipoprotein receptors.Proc. Natl. Acad. Sci. U.S.A. 1988; 85 (3380796): 4335-4339
- Differences in the post-translational processing of β-endorphin in rat anterior and intermediate pituitary.J. Biol. Chem. 1981; 256 (7240165): 5683-5688
- Presence of a pre-sequence (signal sequence) in the common precursor to ACTH and endorphin and the role of glycosylation in processing of the precursor and secretion of ACTH and endorphin.Ann. N.Y. Acad. Sci. 1980; 343 (6249168): 79-93
- Differential glycosylation of N-POMC1–77 regulates the production of γ 3-MSH by purified pro-opiomelanocortin converting enzyme: a possible mechanism for tissue-specific processing.FEBS Lett. 1991; 290 (1655531): 191-194
- Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis: secretion of fibroblast growth factor 23 requires O-glycosylation.J. Biol. Chem. 2006; 281 (16638743): 18370-18377
- Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22566642): 9893-9898
- Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents.Cell Metab. 2016; 24 (27508872): 234-245
- A systematic study of site-specific GalNAc-type O-glycosylation modulating proprotein convertase processing.J. Biol. Chem. 2011; 286 (21937429): 40122-40132
- Site-specific O-glycosylation by polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-transferase T2) co-regulates β1-adrenergic receptor N-terminal cleavage.J. Biol. Chem. 2017; 292 (28167537): 4714-4726
- A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26554003): 14623-14628
- Site-specific protein O-glycosylation modulates proprotein processing: deciphering specific functions of the large polypeptide GalNAc-transferase gene family.Biochim. Biophys. Acta. 2012; 1820 (23022508): 2079-2094
- Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology.EMBO J. 2013; 32 (23584533): 1478-1488
- Substrate specificities of three members of the human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3.J. Biol. Chem. 1997; 272 (9295285): 23503-23514
- Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis.Glycobiology. 2015; 25 (25155433): 55-65
- Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.Glycobiology. 2012; 22 (22183981): 736-756
- O-linked glycan expression during Drosophila development.Glycobiology. 2007; 17 (17522109): 820-827
- Functional characterization and expression analysis of members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family from Drosophila melanogaster.J. Biol. Chem. 2003; 278 (12829714): 35039-35048
- The role of mucin-type O-glycans in eukaryotic development.Semin. Cell Dev. Biol. 2010; 21 (20144722): 616-621
- Glycoprotein Ibα forms disulfide bonds with 2 glycoprotein Ibβ subunits in the resting platelet.Blood. 2007; 109 (17008541): 603-609
- Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells.Blood Adv. 2017; 1 (29296958): 429-442
- Unique in vivo modifications of coagulation factor V produce a physically and functionally distinct platelet-derived cofactor: characterization of purified platelet-derived factor V/Va.J. Biol. Chem. 2004; 279 (14594814): 2383-2393
- Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.Nat. Protoc. 2011; 6 (21959240): 1578-1611
- Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products.Nat. Biotechnol. 2010; 28 (20208520): 281-288
- Deconstruction of O-glycosylation–GalNAc-T isoforms direct distinct subsets of the O-glycoproteome.EMBO Rep. 2015; 16 (26566661): 1713-1722
- O-Glycosylation modulates proprotein convertase activation of angiopoietin-like protein 3: possible role of polypeptide GalNAc-transferase-2 in regulation of concentrations of plasma lipids.J. Biol. Chem. 2010; 285 (20837471): 36293-36303
- Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and post-translational events.Nucleic Acids Res. 2015; 43 (25332401): D290-D297
- Probing protein structure by limited proteolysis.Acta Biochim. Pol. 2004; 51 (15218531): 299-321
- Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines.Nat. Methods. 2011; 8 (21983924): 977-982
- Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome.J. Proteome Res. 2014; 13 (24555563): 2028-2044
- Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.Mol. Cell Proteomics. 2010; 9 (20305284): 894-911
- Global substrate profiling of proteases in human neutrophil extracellular traps reveals consensus motif predominantly contributed by elastase.PLoS One. 2013; 8 (24073241): e75141
- Glypican-3 is a biomarker and a therapeutic target of hepatocellular carcinoma.Hepatobiliary Pancreat. Dis. Int. 2015; 14 (26256079): 361-366
- Autocatalytic peptide bond cleavages in prothrombin and meizothrombin.Biochemistry. 1998; 37 (9477942): 1185-1191
- Evidence that the thrombin-catalyzed feedback cleavage of fragment 1.2 at Arg154-Ser155 promotes the release of thrombin from the catalytic surface during the activation of bovine prothrombin.J. Biol. Chem. 1988; 263 (3422076): 1037-1044
- LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat.FEBS J. 2014; 281 (24447298): 1534-1546
- Network analyses reveal pervasive functional regulation between proteases in the human protease web.PLoS Biol. 2014; 12 (24865846): e1001869
- Mechanistic insights into ectodomain shedding: susceptibility of CADM1 adhesion molecule is determined by alternative splicing and O-glycosylation.Sci. Rep. 2017; 7 (28393893): 46174
- Post-translational processing of the insulin-like growth factor-2 precursor: analysis of O-glycosylation and endoproteolysis.J. Biol. Chem. 1998; 273 (9660813): 18443-18451
- Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains.J. Cell Biol. 1986; 102 (3700466): 1576-1585
- Discovery of novel inhibitors of a disintegrin and metalloprotease 17 (ADAM17) using glycosylated and non-glycosylated substrates.J. Biol. Chem. 2012; 287 (22927435): 36473-36487
- The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality.Nature. 2013; 504 (24226769): 456-459
- Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites.Mol. Biotechnol. 2002; 22 (12353914): 51-86
- Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides.J. Mass Spectrom. 2013; 48 (23776102): 627-639
- Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc.Science. 2008; 320 (18420934): 373-376
- Reelin: neurodevelopmental architect and homeostatic regulator of excitatory synapses.J. Biol. Chem. 2017; 292 (27994051): 1330-1338
- Impaired thrombin generation in Reelin-deficient mice: a potential role of plasma Reelin in hemostasis.J. Thromb. Haemost. 2014; 12 (25255925): 2054-2064
- Loss of Reelin protects against atherosclerosis by reducing leukocyte-endothelial cell adhesion and lesion macrophage accumulation.Sci. Signal. 2016; 9 (26980442): ra29
- Importance of Reelin C-terminal region in the development and maintenance of the postnatal cerebral cortex and its regulation by specific proteolysis.J. Neurosci. 2015; 35 (25788693): 4776-4787
- C-Terminal region truncation of RELN disrupts an interaction with VLDLR, causing abnormal development of the cerebral cortex and hippocampus.J. Neurosci. 2017; 37 (28123028): 960-971
- GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes.Glycobiology. 2018; 28 (29267884): 131-136
- TopFIND 2.0: linking protein termini with proteolytic processing and modifications altering protein function.Nucleic Acids Res. 2012; 40 (22102574): D351-D361
- Protein disorder prediction: implications for structural proteomics.Structure. 2003; 11 (14604535): 1453-1459
- The iceLogo web server and SOAP service for determining protein consensus sequences.Nucleic Acids Res. 2015; 43 (25897125): W543-W546
- A strategy for O-glycoproteomics of enveloped viruses: the O-glycoproteome of herpes simplex virus type 1.PLoS Pathog. 2015; 11 (25830354): e1004784
- Global mapping of O-glycosylation of varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus.J. Biol. Chem. 2016; 291 (27129252): 12014-12028
- BoxPlotR: a web tool for generation of box plots.Nat. Methods. 2014; 11 (24481215): 121-122
- The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling.Nat. Commun. 2015; 6 (26525107): 8777
- Comparing SILAC- and stable isotope dimethyl-labeling approaches for quantitative proteomics.J. Proteome Res. 2014; 13 (25077673): 4164-4174
- The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.Nucleic Acids Res. 2013; 41 (23203882): D1063-D1069
- Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc. 2009; 4 (19131956): 44-57
- GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists.BMC Bioinformatics. 2009; 10 (19192299): 48
- REVIGO summarizes and visualizes long lists of gene ontology terms.PLoS One. 2011; 6 (21789182): e21800
- STRING v10: protein-protein interaction networks, integrated over the tree of life.Nucleic Acids Res. 2015; 43 (25352553): D447-D452
Article info
Publication history
Footnotes
This work was supported in part by Danish Research Councils Grant 1331-00133B (to S. L. K. and H. H. W.); by a Programme of Excellence 2016 (Copenhagen as the Next Leader in Precise Genetic Engineering CDO2016: 2016CDO04210) from the University of Copenhagen (to S. L. K., C. K. G., A. D. H., and H. H. W.); by Danish National Research Foundation Grant DNRF107 (to S. L. K., C. K. G., A. D. H., H. J. J., S. Y. V., K. T. S., and H. H. W.); and by the NEYE Foundation (to C. K. G.). This work was also supported by Canadian Institutes of Health Research Grant MOP-37937 (to C. M. O.) and by the British Columbia Proteomics Network (to C. M. O.). The authors declare that they have no conflicts of interest with the contents of this article.
The MS proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (
- Vizcaíno J.A.
- Côté R.G.
- Csordas A.
- Dianes J.A.
- Fabregat A.
- Foster J.M.
- Griss J.
- Alpi E.
- Birim M.
- Contell J.
- O'Kelly G.
- Schoenegger A.
- Ovelleiro D.
- Pérez-Riverol Y.
- Reisinger F.
- et al.
This article contains Figs. S1 and S2.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy