Introduction
- Richard P.
- Charron P.
- Carrier L.
- Ledeuil C.
- Cheav T.
- Pichereau C.
- Benaiche A.
- Isnard R.
- Dubourg O.
- Burban M.
- Gueffet J.-P.
- Millaire A.
- Desnos M.
- Schwartz K.
- Hainque B.
- et al.

Results
Location of the five mutations in the structure of the motor domain
Transient kinetic data



![]() |
Implications of the data
The ATPase cycle



Discussion

How do the mutations cause DCM?
Activation and relaxation of contraction
Energy balance
Comparison of predicted and measured in vitro velocities

Conclusions
Experimental procedures
Protein expression and purification
ATPase
Transient kinetics
Modeling
Error analysis
Unloaded in vitro motility
Author contributions
Acknowledgment
Supplementary Material
References
- The genetics of dilated cardiomyopathy.Curr. Opin. Cardiol. 2010; 25 (20186049): 198-204
- Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals.Genet. Med. 2010; 12 (20864896): 655-667
- Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies.Circulation. 1996; 93 (8598070): 841-842
- Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relative and may represent early disease.J. Am. Coll. Cardiol. 1998; 31 (9426040): 195-201
- The mutations associated with dilated cardiomyopathy.Biochem. Res. Int. 2012; 2012 (22830024): 639250
- Dilated cardiomyopathy: genetic determinants and mechanisms.Circ. Res. 2017; 121 (28912180): 731-748
- Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy.Circulation. 2003; 107 (12707239): 2227-2232
- Sarcomeric protein mutations in dilated cardiomyopathy.Heart Fail. Rev. 2005; 10 (16416045): 225-235
- Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy.N. Engl. J. Med. 2000; 343 (11106718): 1688-1696
- Novel mutations in sarcomeric protein genes in dilated cardiomyopathy.Biochem. Biophys. Res. Commun. 2002; 298 (12379228): 116-120
- Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy.Clin. Transl. Sci. 2008; 1 (19412328): 21-26
- Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene.Eur. Heart J. 2005; 26 (15769782): 794-803
- Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human-cardiac myosin motor function.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23798412): 12607-12612
- Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function.Sci. Adv. 2015; 1 (26601291): e1500511
- The hypertrophic cardiomyopathy myosin mutation R453C alters ATP binding and hydrolysis of human cardiac β-myosin.J. Biol. Chem. 2014; 289 (24344137): 5158-5167
- Modeling the actin.myosin ATPase cross-bridge cycle for skeletal and cardiac muscle myosin isoforms.Biophys. J. 2017; 112 (28297657): 984-996
- Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy.Mol. Med. 1996; 2 (8898372): 556-567
- A mouse model of familial hypertrophic cardiomyopathy.Science. 1996; 272 (8614836): 731-734
- Comparison of two murine models of familial hypertrophic cardiomyopathy.Circ. Res. 2001; 88 (11230104): 383-389
- Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function.Proc. Natl. Acad. Sci. U.S.A. 2006; 103 (16983074): 14525-14530
- Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse α-cardiac myosin in the laser trap assay.Am. J. Physiol. Heart Circ. Physiol. 2007; 293 (17351073): H284-H291
- Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an α- or β-myosin heavy chain backbone.J. Biol. Chem. 2008; 283 (18480046): 20579-20589
- The molecular mechanism of muscle contraction.Adv. Protein Chem. 2005; 71 (16230112): 161-193
- Molecular mechanism of actomyosin-based motility.Cell. Mol. Life Sci. 2005; 62 (15924264): 1462-1477
- Structural and functional insights into the myosin motor mechanism.Annu. Rev. Biophys. 2010; 39 (20192767): 539-557
- Myo1c mutations associated with hearing loss cause defects in the interaction with nucleotide and actin.Cell. Mol. Life Sci. 2011; 68 (20640478): 139-150
- Identification of functional differences between recombinant human α and β cardiac myosin motors.Cell. Mol. Life Sci. 2012; 69 (22349210): 2261-2277
- The superfast human extraocular myosin is kinetically distinct from the fast skeletal IIa, IIb, and IId isoforms.J. Biol. Chem. 2013; 288 (23908353): 27469-27479
- Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle.J. Mol. Biol. 2007; 373 (17900618): 1184-1197
- Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector.Cell Rep. 2015; 11 (25937279): 910-920
- Inherent force-dependent properties of β-cardiac myosin contribute to the force-velocity relationship of cardiac muscle.Biophys. J. 2014; 107 (25517169): L41-L44
- Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules.Nat. Commun. 2015; 6 (26239258): 7931
- Controlling load-dependent contractility of the heart at the single molecule level.bioRxiv. 2018; : 258020
- The genetic basis for cardiomyopathy.Cell. 2001; 104 (11239412): 557-567
- Myofilament calcium sensitivity and cardiac disease: insights from troponin I isoforms and mutants.Circ. Res. 2002; 91 (12242271): 525-531
- Cytoplasmic signaling pathways that regulate cardiac hypertrophy.Annu. Rev. Physiol. 2001; 63 (11181961): 391-426
- Chronic phospholamban-sarcoplasmic reticulum calcium atpase interaction is the critical calcium cycling defect in dilated cardiomyopathy.Cell. 1999; 99 (10555147): 313-322
- Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of cardiomyopathy.Front. Physiol. 2014; 5 (25202278): 315
- Familial dilated cardiomyopathy mutations uncouple troponin i phosphorylation from changes in myofibrillar Ca2+ sensitivity.Cardiovasc. Res. 2013; 99 (23539503): 65-73
- Thin filament regulation.Comprehensive Biophysics. Vol. 4. Elsevier B.V., Amsterdam2012: 251-267
- Regulation of contraction in striated muscle.Physiol. Rev. 2000; 80 (10747208): 853-924
- Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light.Biophys. Rev. 2017;
- Regulation of contraction by the thick filaments in skeletal muscle.Biophys. J. 2017; 113 (29262355): 2579-2594
- Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2.Proc. Natl. Acad. Sci. U.S.A. 2001; 98 (11287639): 4361-4366
- Ionic interactions play a role in the regulatory mechanism of scallop heavy meromyosin.Biophys. J. 2003; 85 (12885652): 1053-1062
- Cooperativity and regulation of scallop myosin and myosin fragments.Biochemistry. 1997; 36 (9398315): 15834-15840
- The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations.Nat. Struct. Mol. Biol. 2017; 24 (28481356): 525-533
- The most prevalent freeman-sheldon syndrome mutations in the embryonic myosin motor share functional defects.J. Biol. Chem. 2016; 291 (26945064): 10318-10331
- The regulation of rabbit skeletal muscle contraction.J. Biol. Chem. 1971; 246: 4866-4871
- The use of actin labelled with N-(1-pyrenyl) iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin.Biochem. J. 1985; 232 (3911945): 343-349
- Biochemical studies of myosin.Methods. 2000; 22 (11133239): 327-335
De La Cruz, E. M., and Ostap, E. M., (2009) Kinetic and Equilibrium Analysis of the Myosin ATPase, 1st Ed., Elsevier Inc., Amsterdam
- The characterization of myosin–product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction.Biochem. J. 1974; 141 (4281653): 331-349
- A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog.J. Physiol. 1923; 58 (16993652): 175-203
- A new mechanokinetic model for muscle contraction, where force and movement are triggered by phosphate release.J. Muscle Res. Cell Motil. 2014; 35 (25319769): 295-306
- Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior.Biophys. J. 1995; 69 (8527668): 538-552
- Early-onset hypertrophic cardiomyopathy mutations significantly increase the velocity, force, and actin-activated ATPase activity of human β-cardiac myosin.Cell Rep. 2016; 17 (27974200): 2857-2864
- A peptide tag system for facile purification and single-molecule immobilization.Biochemistry. 2009; 48 (19928925): 11834-11836
- The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy.Biochem. Soc. Trans. 2015; 43 (25619247): 64-72
Article info
Publication history
Footnotes
This article contains Tables S1–S7 and Figs. S1–S7.
J. A. S. is a founder of and owns stock in MyoKardia, Inc. L. A. L. is a founder of, owns stock in, and has a sponsored research agreement with MyoKardia, Inc. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy