Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes

Received for publication, February 25, 2018, and in revised form, April 25, 2018 Published, Papers in Press, April 27, 2018, DOI 10.1074/jbc.RA118.002553

Akello J. Agwa, Steve Peigneur, Chun Yuen Chow, Nicole Lawrence, David J. Craik, Jan Tytgat, Glenn F. King, Sónia Troeira Henriques, and Christina I. Schroeder†‡

From the †Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and ‡Laboratory of Toxicology and Pharmacology, University of Leuven (KU Leuven), 3000 Leuven, Belgium

Edited by Mike Shipston

Gating modifier toxins (GMTs) are venom-derived peptides isolated from spiders and other venomous creatures and mediate activity of disease-relevant voltage-gated ion channels and are therefore being pursued as therapeutic leads. The amphipathic surface profile of GMTs has prompted the proposal that some GMTs simultaneously bind to the cell membrane and voltage-gated ion channels in a trimolecular complex. Here, we examined whether there is a relationship among spider GMT amphipathicity, membrane binding, and potency or selectivity for voltage-gated sodium (Nav) channels. We used NMR spectroscopy and in silico calculations to examine the structures and physicochemical properties of a panel of nine GMTs and deployed surface plasmon resonance to measure GMT affinity for lipids putatively found in proximity to Nav channels. Electrophysiology was used to quantify GMT activity on NaV1.7, an ion channel linked to chronic pain. Selectivity of the peptides was further examined against a panel of Nav channel subtypes. We show that GMTs adsorb to the outer leaflet of anionic lipid bilayers through electrostatic interactions. We did not observe a direct correlation between GMT amphipathicity and affinity for lipid bilayers. Furthermore, GMT–lipid bilayer interactions did not correlate with potency or selectivity for NaV. We therefore propose that increased membrane binding is unlikely to improve subtype selectivity and that the conserved amphipathic GMT surface profile is an adaptation that facilitates simultaneous modulation of multiple NaV.

This work was supported by Australian National Health and Medical Research Council Project Grant APP1080405 (to C. I. S. and S. T. H.) and Program Grant APP1072113 and Principal Research Fellowship APP1044414 (to G. F. K.); Australian Research Council (ARC) Future Fellowships FT160100055 (to C. I. S.) and FT150100398 (to S. T. H.) and Australian Laureate fellowship FL150100146 (to D. J. C.); Centrum Européen Leuven Strategic Alliance Grant CELSA/17/047–B/OF/ISP (to J. T.); and University of Queensland International Postgraduate Scholarships (to A. J. A. and C. Y. C.). The authors declare that they have no conflicts of interest with the contents of this article.

This article contains Tables S1–S3 and Figs. S1 and S2.

The atomic coordinates and structure factors (codes 6BRO and 6BTV) have been deposited in the Protein Data Bank (http://wwwpdb.org/).

The NMR data in this paper have been submitted to the Biological Magnetic Resonance Data Bank under accession nos. 30376 (Ccox-Tx-I) and 30377 (Ccox-Tx-II).

To whom correspondence should be addressed: Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia. Tel.: 61-3346-2021; E-mail: c.schroeder@imb.uq.edu.au.

This is an Open Access article under the CC BY license.

Gating modifier toxins (GMTs) extracted from spider venom are a class of peptides that are valuable probes for studying the physiology and pharmacology of voltage-gated ion channels (1–4). GMTs alter the gating kinetics of voltage-gated ion channels (4), which are transmembrane proteins integral to a range of physiological processes in humans (1, 5, 6). These GMTs contain six Cys residues arranged to form an inhibitory cystine knot motif (7). In addition, these peptides share a conserved amphipathic surface profile characterized by a high proportion of hydrophobic amino acid residues, such as Trp, Tyr, and Phe, surrounded by a ring of cationic residues, including Arg and Lys, that typically promote peptide–membrane interactions (Fig. 1, A and B) (8).

Several GMTs, including GsMTx-IV, HaTx-I, VsTx-I, ProTx-I, ProTx-II, and SgTx-I, have been shown to bind to model membranes (8–12). The concept of a trimolecular lipid-peptide-channel complex has subsequently been proposed to exist in interactions between GMTs, voltage-gated ion channels, and the lipid membrane (10, 13, 14). A trimolecular complex presents the possibility for a novel approach to rational drug design whereby the cell membrane is considered as a third component in addition to the traditional approach, which only takes into account the transmembrane protein and the modulatory ligand (10, 14, 15).

The objective of the current study was to determine whether there is an overall relationship between the amphipathic surface profile of GMTs and their ability to bind lipid membranes and modulate voltage-gated ion channels. Electrophysiology was used to examine potency of the peptides at voltage-gated sodium channel 1.7 (NaV1.7), a transmembrane protein that is currently being pursued as a target for development of therapeutics for chronic pain (5, 16). GMTs are likely to show toxicity in mammals if they show activity at off-target NaV; therefore, NaV1.2, NaV1.4, NaV1.5, and NaV1.6 were included to study whether there is a relationship between GMT amphipathicity, affinity for lipid bilayers, and off-target selec-

The abbreviations used are: GMT, gating modifier toxin; CHOL, cholesterol; C1P, ceramide 1-phosphate; ACN, acetonitrile; HEK, human embryonic kidney; LUV, large unilamellar vesicle; P/L, peptide/lipid; PI, PIP2, phosphatidylinositol; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SM, sphingomyelin; SMD, sphingomyelin kinase D; SPR, surface plasmon resonance; SUV, small unilamellar vesicle; NaV, voltage-gated sodium; RP-HPLC, reverse-phase HPLC; SASA, solvent-accessible surface area; PG, phosphatidylglycerol; PDB, Protein Data Bank.
Previous reports have examined lipid-binding properties of small GMT cohorts (10, 11, 17, 18), but the current study represents the first concerted effort to study the membrane binding of a cohort of native GMTs in model membranes chosen to mimic physiological properties (15).

CcoTx-I, CcoTx-II, PaurTx-III, and ProTx-I were chosen because these GMTs are known promiscuous modulators of NaVs (19, 20) and would therefore provide information on the relationship between GMT amphipathicity, promiscuity for NaVs, and affinity for lipid bilayers. HnTx-IV, HwTx-IV, and GpTx-I were chosen for their known potency at NaV1.7 (21–23), and although we have recently examined the lipid affinity of HwTx-IV (24), we have not done so in the context of a comparative analysis with native GMTs. GsMTx-IV is a known modulator of stretch-activated mechano-sensitive channels with a mechanism of action that is primarily related to interactions with the lipid bilayer (12, 25) and was included in the present study as a positive control for the lipid affinity studies and as a negative control for the studies on NaVs. SgTx-I is a known modulator of KV channels and is an inhibitor of the voltage of inactivation of NaV1.2 (26–28) and, like GsMTx-IV, was included as a negative control for the studies on NaVs. Our results suggest that the conserved amphipathic surface profile of spider-derived GMTs is most probably an adaptation that allows the concomitant modulation of several voltage-gated ion channels and that GMTs have preferential affinity for anionic model membranes.

Results

Oxidative folding of GMTs

To optimize the yield of GMTs with correct disulfide connectivity, each peptide was subjected to 3–5 oxidative folding trials in which the effects of temperature and folding buffer were examined (pH was always 7.7–8.0) (Table S1). Peptide folding was monitored using analytical reverse-phase HPLC (RP-HPLC) and LC/MS (Fig. S1 and Table S1). Most GMTs were successfully folded at 25 °C in buffer containing 7.5% (v/v) acetonitrile (ACN) (method A). GsMTx-IV was folded using both method A and B but formed aggregates using method B, probably because of the lack of organic solvent (Table S1). Furthermore, oxidation using method B took 24 h for GsMTx-IV compared with 16 h for method A. Formation of disulfide bonds of both HnTx-IV and HwTx-IV proceeded in the absence of organic solvent at room temperature in 16 h (methods C and D), whereas SgTx-I and ProTx-I required a slow reaction in 0.1 M ammonium acetate buffer, using 2 M urea at 4 °C for 72 h (method E).

NMR analysis of the GMTs

One-dimensional 1H spectra (Fig. S2) of all GMTs revealed good dispersion of amide-proton resonances (7–10 ppm), suggesting that the peptides were folded and structured. Hα chemical shifts derived from two-dimensional TOCSY and NOESY

![Figure 1. Surface profiles and sequences of the panel of nine GMTs used in this study.](image-url)
spectra were used for sequential assignment of the peptides (Fig. 2), and Hα shifts for GpTx-I (23), HnTx-IV (PDB code 1NIY) (21), HwTx-IV (PDB code 2M4X), (29), and ProTx-I (PDB code 2M9L) (30) were in good agreement with literature values, with small differences attributable to differences in chemical shift referencing or pH (Fig. 2). Structures of GsMTx-IV and SgTx-I are available (31, 32), but Hα shifts have not been reported (Fig. 2). The solution structures and chemical shift assignments for CcoTx-I (PDB code 6BR0; BMRB 30376) and CcoTx-II (PDB code 6BTV; BMRB 30377) are reported here for the first time and have been submitted to the Protein Data Bank and to the BioMagnetic Resonance Bank, respectively (Fig. 3A and Table S2). The disulfide bridges in these GMTs form a classical inhibitory cystine knot motif in which the cystine knot stabilizes a structure composed of loops, turns, and two antiparallel β strands (Tyr20–Cys22 and Cys29–Tyr31). The hydrophobic residues form a cluster with the side chains showing π–π stacking and attractive hydrophobic interactions (Fig. 3B). The structure for PaurTx-III, which we recently solved and submitted to the PDB (PDB code 5WE3; BMRB 30317) is also shown (Fig. 3) (33).

GMT–lipid bilayer interactions

Surface plasmon resonance (SPR) was used to compare GMT affinity for different model membranes. Comparisons are made relative to GsMTx-IV, which had the highest affinity for all of the model membranes (Fig. 4 and Table S3). Within the context of the current study, affinity refers to amount of peptide bound to lipid (peptide/lipid (P/L) (mol/mol)) and the rate of dissociation of the peptide from the lipid bilayer (Fig. 4 and Table S3). Here, “weak affinity” refers to GMTs that either dissociate from the lipid bilayers rapidly or do not reach a P/L (mol/mol) that is as high as GsMTx-IV. In some instances, we compare the affinity of specific GMTs with different model membranes, in which case “weak affinity,” “high affinity,” or “preferential affinity” compares a specific peptide’s affinity for one model membrane with another model membrane.

Our examination of GMT interactions with model membranes began with lipid bilayers composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as phospholipids containing phosphatidylycholine headgroups are the most abundant phospholipids in the outer leaflet of healthy mammalian cells (34). Sensorgrams and concentration-response curves revealed that GsMTx-IV had the highest affinity (highest amount of maximum peptide bound to lipid (i.e. 0.071 P/L (mol/mol)) with the slowest dissociation from the POPC model membranes (Fig. 4 and Table S3). The remaining peptides had weak affinity (0.002–0.031 P/L (mol/mol)) for POPC lipid bilayers (Fig. 4 and Table S3).

There is evidence that voltage-gated ion channels are embedded within lipid rafts that form domains around these membrane proteins for functional and structural integrity (35, 36). A mixture of POPC/sphingomyelin (SM)/cholesterol (CHOL) (2.7:4:3.3 molar ratio) was therefore used to mimic the environment formed by lipid rafts (37, 38). GsMTx-IV and CcoTx-II showed the highest amount of peptide bound to lipid (0.045 and 0.041 P/L (mol/mol), respectively), although...
CcoTx-II dissociated faster than GsMTx-IV. All other peptides bound weakly to POPC/SM/CHOL model membranes (0.012–0.028 P/L (mol/mol)) (Fig. 4 and Table S3).

We also examined GMT affinity for anionic POPC/ceramide 1-phosphate (C1P)/CHOL (2.7:3.3:4) model membranes, in which C1P possesses a negatively charged headgroup. It was previously shown that GMTs have stronger affinity for voltage-gated ion channels when sphingomyelinase D (SMase D), an enzyme found in the venom of sicariid spiders, hydrolyzes SM to C1P (35, 36, 38). The GMTs had the highest affinity for this model membrane compared with other model membranes used in this study except for PaurTx-3, which showed weak affinity for this lipid type (0.001 P/L (mol/mol)) (Fig. 4 and Table S3).

We also examined GMT affinity for POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) (4:1) model membranes because phosphatidylserine phospholipids have frequently been used to mimic the influence of anionic moieties found on the outer leaflet of cell membranes (11, 24, 38, 39). CcoTx-II, HnTx-IV, ProTx-I, and HwTx-IV showed preferential binding to POPC/POPS (4:1) over POPC lipid bilayers (0.045, 0.023, 0.049, and 0.013 P/L (mol/mol), respectively, for POPC/POPS compared with 0.023, 0.002, 0.029, and 0.004 P/L (mol/mol), respectively, for POPC). However, there was no difference between binding to POPC and POPC/POPS (4:1) for CcoTx-I, GsMTx-IV, GpTx-I, and SgTx-I (Fig. 4 and Table S3).

Phosphatidylinositol phospholipids are negatively charged; they form a ringlike shell around transmembrane proteins and may have a role in modulating the function of voltage-gated ion channels (37, 40, 41). Thus, we examined the affinity of HnTx-IV, HwTx-IV, ProTx-I, and SgTx-II for model membranes composed of POPC/l-α-phosphatidylinositol (PI) (4:1). HnTx-IV had the highest amount of peptide bound to model membrane (0.055 P/L (mol/mol)) but dissociated rapidly (Fig. 4), whereas HwTx-IV had the lowest affinity (0.015 P/L (mol/mol)). The four peptides bound to POPC/PI with higher affinity than their binding to POPC lipid bilayers (0.055, 0.015, 0.042, and 0.042 P/L (mol/mol) for HnTx-IV, HwTx-IV, ProTx-I, and SgTx-I, respectively, at POPC/PI compared with 0.002, 0.004, 0.029, and 0.020 P/L (mol/mol), respectively, for POPC) (Fig. 4 and Table S3).

GMT interactions with model membranes upon variation of ionic strength

To examine the importance of electrostatic interactions in driving GMT binding to model membranes, we compared GMT binding to POPC/POPS (4:1) lipid bilayers in buffers of varying ionic strength. All GMTs showed increased binding to lipid vesicles formed in lower-ionic strength buffer (50 mM NaCl) compared with lipid vesicles formed in high-ionic strength buffer (300 mM NaCl) (Fig. 5). PaurTx-III, HnTx-IV, and GpTx-I had fast dissociation rates from lipid bilayers prepared in low ionic strength buffer, suggesting that these three GMTs form weaker electrostatic interactions with POPC/POPS (4:1) lipid bilayers than the remaining six GMTs (Fig. 5).
fluorescence emission of L-Trp in buffer (354 nm), suggesting that the peptides did not insert deeply into the lipid bilayer. For comparison, [E5K,E8K]MfVIA, a peptide that we have recently reported on, showed both an increase in quantum yield and a blue shift in the emission spectrum (Fig. 6), accompanied by a maximum P/L mol/mol ~0.5, as calculated using SPR in the presence of POPC/POPS model membranes (45).

Inhibitory potency of GMTs at Na\textsubscript{v},1.7

GMT inhibition of Na\textsubscript{v},1.7 current was examined using whole-cell patch-clamp electrophysiology. All peptides except for SgTx-I and GsMTx-IV inhibited Na\textsubscript{v},1.7 with mid-nanomolar potency, as reported for ProTx-I, GpTx-I, and HwTx-IV (19, 23, 46). HnTx-IV was the most potent inhibitor of Na\textsubscript{v},1.7, followed by ProTx-I, HwTx-IV, PaurTx-III, CcoTx-II, GpTx-I, and CcoTx-I in descending order of potency (Fig. 7).

Na\textsubscript{v} subtype selectivity of GMTs

Two-electrode voltage-clamp electrophysiology was used to examine the effect of GMTs on Na\textsubscript{v},1.2, Na\textsubscript{v},1.4, Na\textsubscript{v},1.5, and Na\textsubscript{v},1.6 expressed in *Xenopus* oocytes (difficulties with expression of Na\textsubscript{v},1.7 in oocytes precluded two-electrode voltage clamp studies). The GMTs showed an absence of selectivity when studied against the Na\textsubscript{v} channels (Fig. 8 and Table 1). ProTx-I, CcoTx-I, PaurTx-III, and CcoTx-II inhibited 80-100% of current from all of the Na\textsubscript{v} channels examined (Fig. 8 (A–D) and Table 1). HwTx-IV, HnTx-IV, and GpTx-I had the best overall selectivity, as they only showed complete current inhibition of Na\textsubscript{v},1.2 and Na\textsubscript{v},1.6 but did not completely inhibit current from Na\textsubscript{v},1.4 and Na\textsubscript{v},1.5, as seen for CcoTx-I, CcoTx-II, PaurTx-III, and ProTx-I (Fig. 8 and Table 1). HwTx-IV was equipotent on Na\textsubscript{v},1.2 and Na\textsubscript{v},1.6 (Fig. 8 and Table 1), whereas HnTx-IV was slightly more potent at Na\textsubscript{v},1.2 and had 2-fold lower potency for Na\textsubscript{v},1.6 (Fig. 8 and Table 1). GpTx-I had the best overall selectivity, with a 6-fold difference in potency between Na\textsubscript{v},1.6 and Na\textsubscript{v},1.2 (Fig. 8 and Table 1). GsMTx-IV failed to inhibit 100% of current from any Na\textsubscript{v} channel subtype, and SgTx-I caused a delay in channel inactivation accompanied by an increase in sodium peak current. Despite these differences between GsMTx-IV and SgTx-I, all remaining seven GMTs, both GsMTx-IV and SgTx-I were not selective (Fig. 8 and Table 1).

Examination of the physicochemical properties of the GMTs

All nine GMTs have similar net positive charge with no observable relationship between net charge and affinity for lipid membranes (Table 2 and Fig. 9A). GMT hydrophobicity was compared using their RP-HPLC retention times, and the proportion of apolar solvent-accessible surface area (SASA) was used to measure the solvent-accessible hydrophobic area of each peptide. There was no correlation between GMT hydrophobicity or apolar SASA and membrane binding (Table 2 and Fig. 9 (B and C)). For instance, CcoTx-I and PaurTx-III have retention times of ~27 min and apolar SASAs of 57 and 65%, respectively, but these peptides show different affinities for the lipid bilayers examined (Table 2 and Figs. 4 and 9). Likewise, PaurTx-III and GsMTx-IV have the highest percentage of apolar SASAs (65 and 66%, respectively) but consistently had the...
weakest and strongest affinities, respectively, for the model membranes studied (Table 2 and Figs. 4 and 9).

Discussion

GMTs isolated from spider venom share a conserved hydrophobic patch surrounded by a ring of positively charged residues that together have been proposed to promote peptide affinity for lipid membranes (Fig. 1) (8, 47). Here, we examined the extent to which nine GMTs bound to a series of model membranes, whether there is a relationship between membrane binding and inhibition of NaV1.7, and whether GMT amphipathicity is important for membrane binding and/or inhibition of NaV channels.

GMT affinity for model lipid bilayers

Overall, the nine GMTs showed weak affinity for model membranes prepared using POPC and mixtures of POPC/SM/CHOL (Fig. 4 and Table S3), in agreement with previous studies showing that GMTs such as VsTx-I, Hd1a, and ProTx-II have weak affinity for zwitterionic model membranes (8, 13, 17, 24, 38, 39, 46).

GMTs showed preferential affinity for negatively charged POPC/C1P/CHOL model membranes compared with those made from POPC/SM/CHOL (Fig. 4 and Table S3), as observed previously for ProTx-II (38). Interestingly, the pharmacology of some voltage-gated ion channels has previously shown sensitivity to the enzymatic conversion of SM to C1P by SMase D (35, 36); it is possible that saciariid spiders take advantage of the presence of SMase D, and perhaps additional venom components, to increase GMT binding to both cell membranes and the voltage-gated ion channels to optimize activity (38). This hypothesis is supported by a study showing that ProTx-I has increased affinity for voltage-gated ion channels upon conversion of SM to C1P by SMase D (36).
driven by electrostatic interactions between the positively charged peptides and anionic lipid headgroups and may be indicative of GMT affinity for negative moieties on the outer leaflet of cell membranes (Table 2). The importance of electrostatic interactions is further supported by the observed increase in GMT affinity for POPC/POPS with low ionic strength (see results with 50 mM NaCl; Fig. 5). These results agree with previous studies that also emphasized the importance of electrostatic interactions in driving GMT binding to lipid bilayers (10, 18, 38, 39).

Analysis of the environment surrounding GMT Trp residues in anionic lipids

The absence of a blue shift or change in quantum yield in the fluorescence spectra of the GMTs in the presence of anionic lipids (Fig. 6) suggests that they adopt a shallow position on anionic lipid bilayers as reported for ProTx-II and ProTx-I (38, 39). Although SgTx-I and HaTx-I were previously shown to insert into lipid membranes up to a distance of ~9 Å from the center of the bilayer, these studies employed model membranes containing 50% anionic PG-phospholipids, and model membranes were prepared in solutions without NaCl (9, 48). Some GMTs like VsTx-I modulate the function of bacterial voltage-gated potassium channels (3, 13, 49); therefore, the use of PG-phospholipids can be justified in the studies of the trimolecular complex formed by these peptides. However, PG-phospholipids are unlikely to be found on the outer leaflet of mammalian cell membranes (34) and therefore were not included in the current study. Taken together, the present work indicates that GMTs adsorb to the outer leaflet of anionic lipid bilayers.

Relationship between GMT–membrane binding and NaV channel inhibition

Potency of the panel of GMTs for NaV.1.7 appears not to be correlated to affinity for any model membrane. For example, GsMTx-IV and SgTx-I are both known poor inhibitors of NaV.1.7 but had different affinities for the model membranes. The other GMTs studied were mid-nanomolar inhibitors of NaV.1.7 but had varied affinities for the model membranes. We previously showed that reducing the membrane affinity of ProTx-II results in analogues with weaker potency at NaV.1.7 (38). We also demonstrated that the membrane binding and potency of HvTx-IV can be increased without changing the pharmacophore of this particular GMT (24). Thus, although membrane binding is not essential for inhibition of NaV.1.7, modulating affinity of individual GMTs for lipid bilayers can be exploited to increase or decrease potency.

We next examined whether differences in membrane binding properties might be important in dictating NaV subtype selectivity. None of the GMT studied displayed exceptional selectivity for any NaV channel subtype (Fig. 8 and Table 1), affirming previous reports on the promiscuity of most of these peptides (14, 19, 20). There was also no direct correlation between selectivity and membrane binding. However, GpTx-I, HvTx-IV, and HnTx-IV, three peptides with an overall weak affinity for model membranes in the current study (Fig. 4), had the best overall selectivity, as they achieved 100% current inhibition and strong potency only for NaV.1.2 and NaV.1.6 (Fig. 8). Conversely, ProTx-I, CcoTx-I, and CcoTx-II, three peptides that achieved 100% current inhibition for all three NaV chan-
macrophores of some GMTs that inhibit Na\(_v\) channels, including HnTx-IV, HwTx-IV, and GpTx-I for Na\(_v\)1.7 (23, 29, 53).

Conclusions and summary

This study revealed that some GMTs adsorb via electrostatic interactions to the outer leaflet of anionic lipid membranes and that the amphipathic surface profile of the peptides is most probably an adaptive strategy that enables simultaneous inhibition of several voltage-gated ion channels (Fig. 10), in a multipronged approach to immobilize insect prey (54). From a pharmacological perspective, application of the trimolecular complex to rational drug design cannot be based on broad generalizations about GMTs, but each GMT will require focused studies to explore the possibilities that membrane interactions present.

Most studies on the trimolecular complex have thus far been limited by distinct studies of GMT–model membrane and GMT–ion channel interactions. However, as novel systems continue to be developed, including the use of nanodiscs containing the transmembrane voltage-gated ion channels in combination with rationally chosen model membranes, techniques such as cryo-EM and NMR might be able to provide better insights into the tripartite interactions occurring between GMTs, lipids, and the voltage-gated ion channels (13, 15, 55).

Experimental procedures

Peptide synthesis and folding

GMTs were synthesized using Fmoc (N-(9-fluorenylmethoxy carbonyl) chemistry and purified as described previously (24, 38). Briefly, peptides were assembled on a 2-chlorotryptic peptide synthesizer (Gyros Protein Technologies, Tuscon, AZ). Peptides were released from resin, and side-chain protecting groups were simultaneously removed by treatment with 96% (v/v) TFA, 2% (v/v) H\(_2\)O, and 2% (v/v) triisopropylsilane for 2.5 h. Cleaved, reduced peptides were purified using RP-HPLC on a C18 column (Phenomenex Jupiter, 250 × 50 mm, 10 μm; Phenomenex, Torrance, CA), using a 1%/min gradient of 0–50% solvent B (solvent B: 90% (v/v) ACN and 0.05% (v/v) TFA) in solvent A (0.05% (v/v) TFA), and peptide elution was monitored at 215 and 280 nm. Electrospray ionization-MS was used to identify relevant fractions, which were pooled and lyophilized before oxidative folding of the peptides.

Optimal conditions for oxidative folding of GMTs were chosen from one of several buffer formulations (Table 1). In each case, peptides were added into the oxidation buffer dropwise to achieve a final peptide concentration of 0.1 mg/ml and oxidized at 25 °C unless otherwise stated. CcoTx-I, CcoTx-II, GsMTx-IV, and PaurTx-III were dissolved in 50% (v/v) ACN and oxidized by dissolving the peptide in 50% (v/v) ACN and adding 2 M acetic acid (method A) (23). GsMTx-IV was also successfully oxidized by dissolving the peptide in 50% (v/v) ACN and adding it to 0.1 M Tris, 0.81 mM GSH, and 0.81 mM GSSG at pH 7.7. Reactions were quenched by lowering the solution to pH 4 after 16 h using 2 M acetic acid (method A) (23).
Calculations of physicochemical properties

The SASA of each peptide was calculated with GETAREA (58), using a 1.4-Å water probe to compare polar and apolar surface areas of the peptides. Propka (Jensengroup) (59) was used to assign protonation states to the side chains at pH 7.4 for net charge calculations. Hydrophobicity was assumed to be directly proportional to retention time of the peptides when eluted using a 1%/min gradient of 0–60% solvent B at a flow rate of 0.3 ml/min on analytical RP-HPLC using a C18 column (Grace Vydac, 150 × 2.1 mm, 5 μm).

Peptide quantification

Peptide concentrations were determined from absorbance at 280-nm using theoretical extinction coefficients (ε_{280}) calculated from the sum of contributions from Trp amino acid residues ($\varepsilon_{280} = 5690 \text{ M}^{-1}\text{cm}^{-1}$), Tyr amino acid residues ($\varepsilon_{280} = 1280 \text{ M}^{-1}\text{cm}^{-1}$), and disulfide bonds ($\varepsilon_{280} = 120 \text{ M}^{-1}\text{cm}^{-1}$) (60). CcTx-I $\varepsilon_{280} = 14300 \text{ M}^{-1}\text{cm}^{-1}$; CcTx-II $\varepsilon_{280} = 15,580 \text{ M}^{-1}\text{cm}^{-1}$; GpTx-I $\varepsilon_{280} = 7330 \text{ M}^{-1}\text{cm}^{-1}$; GsMTx-IV $\varepsilon_{280} = 11,740 \text{ M}^{-1}\text{cm}^{-1}$; HnTx-IV $\varepsilon_{280} = 7330 \text{ M}^{-1}\text{cm}^{-1}$; HwTx-IV $\varepsilon_{280} = 7365 \text{ M}^{-1}\text{cm}^{-1}$; ProTx-I $\varepsilon_{280} = 12,865 \text{ M}^{-1}\text{cm}^{-1}$; SgTx-I $\varepsilon_{280} = 8610 \text{ M}^{-1}\text{cm}^{-1}$.

Preparation of lipid vesicles

Lipids used included CHOL (Sigma-Aldrich), PI (soy extract), POPC, POPS, C1P, and SM (Avanti Polar Lipids, Alabaster, AL). Molar ratio mixtures of the lipids were prepared in chloroform, the solvent was evaporated under a stream of N2, and then lipids were dried overnight in vacuo. Lipid films were hydrated with buffer and lipid suspensions subjected to eight freeze-thaw cycles. Liposomes were then sized by extrusion through a polycarbonate filter (50 nm to produce small unilamellar vesicles (SUVs) or 100 nm for LUVs).

GMT–membrane interactions

SPR (Biacore 3000, GE Healthcare Life Sciences) was used to examine the binding of GmTs to model membranes made from molar ratio mixtures of POPC, POPC/POPS (4:1), POPC/PI (4:1), POPC/SM/CHOL (2.7:4:3.3), and POPC/C1P/CHOL (2.7:4:3.3). Unless otherwise stated, SUVs were prepared in HEPES buffer solution (10 mM HEPES, 150 mM NaCl, pH 7.4) and deposited on L1 sensor chips (2 μl/min, 2600 s). Peptides were injected at various concentrations (0–64 μM) over the lipid surface at a rate of 5 μl/min for 180 s; the dissociation phase was followed for 600 s. The effect of ionic strength on GMT affinity for lipid membranes was examined by comparing binding of peptide binding to POPC/POPC (4:1) bilayers in 10 mM HEPES, pH 7.4, at varying concentrations of NaCl (50, 150, or 300 mM). The same buffer was used to prepare SUVs and peptide samples and as running buffer in SPR. All experiments were conducted at 25 °C. Binding affinity was compared by calculating the peptide/lipid ratio near the end of peptide injection and close to equilibrium ($t = 170$ s). Data were corrected for buffer contribution and normalized using the assumption that 1 response unit = 1 pg/mm² of lipid deposited (or peptide bound) (61). Concentration–response curves were fitted with a standard Hill equation using Prism version 7 (GraphPad Software Inc., La Jolla, CA). This is the first time we have reported on the current data for peptide–lipid affinity for CcTx-I, CcTx-II, GpTx-I, GsMTx-IV, HnTx-IV, PaurTx-3, and SgTx-I (Fig. 4); however, the data for peptide–lipid affinity for HwTx-IV as shown for POPC, POPC/POPS, POPC/SM/CHOL, and POPC/C1P/CHOL are in agreement with our recent study on HwTx-IV (Fig. 4 and Table S3) (24).
Fluorescence spectroscopy

Trp fluorescence emission spectra ($\lambda_{\text{excitation}} = 280$ nm) of each GMT (25 μM, or 12.5 μM for PaurTx-III because the fluorescence emission spectrum for this GMT was saturated at 12.5 μM) were acquired upon titration with LUV suspensions (0–4 mM) to examine whether the environment surrounding the peptide Trp residue changes upon lipid titration (62). Data were corrected for dilution and light dispersion upon titration with vesicle suspension. The overall area of the emission spectra was used to compare quantum yield, and spectra were normalized to maximum fluorescence emission wavelength to check for presence of a blue shift. The fluorescence spectroscopy experiments for the eight peptides are represented here for the first time (Fig. 6), and the data for HwTx-IV are in agreement with our recently published work (24). Previously published spectra for [ESK,E8K]MfVIA are included as a positive control (45).

Cell culture

Human embryonic kidney 293 (HEK293) cells expressing human NaV1.7 channels along with the $\beta 1$ auxiliary subunits (SB Drug Discovery, Ballerup, Denmark) at room temperature were maintained at 37 °C in a humidified 5% CO$_2$ incubator in minimum essential medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum, 1% (v/v) GlutaMAX, 0.004 mg/ml basicidin, and 0.6 mg/ml Geneticin. Cells were subcultured every 3 days in a 1:5 ratio using 0.1% (v/v) trypLE express reagent (Thermo Fisher Scientific) in a T75 flask.

Whole-cell patch-clamp electrophysiology on HEK cells

The inhibitory potency of GMTs on hNaV1.7 stably expressed in HEK293 cells was examined using an automated QPatch-16 electrophysiology platform (Sophion Bioscience, Ballerup, Denmark) at room temperature (~25 °C). The intracellular solution comprised 140 mM CsF, 1 mM EGTA, 5 mM BaCl$_2$, 10 mM HEPES, and 10 mM NaCl, pH 7.4, with CsOH (320 mosM). The extracellular solution comprised 2 mM CaCl$_2$, 1 mM MgCl$_2$, 10 mM HEPES, 4 mM KCl, 145 mM NaCl, pH 7.4, with NaOH (305 mosM). Solutions were filtered using a 0.22-μm membrane filter (Merck Millipore, Cork, Ireland). Before recordings, cells were detached from culture flasks with Detachin (Genlantis, San Diego, CA). Na$^+$ currents were acquired at 25 kHz and filtered at 4 kHz. Cells with <1 nA peak current were excluded. To determine IC$_{50}$ values, NaV$_{1.7}$ cells were held at −90 mV in the presence of varying concentrations of GMT and then stepped to −120 mV for 200 ms, followed by a 20-ms test depolarization to 0 mV. Na$^+$ currents were normalized after leak subtraction. Offline analysis was performed using Microsoft Excel and GraphPad Prism version 7. Data are presented as mean ± S.E. of at least three independent experiments.

Two-electrode voltage-clamp electrophysiology

Harvesting of stage V-VI oocytes from ovarian lobes of *Xenopus laevis* and the subsequent expression of NaV$_{1.2}$, NaV$_{1.4}$, NaV$_{1.5}$, and NaV$_{1.6}$ channels were performed as described (63). After injection with cRNA (50 nl of 1 ng/ul) using a microinjector (Drummond Scientific, Broomall, PA), oocytes were incubated in 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl$_2$, 2 mM MgCl$_2$, and 5 mM HEPES, pH 7.4, supplemented with 50 mg/liter gentamicin sulfate. Whole-cell currents were recorded after 1–4-day incubation periods at room temperature using two-electrode voltage-clamp electrophysiology recordings using a Geneclamp 500 amplifier (Molecular Devices, Downingtown, PA) together with pClamp data acquisition software (Axon Instruments, Union City, CA). The bath solution contained 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl$_2$, 2 mM MgCl$_2$, and 5 mM HEPES, pH 7.4. Voltage and current electrodes were filled with 3 M KCl (resistance 0.8–1.5 megaohms) (63). A four-pole low-pass Bessel filter was used to filter currents at 1 kHz with sampling at 20 kHz. A −P/4 protocol was used for leak subtraction. Currents for Na$_v$ channels were elicited from the oocytes using 30-ms step depolarizations from −90 mV to 70 mV in 5-mV increments. Current traces were obtained by 50-ms depolarizations to V_{max}, the voltage at maximal current in control settings. Modulation of current by GMTs was examined by normalizing the data to peak current amplitude ($I_{30\text{ms}}/I_{\text{max}}$), and concentration–response curves were used to obtain EC$_{50}$ values as before (63). Data are presented as mean ± S.E. of at least three independent experiments. Mature female *X. laevis* were purchased from Nasco (Fort Atkinson, Wisconsin) and were housed in the Aquatic Facility (KU Leuven) in compliance with the regulations of the European Union concerning the welfare of laboratory animals as declared in Directive 2010/63/EU. The use of *X. laevis* was approved by the Animal Ethics Committee of KU Leuven (license number LA1210239, project number P038/2017).

References

GMT amphipathicity and Na\textsubscript{v} inhibition

