Introduction
- Larsbrink J.
- Rogers T.E.
- Hemsworth G.R.
- McKee L.S.
- Tauzin A.S.
- Spadiut O.
- Klinter S.
- Pudlo N.A.
- Urs K.
- Koropatkin N.M.
- Creagh A.L.
- Haynes C.A.
- Kelly A.G.
- Cederholm S.N.
- Davies G.J.
- Martens E.C.
- Brumer H.
Results
BT0263 releases l-rhamnose from AGP

Substrate | Km | kcat | kcat/Km |
---|---|---|---|
μm | min−1 | min−1 m−1 | |
BT0263 | |||
GA | 450.3 ± 77.5 | 64.56 ± 4.94 | 143,400 ± 63,700 |
Trisaccharide | 7,400 ± 200 | ||
Tetrasaccharide | 5,400 ± 600 | ||
Heptasaccharide | 24,100 ± 800 | ||
BACCELL_00875 | |||
GA | 31.29 ± 2.54 | 26.91 ± 3.2 | 860,019 ± 125,984 |
Trisaccharide | 8,901 ± 450 | ||
Tetrasaccharide | 7,888 ± 751 | ||
Heptasaccharide | 26,390 ± 1,310 | ||
BACFIN_07013 | |||
GA | 26.87 ± 4.12 | 13.39 ± 0.61 | 498,235 ± 148,058 |
Trisaccharide | 6,541 ± 421 | ||
Tetrasaccharide | 7,989 ± 630 | ||
Heptasaccharide | 25,213 ± 1,850 | ||
BT3687 | |||
Hexasaccharide | 71.87 ± 12.51 | 35.62 ± 3.40 | 49,5617 ± 271,782 |
Δ4,5UA-GlcNAc | 947 ± 33 |
Metal | kcat/Km | Relative activity |
---|---|---|
min−1 m−1 | % | |
No addition | 860019 ± 94602 | 100 |
EDTA treated | 825618 ± 90818 | 96 |
Mg2+ | 912018 ± 89872 | 95 |
Ca2+ | 774017 ± 85142 | 90 |
Mn2+ | 782617 ± 86087 | 91 |
Zn2+ | 739616 ± 81358 | 86 |
BT0263 is a lyase that cleaves Rha-α1,4-GlcA linkages

Crystal structure of members of PL27

Active site of BACCELL_00875
kcat/Km | Relative activity | |
---|---|---|
min−1 m−1 | % | |
BACCELL_00875 | ||
Wild type | 860019 ± 125984 | 100 |
E537Q | 91.9 ± 1.1 | 0.01 |
R593A | 199.1 ± 1.4 | 0.02 |
D596A | 67.3 ± 0.94 | 0.008 |
D596N | 204.1 ± 19.8 | 0.02 |
W599A | 17.1 ± 5.5 | 0.002 |
H612A | 83.9 ± 2.45 | 0.01 |
Y613F | Inactive | 0 |
R445A | 958.3 ± 103.1 | 0.11 |
BT3687 | ||
Wild type | 495617 ± 271782 | 100 |
D160A | Inactive | 0 |
D116A | Inactive | 0 |
Crystal structure of BT3687

Phylogeny of the new PL family

Discussion

Conclusions
Experimental procedures
Materials
Cloning, expression, and purification
Mutagenesis
Purification of oligosaccharides
Enzyme assays
Mass spectrometry
Crystallization, data collection, structure solution, and refinement
Data collection | BACCELL_00875_SeMet | BACCELL_00875 | BT3687 |
---|---|---|---|
Date | 31/07/16 | 31/07/16 | 24/04/14 |
Source | Diamond I02 | Diamond I02 | Diamond I04 |
Wavelength (Å) | 0.98 | 0.98 | 0.98 |
Space group | P41212 | P3221 | H32 |
Cell dimensions | |||
a, b, c (Å) | 116.7, 116.7, 228.5 | 117.6, 117.6, 202.0 | 88.4, 88.4, 215.8 |
α, β, γ (°) | 90, 90, 90 | 90, 90, 120 | 90, 90, 120 |
No. of measured reflections | 3,309,700 (174,829) | 1,490,439 (177,287) | 771,167 (15,963) |
No. of independent reflections | 76,640 (4,464) | 73,190 (8,697) | 87,238 (4,048) |
Resolution (Å) | 47.48–2.24 (2.29–2.24) | 45.45–1.70 (1.73–1.70) | 21.13–1.26 (1.28–1.26) |
CC1/2 | 0.997 (0.707) | 0.998 (0.496) | 0.998 (0.524) |
Mean I/σI | 10.6 (1.7) | 10.8 (1.5) | 13.0 (2.4) |
Completeness | 100 (100) | 100 (100) | 99.5 (94.3) |
Redundancy | 43.2 (39.2) | 8.4 (8.4) | 8.8 (3.9) |
Anomalous completeness | 100 (99.8) | ||
Anomalous redundancy | 22.5 (19.8) | ||
Refinement | |||
Rwork/Rfree | 20.0/25.0 | 16.0/18.0 | 12.1/14.8 |
No. atoms | |||
Protein | 10,688 | 10,920 | 2,914 |
Water | 244 | 1,019 | 299 |
B-factors | |||
Protein | 41.5 | 20.9 | 12.0 |
Water | 36.8 | 32.0 | 23.5 |
R.m.s. deviations | |||
Bond lengths (Å) | 0.0110 | 0.0107 | 0.0127 |
Bond angles (°) | 1.48 | 1.45 | 1.52 |
PDB code | 5NOK | 5NO8 | 5NOA |
Family delineation and phylogeny
Author contributions
Acknowledgments
Supplementary Material
Author Profile
References
- Diversity, stability and resilience of the human gut microbiota.Nature. 2012; 489: 220-230
- Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.PLos Biol. 2011; 9: e1001221
- Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.Nature. 2015; 517: 165-169
- A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.Nature. 2014; 506: 498-502
- Complex pectin metabolism by gut bacteria reveals novel catalytic functions.Nature. 2017; 544: 65-70
- Glycan complexity dictates microbial resource allocation in the large intestine.Nat Commun. 2015; 6: 7481
- How glycan metabolism shapes the human gut microbiota.Nat. Rev. Microbiol. 2012; 10: 323-335
- Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm.J. Biol. Chem. 2009; 284: 24673-24677
- The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42: D490-D495
- Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5).BMC Evol. Biol. 2012; 12: 186
- The complex structures of arabinogalactan-proteins and the journey towards understanding function.Plant Mol. Biol. 2001; 47: 161-176
- The core carbohydrate structure of Acacia seyal var. seyal (gum arabic).Food Hydrocolloids. 2013; 32: 221-227
- l-Fucose-containing arabinogalactan-protein in radish leaves.Carbohydr. Res. 2015; 415: 1-11
- Exudate gums: occurrence, production, and applications.Appl. Microbiol. Biotechnol. 2003; 63: 10-21
- Dissecting conformational contributions to glycosidase catalysis and inhibition.Curr. Opin. Struct. Biol. 2014; 28: 1-13
- Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont.Nat. Chem. Biol. 2010; 6: 125-132
- Nomenclature for sugar-binding subsites in glycosyl hydrolases.Biochem. J. 1997; 321: 557-559
- Uronic polysaccharide degrading enzymes.Curr. Opin. Struct. Biol. 2014; 28: 87-95
- A further amendment to the classical core structure of gum arabic (Acacia senegal).Food Hydrocolloids. 2013; 31: 42-48
- Unusual active site location and catalytic apparatus in a glycoside hydrolase family.Proc. Natl. Acad. Sci. U.S.A. 2017; 114: 4936-4941
- Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization.Appl. Environ. Microbiol. 2016; 82: 1686-1692
- Characterization of an exo-β-1,3-d-galactanase from Sphingomonas sp. 24T and its application to structural analysis of larch wood arabinogalactan.Appl. Microbiol. Biotechnol. 2011; 90: 1701-1710
- Characterization of an exo-β-1,3-d-galactanase from Streptomyces avermitilis NBRC14893 acting on arabinogalactan-proteins.Biosci. Biotechnol. Biochem. 2006; 70: 2745-2750
- Convergent evolution sheds light on the anti-β-elimination mechanism common to family 1 and 10 polysaccharide lyases.Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 12067-12072
- Structural and mechanistic classification of uronic acid-containing polysaccharide lyases.Glycobiology. 2010; 20: 1547-1573
- Alginic acid metabolism in bacteria. I. Enzymatic formation of unsaturated oligosac-charides and 4-deoxy-l-erythro-5-hexoseulose uronic acid.J. Biol. Chem. 1962; 237: 309-316
- Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens.J. Biol. Chem. 2014; 289: 11385-11395
- Crystal structure of unsaturated glucuronyl hydrolase complexed with substrate: molecular insights into its catalytic reaction mechanism.J. Biol. Chem. 2006; 281: 29807-29816
- Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens.J. Biol. Chem. 2010; 285: 24519-24528
- Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron.Acta Crystallogr. D Biol. Crystallogr. 2015; 71: 408-415
- Dali server: conservation mapping in 3D.Nucleic Acids Res. 2010; 38: W545-W549
- A novel unsaturated β-glucuronyl hydrolase involved in ulvan degradation unveils the versatility of stereochemistry requirements in family GH105.J. Biol. Chem. 2014; 289: 6199-6211
- A novel glycoside hydrolase family 105: the structure of family 105 unsaturated rhamnogalacturonyl hydrolase complexed with a disaccharide in comparison with family 88 enzyme complexed with the disaccharide.J. Mol. Biol. 2006; 360: 573-585
- Active site of chondroitin AC lyase revealed by the structure of enzyme-oligosaccharide complexes and mutagenesis.Biochemistry. 2001; 40: 2359-2372
- Structural insights into substrate specificity and the anti-β-elimination mechanism of pectate lyase.Biochemistry. 2010; 49: 539-546
- The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi.J. Biol. Chem. 2004; 279: 9139-9145
- Glycosidase mechanisms.Curr. Opin. Chem. Biol. 2000; 4: 573-580
- A simple and rapid method for the permethylation of carbohydrates.Carbohydr. Res. 1984; 131: 209-217
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 125-132
- iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM.Acta Crystallogr. D Biol. Crystallogr. 2011; 67: 271-281
- How good are my data and what is the resolution?.Acta Crystallogr. D Biol. Crystallogr. 2013; 69: 1204-1214
- HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs.J. Appl. Crystallogr. 2004; 37: 843-844
- Experimental phasing with SHELXC/D/E: combining chain tracing with density modification.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 479-485
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40: 658-674
- Automated search-model discovery and preparation for structure solution by molecular replacement.Acta Crystallogr. D Biol. Crystallogr. 2007; 63: 447-457
- CHAINSAW: a program for mutating pdb files used as templates in molecular replacement.J. Appl. Crystallogr. 2008; 41: 641-643
- Fitting molecular fragments into electron density.Acta Crystallogr. D Biol. Crystallogr. 2008; 64: 83-89
- Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7.Nat. Protoc. 2008; 3: 1171-1179
- REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use.Acta Crystallogr. D Biol. Crystallogr. 2004; 60: 2184-2195
- MolProbity: all-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 12-21
- Multiple sequence alignment with hierarchical clustering.Nucleic Acids Res. 1988; 16: 10881-10890
- Amino acid substitution matrices from protein blocks.Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 10915-10919
- BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.Mol. Biol. Evol. 1997; 14: 685-695
- Dendroscope: an interactive viewer for large phylogenetic trees.BMC Bioinformatics. 2007; 8: 460
- HMMER web server: interactive sequence similarity searching.Nucleic Acids Res. 2011; 39: W29-W37
Article info
Publication history
Footnotes
This work was supported by the European Research Council (ERC) Grant Agreement 322820. The authors declare that they have no conflicts of interest with the contents of this article.
This article contains supplemental Figs. S1 and S2.
The atomic coordinates and structure factors (codes 5NOK, 5NO8, and 5NOA) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy