Introduction

- Picaud S.
- Wells C.
- Felletar I.
- Brotherton D.
- Martin S.
- Savitsky P.
- Diez-Dacal B.
- Philpott M.
- Bountra C.
- Lingard H.
- Fedorov O.
- Müller S.
- Brennan P.E.
- Knapp S.
- Filippakopoulos P.
Results
BET inhibitors block immediate-early transcription

BET proteins localize to the lytic origins of replication

BET inhibitors prevent lytic DNA replication
- Ramasubramanyan S.
- Osborn K.
- Al-Mohammad R.
- Naranjo Perez-Fernandez I.B.
- Zuo J.
- Balan N.
- Godfrey A.
- Patel H.
- Peters G.
- Rowe M.
- Jenner R.G.
- Sinclair A.J.

Gene | Coordinates | Log2 -fold change | p value |
---|---|---|---|
Late (12 of 18 change expression level) | |||
BNRF1 | 1691–5407 | −1.50 | 0.010 |
BCRF1 | 9631–10262 | −0.88 | 0.004 |
BOLF1 | 59905–62728 | +0.12 | 0.837 |
BORF1 | 63035–63880 | +0.07 | 0.908 |
BSRF1 | 74594–75316 | −0.02 | 0.739 |
BLRF1 | 76232–76574 | −1.41 | 0.031 |
BLLF1 | 77764–79904 | −1.79 | 0.001 |
BZLF2 | 89483–89828 | −1.90 | 0.004 |
BRRF2 | 93955–95631 | −1.44 | 0.009 |
BKRF2 | 97655–98064 | −1.71 | 0.015 |
BBRF1 | 101972–103659 | −0.70 | 0.064 |
BBRF3 | 106751–108075 | −1.37 | 0.032 |
BGRF1/BDRF1 | 112826–113190, 117017–118064 | −1.08 | 0.028 |
BDLF1 | 120189–121018 | −1.52 | 0.003 |
BcLF1 | 121099–125072 | −1.79 | 0.004 |
BXRF1 | 132847–133012 | −0.73 | 0.098 |
BVRF2 | 135628–136330 | −1.42 | 0.010 |
BILF2 | 137464–138282 | −0.74 | 0.080 |
Early (0 of 18 change expression level) | |||
BHLF1 | 38014–40529 | −0.92 | 0.069 |
BHRF1 | 41471–43251 | −1.14 | 0.129 |
BFLF1 | 44794–46235 | −0.68 | 0.139 |
BaRF1 | 66601–67551 | −0.31 | 0.377 |
BSLF1 | 72069–74593 | −0.48 | 0.208 |
BLLF3 | 75320–76218 | −0.31 | 0.330 |
BRLF1 | 90907–92727 | −0.03 | 0.713 |
BRRF1 | 92898–93827 | −0.35 | 0.255 |
BBLF4 | 99537–101587 | −0.35 | 0.258 |
BBLF2/BBLF3 | 104503–105098, 105227–106692 | +0.03 | 0.793 |
BcRF1 | 125423–127415 | −0.39 | 0.324 |
BXLF1 | 131022–132570 | +0.11 | 0.859 |
LF3 | 140692–143711 | −0.25 | 0.306 |
BALF5 | 152642–155265 | −0.28 | 0.214 |
BALF3 | 160532–160549 | −0.47 | 0.209 |
BALF2 | 160909–164356 | −0.42 | 0.269 |
BALF1 | 164388–164984 | −0.82 | 0.239 |
BARF1 | 165008–165712 | −0.71 | 0.166 |
Unassigned (0 of 6 change expression level) | |||
BCLT1 | 5868–6136 | −0.66 | 0.157 |
BCLT2 | 6172–6475 | −0.51 | 0.216 |
BFRF1A | 46281–46543 | −0.49 | 0.158 |
BGLF3 | 111830–112649 | −0.95 | 0.079 |
BDLF3.5 | 116767–116926 | −0.86 | 0.064 |
BVLF1 | 134887–135431 | −0.44 | 0.332 |
Gene | Coordinates | Log2 -fold change | p value |
---|---|---|---|
Late (4 of 18 change expression level) | |||
BNRF1 | 1691–5407 | −0.68 | 0.038 |
BCRF1 | 9631–10262 | +0.03 | 0.929 |
BOLF1 | 59905–62728 | −0.29 | 0.485 |
BORF1 | 63035–63880 | −0.22 | 0.621 |
BSRF1 | 74594–75316 | +0.27 | 0.418 |
BLRF1 | 76232–76574 | −0.54 | 0.127 |
BLLF1 | 77764–79904 | −0.73 | 0.112 |
BZLF2 | 89483–89828 | −0.94 | 0.233 |
BRRF2 | 93955–95631 | −0.54 | 0.115 |
BKRF2 | 97655–98064 | −0.78 | 0.009 |
BBRF1 | 101972–103659 | −0.11 | 0.504 |
BBRF3 | 106751–108075 | −0.48 | 0.088 |
BGRF1/BDRF1 | 112826–113190, 117017–118064 | −0.43 | 0.008 |
BDLF1 | 120189–121018 | −0.60 | 0.333 |
BcLF1 | 121099–125072 | −0.80 | 0.075 |
BXRF1 | 132847–133012 | −0.14 | 0.611 |
BVRF2 | 135628–136330 | −0.65 | 0.095 |
BILF2 | 137464–138282 | −0.28 | 0.017 |
Early (0 of 18 change expression level) | |||
BHLF1 | 38014–40529 | −0.45 | 0.297 |
BHRF1 | 41471–43251 | −0.56 | 0.054 |
BFLF1 | 44794–46235 | −0.28 | 0.473 |
BaRF1 | 66601–67551 | −0.23 | 0.445 |
BSLF1 | 72069–74593 | −0.20 | 0.578 |
BLLF3 | 75320–76218 | −0.21 | 0.458 |
BRLF1 | 90907–92727 | +0.07 | 0.796 |
BRRF1 | 92898–93827 | −0.10 | 0.689 |
BBLF4 | 99537–101587 | −0.19 | 0.180 |
BBLF2/BBLF3 | 104503–105098, 105227–106692 | +0.10 | 0.653 |
BcRF1 | 125423–127415 | +0.04 | 0.801 |
BXLF1 | 131022–132570 | +0.22 | 0.618 |
LF3 | 140692–143711 | −0.10 | 0.667 |
BALF5 | 152642–155265 | −0.22 | 0.311 |
BALF3 | 160532–160549 | −0.59 | 0.216 |
BALF2 | 160909–164356 | −0.38 | 0.375 |
BALF1 | 164388–164984 | −0.24 | 0.356 |
BARF1 | 165008–165712 | −0.38 | 0.078 |
Unassigned (0 of 6 change expression level) | |||
BCLT1 | 5868–6136 | +0.26 | 0.995 |
BCLT2 | 6172–6475 | +0.18 | 0.827 |
BFRF1A | 46281–46543 | −0.13 | 0.794 |
BGLF3 | 111830–112649 | −0.30 | 0.348 |
BDLF3.5 | 116767–116926 | −0.11 | 0.764 |
BVLF1 | 134887–135431 | −0.22 | 0.512 |

Discussion
- Sun X.
- Bristol J.A.
- Iwahori S.
- Hagemeier S.R.
- Meng Q.
- Barlow E.A.
- Fingeroth J.D.
- Tarakanova V.L.
- Kalejta R.F.
- Kenney S.C.
Experimental procedures
Cell culture and treatment
- Ramasubramanyan S.
- Osborn K.
- Al-Mohammad R.
- Naranjo Perez-Fernandez I.B.
- Zuo J.
- Balan N.
- Godfrey A.
- Patel H.
- Peters G.
- Rowe M.
- Jenner R.G.
- Sinclair A.J.
Staining and flow cytometry
Western blotting
RNA-seq
ChIP-seq
EBV DNA quantitation
Replication fragment mapping
Author contributions
Acknowledgments
References
- Strategies in the design of antiviral drugs.Nat. Rev. Drug Discov. 2002; 1: 13-25
- Thirty years of HIV and AIDS: future challenges and opportunities.Ann. Intern. Med. 2011; 154: 766-771
- Network pharmacology: the next paradigm in drug discovery.Nat. Chem. Biol. 2008; 4: 682-690
- Epstein-Barr virus: 40 years on.Nat. Rev. Cancer. 2004; 4: 757-768
- Reactivation and lytic replication of EBV.in: Arvin A. Campadelli-Fiume G. Mocarski E. Moore P.S. Roizman B. Whitley R. Yamanishi K. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press, Cambridge, UK2007 (Chapter 25)
- Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA.Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 4085-4089
- Infectious mononucleosis.N. Engl. J. Med. 2010; 362: 1993-2000
- Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model.J. Virol. 2005; 79: 13993-14003
- The mitotic chromosome binding activity of the papillomavirus E2 protein correlates with interaction with the cellular chromosomal protein, Brd4.J. Virol. 2005; 79: 4806-4818
- Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes.Cell. 2004; 117: 349-360
- Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes.J. Virol. 2006; 80: 8909-8919
- The EBNA1 protein of Epstein-Barr virus functionally interacts with Brd4.J. Virol. 2008; 82: 12009-12019
- RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus.PLoS Pathog. 2011; 7: e1002334
- BET bromodomain inhibition as a novel strategy for reactivation of HIV-1.J. Leukoc. Biol. 2012; 92: 1147-1154
- BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism.Cell Cycle. 2013; 12: 452-462
- The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation.Nucleic Acids Res. 2013; 41: 277-287
- Reactivation of latent HIV-1 by inhibition of BRD4.Cell Rep. 2012; 2: 807-816
- Selective inhibition of BET bromodomains.Nature. 2010; 468: 1067-1073
- Suppression of inflammation by a synthetic histone mimic.Nature. 2010; 468: 1119-1123
- RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 19754-19759
- Activation of latent Epstein-Barr virus by antibody to human IgM.Nature. 1978; 276: 270-272
- Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas.J. Virol. 2004; 78: 1893-1902
- Epstein-Barr virus latency type and spontaneous reactivation predict lytic induction levels.Biochem. Biophys. Res. Commun. 2016; 474: 71-75
- Bendamustine reactivates latent Epstein-Barr virus.Leuk. Lymphoma. 2016; 57: 1208-1210
- Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus.Cell. 1988; 55: 427-433
- Combinatorial patterns of histone acetylations and methylations in the human genome.Nat. Genet. 2008; 40: 897-903
- Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma.Cancer Cell. 2013; 24: 777-790
- Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression.Nucleic Acids Res. 2015; 43: 3563-3577
- Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt.J. Virol. 1992; 66: 5030-5039
- The Brd4 acetyllysine-binding protein is involved in activation of polyomavirus JC.J. Neurovirol. 2016; 22: 615-625
- An epigenetic compound library screen identifies BET inhibitors that promote HSV-1 and -2 replication by bridging P-TEFb to viral gene promoters through BRD4.PLoS Pathog. 2016; 12: e1005950
- Transcriptional elongation of HSV immediate early genes by the super elongation complex drives lytic infection and reactivation from latency.Cell Host Microbe. 2017; 21: 507.e5
- Targeting Myc in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors.Oncogene. 2014; 33: 2928-2937
- BET-inhibitors disrupt Rad21-dependent conformational control of KSHV latency.PLoS Pathog. 2017; 13: e1006100
- GNF-2 inhibits dengue virus by targeting Abl kinases and the viral E protein.Cell Chem. Biol. 2016; 23: 443-452
- Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells.J. Virol. 2013; 87: 10126-10138
- Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt's lymphoma cell line.J. Gen. Virol. 1990; 71: 1481-1495
- Lentivirus production.J. Vis. Exp. 2009; : 1499
- RNA-seq data: challenges in and recommendations for experimental design and analysis.Curr. Protoc. Hum. Genet. Genet. 2014; 83: 11.13.1-11.13.20
- Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo.Curr. Protoc. Mol. Biol. 2005; (Chapter 21, Unit 21.3)
- Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Genome Biol. 2009; 10: R25
- Occupancy of chromatin organizers in the Epstein-Barr virus genome.Virology. 2011; 415: 1-5
- RNA-seq detects pharmacological inhibition of Epstein-Barr virus late transcription during spontaneous reactivation.Genom. Data. 2017; 13: 5-6
Article info
Publication history
Footnotes
This project was funded by the UCSF Program for Breakthrough Biomedical Research, funded in part by the Sandler Foundation. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Deep sequencing data were deposited in the Gene Expression Omnibus under accession number GSE84214.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy