Introduction
- Haas T.L.
- Emmerich C.H.
- Gerlach B.
- Schmukle A.C.
- Cordier S.M.
- Rieser E.
- Feltham R.
- Vince J.
- Warnken U.
- Wenger T.
- Koschny R.
- Komander D.
- Silke J.
- Walczak H.
Results
UbB stimulates cIAP1R-mediated Ub transfer

Synergistic binding enhancement between UbB, cIAP1R, and UbcH5B–Ub
Immobilized protein | Analyte | Kd |
---|---|---|
μm | ||
GST-cIAP1R | UbcH5B | 223 ± 4 |
GST-cIAP1R | UbcH5B–Ub | 0.83 ± 0.05 |
GST-cIAP1R | UbcH5B–Ub + 0.6 mm UbΔGG | 0.22 ± 0.01 |
GST-cIAP1R | UbcH5BS22R–Ub | 0.90 ± 0.01 |
GST-cIAP1R | UbcH5BS22R–Ub + 0.6 mm UbΔGG | 0.99 ± 0.05 |
GST-Ub | UbcH5B–Ub + excess cIAP1R | 13 ± 2 |
Overall structure of cIAP1R-UbcH5B–Ub-UbB complex
Data collection | cIAP1R-UbcH5B–Ub-UbB complex |
Space group | C 1 2 1 |
Cell dimensions | |
a, b, c (Å) | 79.19, 53.60, 78.54 |
α, β, γ (degrees) | 90, 107.57, 90 |
Resolution (Å) | 23.52–1.70 (1.74–1.70) |
Rmerge | 0.063 (0.539) |
I/σ | 13.8 (2.0) |
Completeness (%) | 98.8 (94.7) |
Redundancy | 3.3 (2.7) |
Refinement | |
Resolution (Å) | 23.52–1.70 |
No. of reflections | 34,206 |
Rwork/Rfree | 0.170/0.197 |
No. of atoms | |
Protein | 2794 |
Ions | 2 |
Water | 222 |
B factor | |
Protein | 26.2 |
Ion | 18.2 |
Water | 33.0 |
RMSDs | |
Bond length (Å) | 0.007 |
Bond angles (degrees) | 0.922 |
Ramachandran | |
Mostly favored (%) | 97.8 |
Outliers (%) | 0 |

Interactions important for the closed UbcH5B–Ub conformation



UbB-stimulatory mechanism in dimeric cIAP1R-mediated Ub transfer

Discussion
Experimental procedures
Protein expression and purification
Crystallization
Data collection and processing
Lysine discharge assays
SPR
Author contributions
Acknowledgments
Supplementary Material
References
- The ubiquitin system.Annu. Rev. Biochem. 1998; 67 (9759494): 425-479
- Ubiquitin: structures, functions, mechanisms.Biochim. Biophys. Acta. 2004; 1695 (15571809): 55-72
- Structural insights into the catalysis and regulation of E3 ubiquitin ligases.Nat. Rev. Mol. Cell Biol. 2016; 17 (27485899): 626-642
- Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins.Annu. Rev. Biophys. Biomol. Struct. 2007; 36 (17477837): 131-150
- Antagonists of IAP proteins as cancer therapeutics.Cancer Lett. 2013; 332 (20685035): 206-214
- Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO.J. Biol. Chem. 2003; 278 (12525502): 10055-10060
- The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases.J. Biol. Chem. 2006; 281 (16339151): 3254-3260
- The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing.J. Biol. Chem. 2009; 284 (19258326): 12772-12782
- Holding RIPK1 on the Ubiquitin leash in TNFR1 signaling.Trends Cell Biol. 2016; 26 (26877205): 445-461
- cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination.Mol. Cell. 2008; 30 (18570872): 689-700
- c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation.J. Biol. Chem. 2008; 283 (18621737): 24295-24299
- Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction.Mol. Cell. 2009; 36 (20005846): 831-844
- Involvement of linear polyubiquitylation of NEMO in NF-κB activation.Nat. Cell Biol. 2009; 11 (19136968): 123-132
- Linear ubiquitination prevents inflammation and regulates immune signalling.Nature. 2011; 471 (21455173): 591-596
- SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex.Nature. 2011; 471 (21455180): 633-636
- SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis.Nature. 2011; 471 (21455181): 637-641
- Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment.J. Biol. Chem. 2008; 283 (18784070): 31633-31640
- Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (16263936): 16182-16187
- Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.Science. 2011; 334 (22021857): 376-380
- CARD-mediated autoinhibition of cIAP1's E3 ligase activity suppresses cell proliferation and migration.Mol. Cell. 2011; 42 (21549626): 569-583
- Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization.J. Biol. Chem. 2011; 286 (21393245): 17015-17028
- Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis.Nature. 2012; 489 (22842904): 115-120
- BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer.Nat. Struct. Mol. Biol. 2012; 19 (22902369): 876-883
- Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3.Nat. Struct. Mol. Biol. 2013; 20 (23851457): 982-986
- Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin.Mol. Cell. 2015; 58 (25801170): 297-310
- Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains.Nat. Struct. Mol. Biol. 2015; 22 (26148049): 597-602
- Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity.EMBO J. 2016; 35 (27154206): 1204-1218
- Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway.Cell Rep. 2016; 16 (27425606): 1315-1325
- Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase.Proteins. 2017; 85 (28681414): 1957-1961
- Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity.Nat. Struct. Mol. Biol. 2017; 24 (28553961): 578-587
- The activity of TRAF RING homo- and heterodimers is regulated by zinc finger 1.Nat. Commun. 2017; 8 (29176576): 1788
- Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity.Nat. Struct. Mol. Biol. 2016; 23 (26656854): 45-52
- Structure of an E3:E2∼Ub complex reveals an allosteric mechanism shared among RING/U-box ligases.Mol. Cell. 2012; 47 (22885007): 933-942
- cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1–4).PLoS One. 2011; 6 (21931591): e22356
- c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling.EMBO J. 2010; 29 (21113135): 4198-4209
- A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination.Mol Cell. 2006; 21 (16543155): 873-880
- Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity.J. Biol. Chem. 2013; 288 (23671280): 18939-18946
- Insights into ubiquitination from the unique clamp-like binding of the RING E3 AO7 to the E2 UbcH5B.J. Biol. Chem. 2015; 290 (26475854): 30225-30239
- Crystal structure of UbcH5b∼ubiquitin intermediate: insight into the formation of the self-assembled E2∼Ub conjugates.Structure. 2010; 18 (20152160): 138-147
- The RING domain of cIAP1 mediates the degradation of RING-bearing inhibitor of apoptosis proteins by distinct pathways.Mol. Biol. Cell. 2008; 19 (18434593): 2729-2740
- Regulation of ubiquitin transfer by XIAP, a dimeric RING E3 ligase.Biochem. J. 2013; 450 (23259674): 629-638
- E2 interaction and dimerization in the crystal structure of TRAF6.Nat. Struct. Mol. Biol. 2009; 16 (19465916): 658-666
- Modulation of K11-linkage formation by variable loop residues within UbcH5A.J. Mol. Biol. 2011; 408 (21396940): 420-431
- Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate.Mol. Cell. 2011; 42 (21474069): 75-83
- The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2.Cell. 2011; 144 (21376237): 769-781
- Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools.Nat. Methods. 2011; 8 (21743460): 691-696
- Protein interactions within the N-end rule ubiquitin ligation pathway.J. Biol. Chem. 2003; 278 (12524449): 9448-9457
- xia2: an expert system for macromolecular crystallography data reduction.J. Appl. Cryst. 2010; 43: 186-190
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- PHENIX: building new software for automated crystallographic structure determination.Acta Crystallogr. D Biol. Crystallogr. 2002; 58 (12393927): 1948-1954
Article info
Publication history
Footnotes
This work was supported by Cancer Research UK Grant A23278 and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement 647849). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Fig. S1.
The atomic coordinates and structure factors (code 6HPR) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy