Introduction to small lytic phages and “single-gene lysis”
Bacterial cell wall structure and biosynthesis

The first Sgl: Protein E from microvirus ϕX174
Famous phage, famous gene
Genetics clarifies E function

In vitro analysis of E-mediated inhibition of MraY
The E–MraY interaction

Overview of Sgl genes in ssRNA phages
The “protein antibiotic”: A2 from Qβ
Finding rat mutants
The A2–MurA interaction
lysM: New target and settling a debate

MS2 lysis: To L and back
L: The first autolysin?
Back to L: Genetic and molecular analysis
What's next?
Acknowledgments
Supplementary Material
References
- Phage lysis: do we have the hole story yet?.Curr. Opin. Microbiol. 2013; 16 (24113139): 790-797
- Phage lysis: three steps, three choices, one outcome.J. Microbiol. 2014; 52 (24585055): 243-258
- Breaking free: “protein antibiotics” and phage lysis.Res. Microbiol. 2002; 153 (12437210): 493-501
- Peptidoglycan structure and architecture.FEMS Microbiol. Rev. 2008; 32 (18194336): 149-167
- From the regulation of peptidoglycan synthesis to bacterial growth and morphology.Nat. Rev. Microbiol. 2011; 10 (22203377): 123-136
- The bacterial cell envelope.Cold Spring Harb. Perspect. Biol. 2010; 2 (20452953)a000414
- Mechanical properties of peptidoglycan as determined from bacterial thread.Int. J. Biol. Macromol. 1989; 11 (2518734): 201-206
- Periplasmic space in Salmonella typhimurium and Escherichia coli.J. Biol. Chem. 1977; 252 (334768): 7850-7861
- Molecular organization of Gram-negative peptidoglycan.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (19033194): 18953-18957
- Covalent lipoprotein from the outer membrane of Escherichia coli.Biochim. Biophys. Acta. 1975; 415 (52377): 335-377
- The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli.Mol. Microbiol. 2011; 79 (21219470): 1168-1181
- MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli.J. Bacteriol. 1995; 177 (7608103): 4194-4197
- Structural perspective of peptidoglycan biosynthesis and assembly.Annu. Rev. Biochem. 2012; 81 (22663080): 451-478
- Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane.EMBO J. 2011; 30 (21386816): 1425-1432
- Specificity of the transport of lipid II by FtsW in Escherichia coli.J. Biol. Chem. 2014; 289 (24711460): 14707-14718
- Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18832143): 15553-15557
- Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis.Science. 2014; 345 (25013077): 220-222
- MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (25918422): 6437-6442
- Crystal structure of the MOP flippase MurJ in an inward-facing conformation.Nat. Struct. Mol. Biol. 2017; 24 (28024149): 171-176
- Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ.Nat. Chem. 2018; 10 (29461535): 363-371
- Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (29891673): 6709-6714
- SEDS proteins are a widespread family of bacterial cell wall polymerases.Nature. 2016; 537 (27525505): 634-638
- Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously.Nat. Microbiol. 2016; (27643381)16172
- Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis.Nature. 2018; 556 (29590088): 118-121
- Diversity and abundance of single-stranded DNA viruses in human feces.Appl. Environ. Microbiol. 2011; 77 (21948823): 8062-8070
- Nucleotide sequence of bacteriophage ϕX174 DNA.Nature. 1977; 265 (870828): 687-695
- Generating a synthetic genome by whole genome assembly: ϕX174 bacteriophage from synthetic oligonucleotides.Proc. Natl. Acad. Sci. U.S.A. 2003; 100 (14657399): 15440-15445
- Mutagenesis at a specific position in a DNA sequence.J. Biol. Chem. 1978; 253 (681366): 6551-6560
- Lysis of Escherichia coli by induction of cloned ϕX174 genes.Mol. Gen. Genet. 1982; 185 (6285147): 493-497
- Lytic action of cloned ϕX174 gene E.J. Virol. 1982; 44 (6294347): 993-1002
- Structural changes in Escherichia coli infected with a ϕX174 type bacteriophage.J. Gen. Virol. 1969; 5 (4186350): 113-121
- Penicillin-induced lysis of Escherichia coli.Science. 1957; 125 (13390975): 119-120
- Lysis of Escherichia coli by cloned ϕX174 gene E depends on its expression.J. Gen. Microbiol. 1985; 131 (3160821): 1107-1114
- Stimulation of autolysis by adsorption of bacteriophage ϕX174 to isolated cell walls.Curr. Microbiol. 1983; 8: 63-65
- Induction of autolysis of Escherichia coli by ϕX174 gene E product.in: Nombela C. Microbial Cell Wall Synthesis and Autolysis. Elsevier Science Publishers, New York1984: 213-218
- Lysis of Escherichia coli after infection with ϕX174 depends on the regulation of the cellular autolytic system.J. Gen. Microbiol. 1984; 130 (6236279): 1079-1087
- Endogenous transmembrane tunnel formation mediated by ϕX174 lysis protein E.J. Bacteriol. 1990; 172 (2141836): 4109-4114
- Deletion and fusion analysis of the ϕX174 lysis gene E.Gene. 1985; 40 (2936651): 39-46
- Lytic activity localized to membrane-spanning region of ϕX174 E protein.Mol. Gen. Genet. 1986; 204 (3018438): 120-125
- slyD, a host gene required for ϕX174 lysis, is related to the FK506-binding protein family of peptidyl-prolyl cis-trans-isomerases.J. Biol. Chem. 1994; 269 (8300625): 2902-2910
- Structure-function relationships in the FK506-binding protein (FKBP) family of peptidylprolyl cis-trans isomerases.Biochem. J. 1996; 314 (8670043): 361-385
- The Escherichia coli FKBP-type PPIase SlyD is required for the stabilization of the E lysis protein of bacteriophage ϕX174.Mol. Microbiol. 2002; 45 (12100551): 99-108
- The lysis protein E of ϕX174 is a specific inhibitor of the MraY-catalyzed step in peptidoglycan synthesis.J. Biol. Chem. 2001; 276 (11078734): 6093-6097
- Genetic evidence that the bacteriophage ϕX174 lysis protein inhibits cell wall synthesis.Proc. Natl. Acad. Sci. U.S.A. 2000; 97 (10760296): 4297-4302
- Purification and functional characterization of ϕX174 lysis protein E.Biochemistry. 2009; 48 (19379010): 4999-5006
- Identification of lysis protein E of bacteriophage ϕX174.J. Virol. 1978; 28 (702655): 408-410
- Genetic analysis of MraY inhibition by the ϕX174 protein E.Genetics. 2008; 180 (18791230): 1459-1466
- Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis.Science. 2013; 341 (23990562): 1012-1016
- Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage ϕX174.Mol. Microbiol. 2012; 85 (22742425): 975-985
- Analysis of the complete nucleotide sequence of the group IV RNA coliphage SP.Nucleic Acids Res. 1988; 16 (3399390): 6205-6221
- The complete nucleotide sequence of the group II RNA coliphage GA.J. Biochem. 1986; 99 (3711059): 1169-1180
- Comparison of the nucleotide sequences at the 3′-terminal region of RNAs from RNA coliphages.J. Mol. Biol. 1982; 158 (7120417): 711-730
- Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons.Appl. Environ. Microbiol. 2006; 72 (16461670): 1226-1230
- A reverse transcription-PCR assay to distinguish the four genogroups of male-specific (F+) RNA coliphages.J. Virol. Methods. 2009; 159 (19442844): 47-52
- Nucleotide sequence from the ssRNA bacteriophage JP34 resolves the discrepancy between serological and biophysical classification.Virology. 1989; 170 (2718383): 238-242
- Genome structure of Caulobacter phage phiCb5.J. Virol. 2011; 85 (21325422): 4628-4631
- Complete genome sequence of the broad host range single-stranded RNA phage PRR1 places it in the Levivirus genus with characteristics shared with Alloleviviruses.J. Virol. 2006; 80 (16940544): 9326-9330
- Diversity of pili-specific bacteriophages: genome sequence of IncM plasmid-dependent RNA phage M.BMC Microbiol. 2012; 12 (23176223): 277
- Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages.J. Gen. Virol. 2002; 83 (12029168): 1523-1533
- Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: kinship to coliphages and conservation of regulatory RNA structures.Virology. 1995; 206 (7831817): 611-625
- Rethinking the evolution of single-stranded RNA (ssRNA) bacteriophages based on genomic sequences and characterizations of two R-plasmid-dependent ssRNA phages, C-1 and Hgal1.J. Bacteriol. 2012; 194 (22821966): 5073-5079
- RNA virus mutations and fitness for survival.Annu. Rev. Microbiol. 1997; 51 (9343347): 151-178
- Structures of Qβ virions, virus-like particles, and the Qβ-MurA complex reveal internal coat proteins and the mechanism of host lysis.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (29078304): 11697-11702
- Proteins of the RNA phages.in: Zinder N.D. RNA Phages. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY1975: 51-84
- Fate of maturation protein during infection by coliphage MS2.Nat. New Biol. 1971; 234 (4942983): 209-211
- Overproduction of bacteriophage Qβ maturation (A2) protein leads to cell lysis.Cell. 1983; 33 (6871998): 877-885
- A protein antibiotic in the phage Qβ virion: diversity in lysis targets.Science. 2001; 292 (11423662): 2326-2329
- Inhibitory mechanism of the Qβ lysis protein A2.Mol. Microbiol. 2012; 86 (22934834): 836-844
- A2 expression and assembly regulates lysis in Qβ infections.Microbiology. 2013; 159 (23329676): 507-514
- A viral protein antibiotic inhibits lipid II flippase activity.Nat. Microbiol. 2017; 2 (28894177): 1480-1484
- Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli.J. Bacteriol. 2013; 195 (23935042): 4639-4649
- Characterization of Op3, a lysis-defective mutant of bacteriophage f2.Cell. 1979; 18 (498270): 235-246
- Overlapping genes in RNA phage: a new protein implicated in lysis.Cell. 1979; 18 (387256): 257-266
- Bacteriophage MS2 lysis protein does not require coat protein to mediate cell lysis.J. Bacteriol. 1983; 153 (6337118): 1098-1100
- The amino terminal half of the MS2-coded lysis protein is dispensable for function: implications for our understanding of coding region overlaps.EMBO J. 1985; 4 (3912168): 3315-3320
- MS2 phage induced lysis of E. coli depends upon the activity of the bacterial autolysins.in: Nombela C. Microbial Cell Wall Synthesis and Autolysis. Elsevier Science Publishers, New York1984: 195-199
- Induction of the autolytic system of Escherichia coli by specific insertion of bacteriophage MS2 lysis protein into the bacterial cell envelope.J. Bacteriol. 1988; 170 (3053640): 5027-5033
- Specific localization of the lysis protein of bacteriophage MS2 in membrane adhesion sites of Escherichia coli.J. Bacteriol. 1989; 171 (2656650): 3331-3336
- Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides.J. Biol. Chem. 1988; 263 (3279025): 3539-3541
- A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2-coded lysis protein dissipates the proton-motive force in Escherichia coli membrane vesicles by generating hydrophilic pores.EMBO J. 1988; 7 (2840287): 867-873
- Mutational analysis of the MS2 lysis protein L.Microbiology. 2017; 163 (28691656): 961-969
- MS2 lysis of Escherichia coli depends on host chaperone DnaJ.J. Bacteriol. 2017; 199 (28396351): e00058-e00117
- The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones.Cell Mol. Life Sci. 2006; 63 (16952052): 2560-2570
- Microbiology: the great escape.Science. 2001; 292 (11423642): 2263-2264
- Hyperexpansion of RNA bacteriophage diversity.PLoS Biol. 2016; 14 (27010970)e1002409
- Redefining the invertebrate RNA virosphere.Nature. 2016; 540 (27880757): 539-543
Article info
Publication history
Footnotes
This article contains Table S1 and Figs. S1–S6.
This work was supported by National Institutes of Health Grant GM27099 and by the Center for Phage Technology at Texas A&M University, jointly sponsored by Texas A&M AgriLife. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy