Introduction
- Maekawa T.
- Cheng W.
- Spiridon L.N.
- Töller A.
- Lukasik E.
- Saijo Y.
- Liu P.
- Shen Q.H.
- Micluta M.A.
- Somssich I.E.
- Takken F.L.
- Petrescu A.J.
- Chai J.
- Schulze-Lefert P.
- Maekawa T.
- Cheng W.
- Spiridon L.N.
- Töller A.
- Lukasik E.
- Saijo Y.
- Liu P.
- Shen Q.H.
- Micluta M.A.
- Somssich I.E.
- Takken F.L.
- Petrescu A.J.
- Chai J.
- Schulze-Lefert P.
- Deslandes L.
- Olivier J.
- Peeters N.
- Feng D.X.
- Khounlotham M.
- Boucher C.
- Somssich I.
- Genin S.
- Marco Y.
- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.
- Zhu Z.
- Xu F.
- Zhang Y.
- Cheng Y.T.
- Wiermer M.
- Li X.
- Zhang Y.
- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.
Results
Rx1 CC domain interacts with a DNA-associated protein

Rx1 interacts directly with NbGlk1 in vitro and in vivo


Rx1 modulates NbGlk1 interactions with DNA in vitro
- Franco-Zorrilla J.M.
- López-Vidriero I.
- Carrasco J.L.
- Godoy M.
- Vera P.
- Solano R.
- Franco-Zorrilla J.M.
- López-Vidriero I.
- Carrasco J.L.
- Godoy M.
- Vera P.
- Solano R.
NbGlk1(1–243) | NbGlk1(83–243) | NbGlk1(83–402) | |||||||
---|---|---|---|---|---|---|---|---|---|
– | Rx1(1–144) | Rx1(1–489) | – | Rx1(1–144) | Rx1(1–489) | – | Rx1(1–144) | Rx1(1–489) | |
No site | ND | ND | ND | 0.33 ± 0.02 | 0.85 ± 0.27 | 1.34 ± 0.42 | 0.18 ± 0.01 | 0.40 ± 0.02 | 0.42 ± 0.09 |
AGATTT | ND | ND | ND | 0.23 ± 0.01# | 0.76 ± 0.52 | 0.65 ± 0.04 | 0.16 ± 0.01# | 0.46 ± 0.06 | 0.34 ± 0.04 |
GATATC | >1 | >1 | >1 | 0.18 ± 0.01# | 0.40 ± 0.15 | 0.50 ± 0.03 | 0.08 ± 0.00* | 0.30 ± 0.07 | 0.19 ± 0.04 |

- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.


NbGlk1(83–402) | ||
---|---|---|
– | Rx1(GST-1–144) | |
No site | 0.32 ± 0.03 | 1.99 ± 0.09 |
AGATTT | 0.22 ± 0.00* | 0.73 ± 0.07 |
GATATC | 0.11 ± 0.00* | 0.34 ± 0.00 |
Rx1 and NbGlk1 interact at DNA in situ

- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
NbGlk1 reduces susceptibility to PVX
- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.

- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.
Discussion
- Han X.Y.
- Li P.X.
- Zou L.J.
- Tan W.R.
- Zheng T.
- Zhang D.W.
- Lin H.H.
- Savitch L.V.
- Subramaniam R.
- Allard G.C.
- Singh J.
- Murmu J.
- Wilton M.
- Allard G.
- Pandeya R.
- Desveaux D.
- Singh J.
- Subramaniam R.
- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
- Franco-Zorrilla J.M.
- López-Vidriero I.
- Carrasco J.L.
- Godoy M.
- Vera P.
- Solano R.

Experimental procedures
Oligonucleotides
Plasmids
- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.
- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.
- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.
Protein expression and purification
Yeast two-hybrid analyses
Protein binding microarray
Gel filtration analysis
Co-immunoprecipitation
Fluorescence anisotropy
Time-resolved FRET in situ
- Fenyk S.
- Townsend P.D.
- Dixon C.H.
- Spies G.B.
- de San Eustaquio Campillo A.
- Slootweg E.J.
- Westerhof L.B.
- Gawehns F.K.
- Knight M.R.
- Sharples G.J.
- Goverse A.
- Pålsson L.O.
- Takken F.L.
- Cann M.J.
N. benthamiana hypersensitive response assay
Overexpression transient PVX resistance assay
Confocal laser-scanning microscopy
- Slootweg E.
- Roosien J.
- Spiridon L.N.
- Petrescu A.J.
- Tameling W.
- Joosten M.
- Pomp R.
- van Schaik C.
- Dees R.
- Borst J.W.
- Smant G.
- Schots A.
- Bakker J.
- Goverse A.
Statistical analysis
Author contributions
Acknowledgments
Supplementary Material
Author Profile
Philip D. Townsend
References
- Intracellular innate immune surveillance devices in plants and animals.Science. 2016; 354 (27934708): aaf6395https://doi.org/10.1074/jbc.RA117.000485
- NLR functions in plant and animal immune systems: so far and yet so close.Nat. Immunol. 2011; 12 (21852785): 817-826https://doi.org/10.1074/jbc.RA117.000485
- NB-LRR proteins: pairs, pieces, perception, partners, and pathways.Curr. Opin. Plant Biol. 2010; 13 (20483655): 472-477https://doi.org/10.1074/jbc.RA117.000485
- Common and contrasting themes of plant and animal diseases.Science. 2001; 292 (11423652): 2285-2289https://doi.org/10.1074/jbc.RA117.000485
- STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.J. Mol. Biol. 2004; 343 (15381417): 1-28https://doi.org/10.1074/jbc.RA117.000485
- To nibble at plant resistance proteins.Science. 2009; 324 (19423813): 744-746https://doi.org/10.1074/jbc.RA117.000485
- Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death.Cell Host Microbe. 2011; 9 (21402358): 187-199https://doi.org/10.1074/jbc.RA117.000485
- Resistance proteins: molecular switches of plant defence.Curr. Opin. Plant Biol. 2006; 9 (16713729): 383-390https://doi.org/10.1074/jbc.RA117.000485
- The high resolution crystal structure for class A β-lactamase PER-1 reveals the bases for its increase in breadth of activity.J. Biol. Chem. 2000; 275 (10825176): 28075-28082
- The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals.Curr. Biol. 1998; 8 (9545207): R226-R227https://doi.org/10.1074/jbc.RA117.000485
- Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation.Plant Physiol. 2006; 140 (16489136): 1233-1245https://doi.org/10.1074/jbc.RA117.000485
- An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, while wild-type M protein has a preference for binding ADP.Mol. Plant Microbe Interact. 2011; 24 (21539434): 897-906https://doi.org/10.1074/jbc.RA117.000485
- A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.J. Biol. Chem. 2012; 287 (22157756): 4023-4032https://doi.org/10.1074/jbc.RA117.000485
- A novel role for the TIR domain in association with pathogen-derived elicitors.PLoS Biol. 2007; 5 (17298188): e68https://doi.org/10.1074/jbc.RA117.000485
- Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector.Cell. 2008; 132 (18267075): 449-462https://doi.org/10.1074/jbc.RA117.000485
- Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus.Proc. Natl. Acad. Sci. U.S.A. 2003; 100 (12788974): 8024-8029https://doi.org/10.1074/jbc.RA117.000485
- Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses.Science. 2007; 315 (17185563): 1098-1103https://doi.org/10.1074/jbc.RA117.000485
- Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains.Plant Cell. 2010; 22 (21177483): 4195-4215https://doi.org/10.1074/jbc.RA117.000485
- Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance.PLoS Pathog. 2012; 8 (22685408): e1002752https://doi.org/10.1074/jbc.RA117.000485
- Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense.Curr. Biol. 2007; 17 (17997306): 2023-2029https://doi.org/10.1074/jbc.RA117.000485
- Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20647385): 13960-13965https://doi.org/10.1074/jbc.RA117.000485
- Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis.Plant Cell. 2009; 21 (19700630): 2503-2516https://doi.org/10.1074/jbc.RA117.000485
- The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis.Plant Physiol. 2004; 135 (15181213): 1113-1128https://doi.org/10.1074/jbc.RA117.000485
- Interplay between MAMP-triggered and SA-mediated defense responses.Plant J. 2008; 53 (18005228): 763-775https://doi.org/10.1074/jbc.RA117.000485
- Express yourself: transcriptional regulation of plant innate immunity.Semin. Cell Dev. Biol. 2016; 56 (27174437): 150-162https://doi.org/10.1074/jbc.RA117.000485
- Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling.Plant Cell. 2013; 25 (23532068): 1158-1173https://doi.org/10.1074/jbc.RA117.000485
- Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor.PLoS Genet. 2013; 9 (23633962): e1003465https://doi.org/10.1074/jbc.RA117.000485
- The tomato nucleotide-binding leucine-rich repeat immune receptor I-2 couples DNA-binding to nucleotide-binding domain nucleotide exchange.J. Biol. Chem. 2016; 291 (26601946): 1137-1147https://doi.org/10.1074/jbc.RA117.000485
- The potato nucleotide-binding leucine-rich Repeat (NLR) immune receptor Rx1 is a pathogen-dependent DNA-deforming protein.J. Biol. Chem. 2015; 290 (26306038): 24945-24960https://doi.org/10.1074/jbc.RA117.000485
- The Rx gene from potato controls separate virus resistance and cell death responses.Plant Cell. 1999; 11 (10330465): 781-792
- The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato.Plant J. 1995; 8 (8580963): 933-941https://doi.org/10.1074/jbc.RA117.000485
- Single-molecule approaches to probe the structure, kinetics, and thermodynamics of nucleoprotein complexes that regulate transcription.J. Biol. Chem. 2010; 285 (20382734): 18973-18978https://doi.org/10.1074/jbc.RA117.000485
- Opening-closing dynamics of the mitochondrial transcription pre-initiation complex.Nucleic Acids Res. 2012; 40 (21911357): 371-380https://doi.org/10.1074/jbc.RA117.000485
- Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism.Science. 2010; 327 (19965383): 206-209https://doi.org/10.1074/jbc.RA117.000485
- Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase.J. Biol. Chem. 2011; 286 (21911502): 38805-38813https://doi.org/10.1074/jbc.RA117.000485
- Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.Science. 2000; 290 (11118137): 2105-2110https://doi.org/10.1074/jbc.RA117.000485
- The maize golden2 gene defines a novel class of transcriptional regulators in plants.Plant Cell. 2001; 13 (11340194): 1231-1244
- Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators.Plant Cell. 2002; 14 (12215502): 2015-2029https://doi.org/10.1074/jbc.RA117.000485
- Determination and inference of eukaryotic transcription factor sequence specificity.Cell. 2014; 158 (25215497): 1431-1443https://doi.org/10.1074/jbc.RA117.000485
- DNA-binding specificities of plant transcription factors and their potential to define target genes.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24477691): 2367-2372https://doi.org/10.1074/jbc.RA117.000485
- Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing.Plant J. 2001; 25 (11169199): 237-245
- Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus.Plant J. 2002; 30 (12028572): 415-429https://doi.org/10.1074/jbc.RA117.000485
- GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis.Plant Cell. 2009; 21 (19376934): 1109-1128https://doi.org/10.1074/jbc.RA117.000485
- GOLDEN2-LIKE transcription factors coordinate the tolerance to cucumber mosaic virus in Arabidopsis.Biochem. Biophys. Res. Commun. 2016; 477 (27346129): 626-632https://doi.org/10.1074/jbc.RA117.000485
- The GLK1 ‘regulon’ encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis.Biochem. Biophys. Res. Commun. 2007; 359 (17533111): 234-238https://doi.org/10.1074/jbc.RA117.000485
- Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea.Mol. Plant Pathol. 2014; 15 (24393452): 174-184https://doi.org/10.1074/jbc.RA117.000485
- GOLDEN 2-LIKE transcription factors of plants.Front. Plant Sci. 2016; 7 (27757121): 1509
- Equilibrium studies of the cyclic AMP receptor protein-DNA interaction.J. Mol. Biol. 1984; 172 (6319715): 241-262https://doi.org/10.1074/jbc.RA117.000485
- Physics of protein-DNA interactions: mechanisms of facilitated target search.Phys. Chem. Chem. Phys. 2011; 13 (21113556): 2088-2095https://doi.org/10.1074/jbc.RA117.000485
- GATEWAY vectors for Agrobacterium-mediated plant transformation.Trends Plant Sci. 2002; 7 (11992820): 193-195https://doi.org/10.1074/jbc.RA117.000485
- An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus.Plant J. 2002; 29 (11874570): 569-579https://doi.org/10.1074/jbc.RA117.000485
- pBINPLUS: an improved plant transformation vector based on pBIN19.Transgenic Res. 1995; 4 (7655517): 288-290https://doi.org/10.1074/jbc.RA117.000485
- The role of protein-ligand contacts in allosteric regulation of the Escherichia coli catabolite activator protein.J. Biol. Chem. 2015; 290 (26187469): 22225-22235https://doi.org/10.1074/jbc.RA117.000485
- Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens.Nat. Genet. 1997; 16 (9207794): 277-282https://doi.org/10.1074/jbc.RA117.000485
- Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays.Nucleic Acids Res. 2011; 39 (21321018): 4680-4690https://doi.org/10.1074/jbc.RA117.000485
- Evaluation of methods for modeling transcription factor sequence specificity.Nat. Biotechnol. 2013; 31 (23354101): 126-134https://doi.org/10.1074/jbc.RA117.000485
- Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities.Nat. Biotechnol. 2006; 24 (16998473): 1429-1435https://doi.org/10.1074/jbc.RA117.000485
- Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences.Cell. 2008; 133 (18585359): 1266-1276https://doi.org/10.1074/jbc.RA117.000485
Article info
Publication history
Footnotes
This work was supported by Biotechnology and Biological Sciences Research Council Grant BB/M007405/1 (to M. J. C., G. J. S., and L. O. P.), the Dutch Technology Foundation STW and Earth and Life Sciences ALW (to E. J. S., O. C. A. S., and A. G.), and ALW-VICI Project No. 865.14.003 (to F. L. W. T.) (Netherlands Organization for Scientific Research), and FDN-148403 from CIHR (to T. R. H.). The authors declare that they have no conflicts of interest with the contents of this article.
This article was selected as one of our Editors' Picks.
This article contains Figs. S1 and S2 and Table S1.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy