Introduction
- Bennett E.P.
- Hassan H.
- Mandel U.
- Mirgorodskaya E.
- Roepstorff P.
- Burchell J.
- Taylor-Papadimitriou J.
- Hollingsworth M.A.
- Merkx G.
- van Kessel A.G.
- Eiberg H.
- Steffensen R.
- Clausen H.
- Bennett E.P.
- Hassan H.
- Mandel U.
- Hollingsworth M.A.
- Akisawa N.
- Ikematsu Y.
- Merkx G.
- van Kessel A.G.
- Olofsson S.
- Clausen H.
- Baldus S.E.
- Zirbes T.K.
- Hanisch F.G.
- Kunze D.
- Shafizadeh S.T.
- Nolden S.
- Mönig S.P.
- Schneider P.M.
- Karsten U.
- Thiele J.
- Hölscher A.H.
- Dienes H.P.
- Harada Y.
- Izumi H.
- Noguchi H.
- Kuma A.
- Kawatsu Y.
- Kimura T.
- Kitada S.
- Uramoto H.
- Wang K.Y.
- Sasaguri Y.
- Hijioka H.
- Miyawaki A.
- Oya R.
- Nakayama T.
- Kohno K.
- Yamada S.
- Inoue T.
- Eguchi T.
- Oda Y.
- Nishiyama K.
- Fujii K.
- Izumi H.
- Kohno K.
- Yamaguchi K.
- Tanaka M.
- Tsuneyoshi M.
- Bennett E.P.
- Hassan H.
- Mandel U.
- Hollingsworth M.A.
- Akisawa N.
- Ikematsu Y.
- Merkx G.
- van Kessel A.G.
- Olofsson S.
- Clausen H.
- Wandall H.H.
- Hassan H.
- Mirgorodskaya E.
- Kristensen A.K.
- Roepstorff P.
- Bennett E.P.
- Nielsen P.A.
- Hollingsworth M.A.
- Burchell J.
- Taylor-Papadimitriou J.
- Clausen H.
- Schwientek T.
- Bennett E.P.
- Flores C.
- Thacker J.
- Hollmann M.
- Reis C.A.
- Behrens J.
- Mandel U.
- Keck B.
- Schäfer M.A.
- Haselmann K.
- Zubarev R.
- Roepstorff P.
- Burchell J.M.
- Taylor-Papadimitriou J.
- et al.
- Bennett E.P.
- Hassan H.
- Mandel U.
- Hollingsworth M.A.
- Akisawa N.
- Ikematsu Y.
- Merkx G.
- van Kessel A.G.
- Olofsson S.
- Clausen H.
- Harada Y.
- Izumi H.
- Noguchi H.
- Kuma A.
- Kawatsu Y.
- Kimura T.
- Kitada S.
- Uramoto H.
- Wang K.Y.
- Sasaguri Y.
- Hijioka H.
- Miyawaki A.
- Oya R.
- Nakayama T.
- Kohno K.
- Yamada S.
- Mandel U.
- Hassan H.
- Therkildsen M.H.
- Rygaard J.
- Jakobsen M.H.
- Juhl B.R.
- Dabelsteen E.
- Clausen H.
- Miyahara N.
- Shoda J.
- Kawamoto T.
- Furukawa M.
- Ueda T.
- Todoroki T.
- Tanaka N.
- Matsuo K.
- Yamada Y.
- Kohno K.
- Irimura T.
- Inoue T.
- Eguchi T.
- Oda Y.
- Nishiyama K.
- Fujii K.
- Izumi H.
- Kohno K.
- Yamaguchi K.
- Tanaka M.
- Tsuneyoshi M.
Results
Selective up-regulation of GalNAc-T6 in colon cancer tissue

GalNAc-T6 | GalNAc-T3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Labeling intensities | Total positive (>1) | Labeling intensities | Total positive (>1) | |||||||
0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | |||
Colorectal carcinoma | ||||||||||
Well-differentiated (n = 22) | 1 | 2 | 3 | 16 | 95% (21/22) | 0 | 0 | 0 | 22 | 100% (22/22) |
Moderately differentiated (n = 10) | 2 | 0 | 2 | 6 | 80% (8/10) | 0 | 0 | 0 | 9 | 100% (9/9) |
Poorly differentiated (n = 1) | 1 | 0 | 0 | 0 | 0% (0/1) | 0 | 0 | 0 | 1 | 100% (1/1) |
No information (n = 6) | 1 | 1 | 3 | 1 | 83% (5/6) | 0 | 0 | 0 | 6 | 100% (6/6) |
Total | 5 | 3 | 8 | 23 | 87% (34/39) | 0 | 0 | 0 | 39 | 100% (39/39) |
Healthy | 4 | 0 | 0 | 0 | 0% (0/4) | 0 | 0 | 0 | 2 | 100% (2/2) |
GalNAc-T6 disrupts the formation of actin-lined lumens and is associated with the expression of cancer-associated genes in vitro


GalNAc-T6 influences the proliferation and differentiation of colon cancer cells

GalNAc-T6 controls cell–cell adhesion but does not induce the EMT

Differential O-glycoproteomic analysis identifies substrates glycosylated by GalNAc-T6

![]() |
Discussion
- Pedersen J.W.
- Gentry-Maharaj A.
- Nøstdal A.
- Fourkala E.O.
- Dawnay A.
- Burnell M.
- Zaikin A.
- Burchell J.
- Papadimitriou J.T.
- Clausen H.
- Jacobs I.
- Menon U.
- Wandall H.H.
Experimental procedures
Tissues
Cell culture
Immunofluorescence
ZFN knockout gene targeting
Precise GALNT6-targeted integration
RNA transcriptomic analysis
Bioinformatics analysis
Proliferation assay
LWAC isolation of Tn-O-glycopeptides
Mass spectrometry and data analysis
Cell–cell adhesion assay
Author contributions
- 1331–00133B
- Københavns Universitet
- Danmarks Grundforskningsfond
- Lundbeckfonden
Supplementary Material
Author Profile
Kirstine Lavrsen
References
- Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions.EMBO Rep. 2006; 7 (16741504): 599-604
- Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches.Front. Oncol. 2013; 3 (24392350): 306
- Glycosylation defining cancer malignancy: new wine in an old bottle.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (12149519): 10231-10233
- Mucins in cancer: protection and control of the cell surface.Nat. Rev. Cancer. 2004; 4 (14681689): 45-60
- Mucin-type O-glycosylation and its potential use in drug and vaccine development.Biochim. Biophys. Acta. 2008; 1780 (17988798): 546-563
- Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.Glycobiology. 2012; 22 (22183981): 736-756
- cDNA cloning and expression of a novel human UDP-N-acetyl-α-d-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3.J. Biol. Chem. 1996; 271 (8663203): 17006-17012
- Cloning of a human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat.J. Biol. Chem. 1998; 273 (9804815): 30472-30481
- A novel human UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates.FEBS Lett. 1999; 460 (10544240): 226-230
- Cloning and characterization of a close homolog of human UDP-N-acetyl-α-d-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy.J. Biol. Chem. 1999; 274 (10464263): 25362-25370
- Purification, cloning, and expression of a bovine UDP-GalNAc: polypeptide N-acetyl-galactosaminyltransferase.J. Biol. Chem. 1993; 268 (8360184): 18960-18965
- cDNA cloning and expression of a novel UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase.J. Biol. Chem. 1997; 272 (9153242): 13843-13848
- Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase.J. Biol. Chem. 1993; 268 (7685345): 12609-12616
- Cloning and characterization of a ninth member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family, ppGaNTase-T9.J. Biol. Chem. 2001; 276 (11278534): 17395-17404
- Cloning and expression of a novel, tissue specifically expressed member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family.J. Biol. Chem. 1998; 273 (9765313): 27749-27754
- Characterization of a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase that displays glycopeptide N-acetylgalactosaminyltransferase activity.J. Biol. Chem. 1999; 274 (10488133): 27867-27874
- Molecular cloning of a novel human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T8, and analysis as a candidate autosomal dominant hypophosphatemic rickets (ADHR) gene.Gene. 2000; 246 (10767557): 347-356
- Purification and cDNA cloning of a human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase.J. Biol. Chem. 1995; 270 (7592619): 24156-24165
- A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation.Glycobiology. 1996; 6 (8922959): 635-646
- Glycosylation in cancer: mechanisms and clinical implications.Nat. Rev. Cancer. 2015; 15 (26289314): 540-555
- Thomsen-Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: A clinicopathologic study of 264 patients.Cancer. 2000; 88 (10738210): 1536-1543
- Simple mucin-type carbohydrate antigens (Tn, sialosyl-Tn and T) in gastric mucosa, carcinomas and metastases.APMIS Suppl. 1992; 27 (1520525): 162-172
- Overexpression of tumour-associated carbohydrate antigen sialyl-Tn in advanced bladder tumours.Mol. Oncol. 2013; 7 (23567325): 719-731
- Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model.Clin. Exp. Metastasis. 2012; 29 (22228572): 229-238
- Glycoengineering of human cell lines using zinc finger nuclease gene targeting: SimpleCells with homogeneous GalNAc O-glycosylation allow isolation of the O-glycoproteome by one-step lectin affinity chromatography.Methods Mol. Biol. 2013; 1022 (23765677): 387-402
- Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines.Nat. Methods. 2011; 8 (21983924): 977-982
- Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22566642): 9893-9898
- Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis.Glycobiology. 2015; 25 (25155433): 55-65
- Deconstruction of O-glycosylation-GalNAc-T isoforms direct distinct subsets of the O-glycoproteome.EMBO Rep. 2015; 16 (26566661): 1713-1722
- The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality.Nature. 2013; 504 (24226769): 456-459
- Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties.Biochem. J. 2014; 463 (25000122): 93-102
- Site-specific protein O-glycosylation modulates proprotein processing- deciphering specific functions of the large polypeptide GalNAc-transferase gene family.Biochim. Biophys. Acta. 2012; 1820 (23022508): 2079-2094
- A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26554003): 14623-14628
- MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7.J. Biol. Chem. 2012; 287 (22399294): 14301-14309
- Characterization of ppGalNAc-T18, a member of the vertebrate-specific Y subfamily of UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases.Glycobiology. 2012; 22 (22171061): 602-615
- ppGalNAc T1 as a potential novel marker for human bladder cancer.Asian Pac. J. Cancer Prev. 2012; 13 (23317233): 5653-5657
- Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation.Oncotarget. 2014; 5 (24504219): 544-560
- Increased sensitivity of gastric cancer cells to natural killer and lymphokine-activated killer cells by antisense suppression of N-acetylgalactosaminyltransferase.J. Immunol. 1997; 159 (9300683): 2645-2651
- miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis.Cancer Cell. 2011; 20 (21741600): 104-118
- Expression of UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 in gastric mucosa, intestinal metaplasia, and gastric carcinoma.J. Histochem. Cytochem. 2009; 57 (18854599): 79-86
- Strong expression of polypeptide N-acetylgalactosaminyltransferase 3 independently predicts shortened disease-free survival in patients with early stage oral squamous cell carcinoma.Tumour Biol. 2015; 36 (26563377): 10003-10004
- Expression of GalNAc-T3 and its relationships with clinicopathological factors in 61 extrahepatic bile duct carcinomas analyzed using stepwise sections–special reference to its association with lymph node metastases.Mod. Pathol. 2007; 20 (17361208): 267-276
- pp-GalNAc-T13 induces high metastatic potential of murine Lewis lung cancer by generating trimeric Tn antigen.Biochem. Biophys. Res. Commun. 2012; 419 (22306014): 7-13
- Expression of UDP-N-acetyl-α-d-galactosamine-polypeptide galNAc N-acetylgalactosaminyl transferase-3 in relation to differentiation and prognosis in patients with colorectal carcinoma.Cancer. 2002; 94 (11932895): 1939-1946
- Substrate specificities of three members of the human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3.J. Biol. Chem. 1997; 272 (9295285): 23503-23514
- Functional conservation of subfamilies of putative UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases in Drosophila, Caenorhabditis elegans, and mammals. One subfamily composed of l(2)35Aa is essential in Drosophila.J. Biol. Chem. 2002; 277 (11925450): 22623-22638
- Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family.Glycobiology. 1999; 9 (9884405): 43-52
- Expression of uridine diphosphate N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 in adenocarcinoma of the pancreas.Pathobiology. 2004; 71 (14555840): 12-18
- Polypeptide N-acetylgalactosaminyltransferase 6 expression in pancreatic cancer is an independent prognostic factor indicating better overall survival.Br. J. Cancer. 2011; 104 (21587259): 1882-1889
- Overexpression of GalNAc-transferase GalNAc-T3 promotes pancreatic cancer cell growth.Oncogene. 2011; 30 (21625220): 4843-4854
- Expression of three UDP-N-acetyl-α-d-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines.Cancer Res. 1997; 57 (9354435): 4744-4748
- Expression of UDP-N-acetyl-α-d-galactosamine-polypeptide N-acetylgalactosaminyltransferase isozyme 3 in the subserosal layer correlates with postsurgical survival of pathological tumor stage 2 carcinoma of the gallbladder.Clin. Cancer Res. 2004; 10 (15041730): 2090-2099
- The expression pattern of UDP-N-acetyl-α-d-galactosamine: polypeptide N-acetylgalactosaminyl transferase-3 in early gastric carcinoma.J. Surg. Oncol. 2004; 86 (15048677): 28-33
- Prognostic significance of UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-3 (GalNAc-T3) expression in patients with gastric carcinoma.Cancer Sci. 2003; 94 (12708471): 32-36
- Use of multiple biomarkers for a molecular diagnosis of prostate cancer.Int. J. Cancer. 2005; 114 (15609297): 950-956
- Polypeptide N-acetylgalactosaminyl transferase 3 independently predicts high-grade tumours and poor prognosis in patients with renal cell carcinomas.Br. J. Cancer. 2013; 109 (23799843): 472-481
- Low expression of polypeptide GalNAc N-acetylgalactosaminyl transferase-3 in lung adenocarcinoma: impact on poor prognosis and early recurrence.Br. J. Cancer. 2004; 90 (14735190): 436-442
- The expression pattern of UDP-N-acetyl-α-d-galactosamine-polypeptide N-acetyl-galactosaminyl transferase-3 in squamous cell carcinoma of the esophagus.Pathobiology. 2005; 72 (15860931): 139-145
- Expression of polypeptide N-acetylgalactosaminyl transferase-3 and its association with clinicopathological factors in thyroid carcinomas.Thyroid. 2013; 23 (23659732): 1553-1560
- Glycosyltransferases as markers for early tumorigenesis.BioMed Res. Int. 2015; 2015 (26161413): 792672
- UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-6 as a new immunohistochemical breast cancer marker.J. Histochem. Cytochem. 2006; 54 (16260590): 317-328
- UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrow-disseminated breast cancer cells.Int. J. Cancer. 2006; 119 (16596643): 1383-1388
- Prognostic utility of glycosyltransferase expression in breast cancer.Cancer Genomics Proteomics. 2008; 5 (19287074): 333-340
- Glycan-related gene expression signatures in breast cancer subtypes; relation to survival.Mol. Oncol. 2015; 9 (25655580): 861-876
- Role of N-acetylgalactosaminyltransferase 6 in early tumorigenesis and formation of metastasis.Mol. Med. Rep. 2016; 13 (27035742): 4309-4314
- Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin.Neoplasia. 2011; 13 (21472136): 320-326
- Morphological changes, cadherin switching, and growth suppression in pancreatic cancer by GALNT6 knockdown.Neoplasia. 2016; 18 (27237318): 265-272
- Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (22006308): 17690-17695
- Escape from p21-mediated oncogene-induced senescence leads to cell dedifferentiation and dependence on anti-apoptotic Bcl-xL and MCL1 proteins.J. Biol. Chem. 2011; 286 (21292770): 12825-12838
- Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression.Nucleic Acids Res. 2017; 45 (28472465): e123
- Engineered CHO cells for production of diverse, homogeneous glycoproteins.Nat. Biotechnol. 2015; 33 (26192319): 842-844
- LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines.PLoS One. 2011; 6 (21829496): e22733
- Expression of LGR5, an intestinal stem cell marker, during each stage of colorectal tumorigenesis.Anticancer Res. 2011; 31 (21273608): 263-270
- Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics.Nat. Protoc. 2009; 4 (19300442): 484-494
- Enhanced mass spectrometric mapping of the human GalNAc-type O-glycoproteome with SimpleCells.Mol. Cell. Proteomics. 2013; 12 (23399548): 932-944
- Comparison of two sialosyl-Tn binding monoclonal antibodies (MLS102 and B72.3) in detecting pancreatic cancer.Gut. 1993; 34 (8282261): 1722-1725
- A tumor-associated antigen in carcinoma of the pancreas defined by monoclonal antibody B72.3.Am. J. Clin. Pathol. 1988; 89 (3277379): 160-167
- Aberrant expression of MUC5AC and MUC6 gastric mucins and sialyl Tn antigen in intraepithelial neoplasms of the pancreas.Gastroenterology. 2002; 123 (12360467): 1052-1060
- Expression of Tn, sialosyl Tn, and T antigens in human pancreas.Gastroenterology. 1991; 100 (1850375): 1691-1700
- Progression model for pancreatic cancer.Clin. Cancer Res. 2000; 6 (10955772): 2969-2972
- Human colonic adenocarcinoma cells. I. Establishment and description of a new line.In Vitro. 1976; 12 (1262041): 180-191
- Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis.Cancer Res. 2010; 70 (20215525): 2759-2769
- Pivotal role of MUC1 glycosylation by cigarette smoke in modulating disruption of airway adherens junctions in vitro.J. Pathol. 2014; 234 (24838315): 60-73
- On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database.Biochim. Biophys. Acta. 1999; 1473 (10580125): 4-8
- Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology.EMBO J. 2013; 32 (23584533): 1478-1488
- TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites.Cell. 2009; 136 (19269366): 891-902
- Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse.J. Cell Biol. 2011; 193 (21606205): 935-951
- O-Glycosylation regulates polarized secretion by modulating Tango1 stability.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24799692): 7296-7301
- Loss of EphB6 protein expression in human colorectal cancer correlates with poor prognosis.J. Mol. Histol. 2014; 45 (24912672): 555-563
- The role of Eph receptors and ephrin ligands in colorectal cancer.Int. J. Cancer. 2010; 126 (20039322): 2003-2011
- Sequence variants in SLITRK1 are associated with Tourette's syndrome.Science. 2005; 310 (16224024): 317-320
- Slit proteins: key regulators of axon guidance, axonal branching, and cell migration.Curr. Opin. Neurobiol. 2000; 10 (10679444): 95-102
- Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth.Mol. Cell. Neurosci. 2003; 24 (14550773): 117-129
- Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion.Nat. Commun. 2014; 5 (25394468): 5423
- Ligand independence of the T618I mutation in the colony-stimulating factor 3 receptor (CSF3R) protein results from loss of O-linked glycosylation and increased receptor dimerization.J. Biol. Chem. 2014; 289 (24403076): 5820-5827
- Multiple roles of the invariant chain in MHC class II function.Biochim. Biophys. Acta. 2002; 1542 (11853874): 1-13
- Business as usual: the p35 isoform of human CD74 retains function in antigen presentation.Immunol. Cell Biol. 2012; 90 (23032370): 839-840
- Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity.Glycoconj. J. 2013; 30 (22878593): 227-236
- Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response.PLoS One. 2012; 7 (23189185): e50139
- Seromic profiling of colorectal cancer patients with novel glycopeptide microarray.Int. J. Cancer. 2011; 128 (21344374): 1860-1871
- Early detection of cancer in the general population: a blinded case-control study of p53 autoantibodies in colorectal cancer.Br. J. Cancer. 2013; 108 (23169294): 107-114
- Cancer-associated autoantibodies to MUC1 and MUC4–a blinded case-control study of colorectal cancer in UK collaborative trial of ovarian cancer screening.Int. J. Cancer. 2014; 134 (24122770): 2180-2188
- PankoMab: a potent new generation anti-tumour MUC1 antibody.Cancer Immunol. Immunother. 2006; 55 (16485130): 1337-1347
- Stem cell differentiation and lumen formation in colorectal cancer cell lines and primary tumors.Cancer Res. 2013; 73 (23867471): 5798-5809
- High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs.Nucleic Acids Res. 2014; 42 (24753413): e84
- Fast and sensitive detection of indels induced by precise gene targeting.Nucleic Acids Res. 2015; 43 (25753669): e59
- Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining.Genome Res. 2013; 23 (23152450): 539-546
- Molecular basis for the presence of glycosylated onco-foetal fibronectin in oral carcinomas: the production of glycosylated onco-foetal fibronectin by carcinoma cells.Oral Oncol. 2007; 43 (16857413): 301-309
- Differential expression analysis for sequence count data.Genome Biol. 2010; 11 (20979621): R106
- Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation.Nucleic Acids Res. 2012; 40 (22287627): 4288-4297
- Count-based differential expression analysis of RNA sequencing data using R and Bioconductor.Nat. Protoc. 2013; 8 (23975260): 1765-1786
- Generation of monoclonal antibodies to native active human glycosyltransferases.Methods Mol. Biol. 2013; 1022 (23765678): 403-420
Article info
Publication history
Footnotes
This work was supported in part by Danish Research Councils Grant 1331-00133B (to K. L., S. D., and H. H. W.), Programme of Excellence 2016 Copenhagen as the Next Leader in Precise Genetic Engineering Grant CDO2016 from the University of Copenhagen (to K. L. and H. H. W.), Danish National Research Foundation Grant DNRF107, and The Lundbeck Foundation (to K. L. and H. H. W.). H. H. W. is a consultant and owns stock in GO therapeutics.
This article contains Fig. S1 and Tables S1–S6.
This article was selected as one of our Editors' Picks.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy