Introduction
Results
Generation of m4-1BB

Structure determination and overall architecture of 4-1BB
Data collection statistics | 4-1BB WT | 4-1BBWT | 4-1BB N128A |
---|---|---|---|
PDB ID | 5WJF | 5WI8 | 5WIW |
Space group | P21212 | P 21 | P43 |
Cell dimension | |||
a, b, c, (Å) | 65.05, 67.76, 87.99 | 65.01, 61.76, 110.75 | 66.63, 66.63, 82.18 |
α, β, γ (°) | 90.00, 90.00, 90.00 | 90.00, 91.53, 90.00 | 90.00, 90.00, 90.00 |
Resolution range (Å) (outer shell) | 36.9 – 2.50 (2.60–2.50) | 40.0 – 2.95 (3.06 – 2.95) | 50.0 – 2.28 (2.32 – 2.28) |
No. of unique reflections | 14,009 (1,542) | 17,070 (1,237) | 16,323 (782) |
Rmeas (%) | 22.6 (393.3) | 15.4 (34.8) | 6.5 (39.2) |
Rpim (%) | 1.9 (51.4) | 8.4 (19.9) | 2.7 (17.1) |
Multiplicity | 123.3 (107.3) | 3.1 (2.4) | 5.5 (4.8) |
Average I/σI | 37.5 (3.5) | 11.6 (1.92) | 22.7 (2.44) |
Completeness (%) | 99.8 (98.5) | 91.8 (67.5) | 99.6 (96.0) |
Refinement statistics | |||
No. atoms | 2,117 | 4,333 | 1,816 |
Protein | 1,999 | 3,923 | 1,598 |
Ligand | 40 | 234 | 74 |
Water | 78 | 91 | 117 |
Ramachandran plot (%) | |||
Favored | 98.5 | 96.8 | 97.6 |
Allowed | 1.5 | 3.2 | 1.4 |
Outliers | 0 | 0 | 1 |
R.m.s. deviations | |||
Bonds (Å) | 0.007 | 0.009 | 0.006 |
Angles (°) | 1.19 | 1.49 | 1.13 |
B-factors (Å2) | |||
Protein | 57.6 | 73.0 | 45.2 |
Ligand | 97.2 | 95.5 | 61.6 |
Water | 56.5 | 54.8 | 46.1 |
Glycerol/EDO/sulfate | None/72.0/none | 88.2/72.6/none | 83.7/none/42.1 |
R factor (%) | 22.2 | 23.5 | 19.6 |
Rfree (%) | 28.9 | 27.9 | 22.7 |


Comparison with structures of other TNF receptors

Dimerization of m4-1BB ligand ectodomain

Binding of m4-1BBL to m4-1BB

Immobilized (ligand) | In solution (analyte) | kon | koff | KD | χ2 | KDeq |
---|---|---|---|---|---|---|
m−1 s−1 | s−1 | m | Response units | m | ||
m4-1BB WT-Fc | Gal-9 NTD | 3.3 × 103 | 8.9 × 10−3 | 2.6 × 10−6 | 8.87 | 3.2 × 10−6 |
m4-1BB WT - Fc | Gal-9 CTD | 1.3 × 104 | 3.8 × 10−2 | 2.8 × 10−6 | 18.4 | 3.8 × 10−6 |
m4-1BB N128A-Fc | Gal-9 NTD | 3.3 × 103 | 6.5 × 10−3 | 1.9 × 10−6 | 9.73 | 3.8 × 10−6 |
m4-1BB N128A-Fc | Gal-9 CTD | 9.1 × 103 | 2.1 × 10−2 | 2.3 × 10−6 | 11.7 | 3.6 × 10−6 |
m4-1BB N138A-Fc | Gal-9 NTD | 2.6 × 103 | 7.6 × 10−3 | 2.9 × 10−6 | 4.69 | 5.6 × 10−6 |
m4-1BB N138A-Fc | Gal-9 CTD | 5.2 × 103 | 2.4 × 10−2 | 4.6 × 10−6 | 6.99 | 5.4 × 10−6 |
m4-1BBL | m4-1BB WT | 3.0 × 106 | 2.5 × 10−2 | 8.2 × 10−9 | 3.16 | 10.6 × 10−9 |
m4-1BBL | m4-1BB WT-Fc | 6.6 × 105 | 5.8 × 10−5 | 8.9 × 10−11 | 9.7 | 7.0 × 10−9 |
m4-1BB WT-Fc | m4-1BBL | 9.8 × 105 | 1.8 × 10−4 | 1.8 × 10−10 | 3.25 | 2.9 × 10−9 |
Binding of Gal-9 NTD/CTD to m4-1BB variants
Discussion
Experimental procedures
Design of m4-1BB, m4-1BB ligand, and Gal-9 constructs
Expression and purification of m4-1BB from mammalian HEK293T cells
Generation of m4-1BB N-linked glycosylation site mutants
Protein expression and purification of m4-1BB ligand from insect cells
Reductive carboxymethylation (RCM) of m4-1BB ligand
Expression and protein purification of human and mouse Gal-9 constructs
Crystallization of m4-1BB
Data collection and refinement
Sulfur (S)-SAD phasing method
Diffraction data processing
Phasing
Model building
Refinement
SPR binding kinetics
Author contributions
Acknowledgments
- National Institutes of Health
Supplementary Material
References
- Clinical targeting of the TNF and TNFR superfamilies.Nat. Rev. Drug Discov. 2013; 12 (23334208): 147-168
- TNF/TNFR family members in costimulation of T cell responses.Annu. Rev. Immunol. 2005; 23 (15771565): 23-68
- Signalling pathways of the TNF superfamily: a double-edged sword.Nat. Rev. Immunol. 2003; 3 (12949498): 745-756
- Sequence, structure, function, immunity: structural genomics of costimulation.Immunol. Rev. 2009; 229 (19426233): 356-386
- Co-stimulatory members of the TNFR family: keys to effective T-cell immunity?.Nat. Rev. Immunol. 2003; 3 (12974476): 609-620
- The role of TNF superfamily members in T-cell function and diseases.Nat. Rev. Immunol. 2009; 9 (19319144): 271-285
- Crystallographic and mutational analysis of the CD40-CD154 complex and its implications for receptor activation.J. Biol. Chem. 2011; 286: 11226-11235
- Solution of the structure of the TNF-TNFR2 complex.Sci. Signal. 2010; 3 (21081755): ra83
- Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation.Cell. 1993; 73 (8387891): 431-445
Lee, S.-W., and Croft, M., (2009) 4-1BB as a therapeutic target for human disease. in Therapeutic Targets of the TNF Superfamily (Grewal, I. S., ed) pp. 120–129, Springer New York
- cDNA sequences of two inducible T-cell genes.Proc. Natl. Acad. Sci. U.S.A. 1989; 86 (2784565): 1963-1967
- Galectin-9 controls the therapeutic activity of 4-1BB–targeting antibodies.J. Exp. Med. 2014; 211 (24958847): 1433-1448
- The structure of the trimer of human 4-1BB ligand is unique among members of the tumor necrosis factor superfamily.J. Biol. Chem. 2010; 285: 9202-9210
- The molecular architecture of the TNF superfamily.Trends Biochem. Sci. 2002; 27 (11796220): 19-26
- 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-μ-primed splenic B cells.Eur. J. Immunol. 1994; 24 (8299685): 367-374
- T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy.Immunol. Rev. 2011; 244 (22017440): 197-217
- Human 4-1BB (CD137) Signals are mediated by TRAF2 and activate nuclear factor-κB.Biochem. Biophys. Res. Commun. 1998; 242 (9464265): 613-620
- 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB.Mol. Cell. Biol. 1998; 18 (9418902): 558-565
- Costimulation by CD137/4-1BB inhibits T cell apoptosis and induces Bcl-xL and c-FLIPshort via phosphatidylinositol 3-kinase and AKT/protein kinase B.Eur. J. Immunol. 2005; 35 (15761847): 1257-1266
- Defective T cell priming associated with aging can be rescued by signaling through 4-1BB (CD137).J. Immunol. 2002; 169 (12391215): 5005-5009
- In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses.Nat. Immunol. 2002; 3 (12021777): 536-541
- Identification and characterization of galectin-9, a novel β-galactoside-binding mammalian lectin.J. Biol. Chem. 1997; 272 (9038233): 6078-6086
- Developmental regulation, expression, and apoptotic potential of galectin-9, a β-galactoside binding lectin.J. Clin. Investig. 1997; 99 (9153289): 2452-2461
- Galectins as modulators of tumour progression.Nat. Rev. 2005; 5 (17128284, 15630413): 29-41
- An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer.Scand. J. Immunol. 2007; 66 (17635792): 143-158
- S-SAD phasing study of death receptor 6 and its solution conformation revealed by SAXS.Acta Crystallogr. D Biol. Crystallogr. 2012; 68: 521-530
- RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor.Structure. 2012; 20 (23039992): 1971-1982
- Structural basis for ligand-mediated mouse GITR activation.Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 641-645
- Modularity in the TNF-receptor family.Trends Biochem. Sci. 1998; 23 (9538693): 74-79
- An improved understanding of TNFL/TNFR interactions using structure-based classifications.Trends Biochem. Sci. 2012; 37 (22789664): 353-363
- Analysis of 4-1BBL and laminin binding to murine 4-1BB, a member of the tumor necrosis factor receptor superfamily, and comparison with human 4-1BB.J. Biol. Chem. 1997; 272: 6448-6456
- Binding studies of TNF receptor superfamily (TNFRSF) receptors on intact cells.J. Biol. Chem. 2016; 291: 5022-5037
- Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand.J. Immunol. 2009; 183 (19596991): 1851-1861
- Production of recombinant human trimeric CD137L (4-1BBL): cross-linking is essential to its t cell co-stimulation activity.J. Biol. Chem. 2005; 280: 41472-41481
- Assembly and structural properties of glucocorticoid-induced TNF receptor ligand: implications for function.Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 19452-19457
- The crystal structure of the costimulatory OX40-OX40L complex.Structure. 2006; 14 (16905106): 1321-1330
- Stoichiometry of LTβR binding to LIGHT.Biochemistry. 2006; 45 (16906770): 10117-10128
- Evolution of GITRL immune function: murine GITRL exhibits unique structural and biochemical properties within the TNF superfamily.Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 635-640
- Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions.PLoS Pathog. 2013; 9 (23555243): e1003224
- The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding.Acta Crystallogr. D Biol. Crystallogr. 2014; 70 (24598754): 851-862
- Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses.Cell Host Microbe. 2013; 13 (23498957): 324-335
- Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells.Cell Death Differ. 2012; 19 (21941373): 523-533
- Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways.Cancer Res. 2004; 64 (15150087): 3376
- The structural basis for the recognition of diverse receptor sequences by TRAF2.Mol. Cell. 1999; 4 (10518213): 321-330
- A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD–TRAF2 interaction.Cell. 2000; 101 (10892748): 777-787
- Crystal structure of the galectin-9 N-terminal carbohydrate recognition domain from Mus musculus reveals the basic mechanism of carbohydrate recognition.J. Biol. Chem. 2006; 281: 35884-35893
- X-ray structures of human galectin-9 C-terminal domain in complexes with a biantennary oligosaccharide and sialyllactose.J. Biol. Chem. 2010; 285: 36969-36976
- Processing of x-ray diffraction data collected in oscillation mode.Methods Enzymol. 1997; 276 (27799103, 27754618): 307-326
- Likelihood-enhanced fast translation functions.Acta Crystallogr. D Biol. Crystallogr. 2005; 61 (15805601): 458-464
- XDS.Acta Crystallogr. D Biol Crystallogr. 2010; 66 (20124692): 125-132
- Integration, scaling, space-group assignment and post-refinement.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124693): 133-144
- A short history of SHELX.Acta Crystallogr. A. 2008; 64 (18156677): 112-122
- The Buccaneer software for automated model building: 1. tracing protein chains.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16929101): 1002-1011
- Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460441): 235-242
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- Refinement of macromolecular structures by the maximum likelihood method.Acta Crystallogr. D Biol. Crystallogr. 1997; 53 (15299926): 240-255
- The Molecular Replacement Method. Gordon & Breach, New York1972
- MOLREP:an automated programm for molecular replacement.J. Appl. Cryst. 1997; 30: 1022-1025
Article info
Publication history
Footnotes
This work was supported by NIAID, National Institutes of Health Grant AI110929 (to M. C. and D. M. Z.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Figs. S1–S3.
The atomic coordinates and structure factors (codes 5WJF, 5WI8, and 5WIW) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy