Lafora disease: History
Lafora disease: Molecular causes

- Solaz-Fuster M.C.
- Gimeno-Alcañiz J.V.
- Ros S.
- Fernandez-Sanchez M.E.
- Garcia-Fojeda B.
- Criado Garcia O.
- Vilchez D.
- Dominguez J.
- Garcia-Rocha M.
- Sanchez-Piris M.
- Aguado C.
- Knecht E.
- Serratosa J.
- Guinovart J.J.
- Sanz P.
- Rodriguez de Córdoba S.
- Vilchez D.
- Ros S.
- Cifuentes D.
- Pujadas L.
- Vallès J.
- García-Fojeda B.
- Criado-García O.
- Fernández-Sánchez E.
- Medraño-Fernández I.
- Domínguez J.
- García-Rocha M.
- Soriano E.
- Rodríguez de Córdoba S.
- Guinovart J.J.
- Vilchez D.
- Ros S.
- Cifuentes D.
- Pujadas L.
- Vallès J.
- García-Fojeda B.
- Criado-García O.
- Fernández-Sánchez E.
- Medraño-Fernández I.
- Domínguez J.
- García-Rocha M.
- Soriano E.
- Rodríguez de Córdoba S.
- Guinovart J.J.
Glycogen: Structure and metabolism

Glycogen: Phosphorylation and LBs
Glycogen in neurons
- Vilchez D.
- Ros S.
- Cifuentes D.
- Pujadas L.
- Vallès J.
- García-Fojeda B.
- Criado-García O.
- Fernández-Sánchez E.
- Medraño-Fernández I.
- Domínguez J.
- García-Rocha M.
- Soriano E.
- Rodríguez de Córdoba S.
- Guinovart J.J.
- Vilchez D.
- Ros S.
- Cifuentes D.
- Pujadas L.
- Vallès J.
- García-Fojeda B.
- Criado-García O.
- Fernández-Sánchez E.
- Medraño-Fernández I.
- Domínguez J.
- García-Rocha M.
- Soriano E.
- Rodríguez de Córdoba S.
- Guinovart J.J.
- Vilchez D.
- Ros S.
- Cifuentes D.
- Pujadas L.
- Vallès J.
- García-Fojeda B.
- Criado-García O.
- Fernández-Sánchez E.
- Medraño-Fernández I.
- Domínguez J.
- García-Rocha M.
- Soriano E.
- Rodríguez de Córdoba S.
- Guinovart J.J.
- Vilchez D.
- Ros S.
- Cifuentes D.
- Pujadas L.
- Vallès J.
- García-Fojeda B.
- Criado-García O.
- Fernández-Sánchez E.
- Medraño-Fernández I.
- Domínguez J.
- García-Rocha M.
- Soriano E.
- Rodríguez de Córdoba S.
- Guinovart J.J.
LD mouse models establish disease mechanisms and therapeutic options
- Ganesh S.
- Delgado-Escueta A.V.
- Sakamoto T.
- Avila M.R.
- Machado-Salas J.
- Hoshii Y.
- Akagi T.
- Gomi H.
- Suzuki T.
- Amano K.
- Agarwala K.L.
- Hasegawa Y.
- Bai D.S.
- Ishihara T.
- Hashikawa T.
- et al.
- Ganesh S.
- Delgado-Escueta A.V.
- Sakamoto T.
- Avila M.R.
- Machado-Salas J.
- Hoshii Y.
- Akagi T.
- Gomi H.
- Suzuki T.
- Amano K.
- Agarwala K.L.
- Hasegawa Y.
- Bai D.S.
- Ishihara T.
- Hashikawa T.
- et al.

An emerging link between glycogen metabolism and epilepsy
Conclusions
Author Profiles
Berge A. Minassian
Joan J. Guinovart
Jose M. Serratosa
Matthew S. Gentry
Peter J. Roach
References
- Uber des Vorkommen amyloider KJrperchen im innern der Ganglienzellen.Virchows Arch. Path. Anat. 1911; 205: 295
- Beitrag zur histopathologie der myoklonischen epilepsie.Z Ges Neurol. Psychiatr. 1911; 6: 1-14
- Virchow R.L. Die Cellularpathologie Inihrer Begründung auf Physiologische and Pathologische Gewebelehre. Hirschwald, Berlin1858
- Isolation and characterization of Lafora bodies in two cases of myoclonus epilepsy.J. Neuropathol. Exp. Neurol. 1967; 26 (4164450): 125-127
- Studies in myoclonus epilepsy (Lafora body form). I. Isolation and preliminary characterization of Lafora bodies in two cases.Arch. Neurol. 1968; 19 (4175641): 15-33
- Lafora's disease. Distinct clinico-pathologic form of Unverricht's syndrome.Arch. Neurol. 1965; 12 (14237775): 172-188
- Progressive myoclonus epilepsies: clinical and neurophysiological diagnosis.J. Clin. Neurophysiol. 1991; 8 (1918332): 261-274
- Laforin is a cell membrane and endoplasmic reticulum-associated protein tyrosine phosphatase.Ann. Neurol. 2001; 49 (11220751): 271-275
- Vinken P.J. Bruyn G.W. Handbook of Clinical Neurology. North Holland Publishing Co., Holland, Amsterdam1975: 382-422
- Lafora's disease: towards a clinical, pathologic, and molecular synthesis.Pediatr. Neurol. 2001; 25 (11483392): 21-29
- Idiopathic epilepsies with a complex mode of inheritance.Epilepsia. 1999; 40 (10446745): 12-16
- Lafora disease.Epileptic Disord. 2016; 18 (27702709): 38-62
- The gene for progressive myoclonus epilepsy of the Lafora type maps to chromosome 6q.Hum. Mol. Genet. 1995; 4 (8541857): 1657-1663
- Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy.Nat. Genet. 1998; 20 (9771710): 171-174
- A novel protein tyrosine phosphatase gene is mutated in progressive myoclonus epilepsy of the Lafora type (EPM2).Hum. Mol. Genet. 1999; 8 (9931343): 345-352
- Mutations in NHLRC1 cause progressive myoclonus epilepsy.Nat. Genet. 2003; 35 (12958597): 125-127
- The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease.J. Cell Biol. 2007; 178 (17646401): 477-488
- Laforin: A dual specificity phosphatase that dephosphorylates complex carbohydrates.J. Biol. Chem. 2006; 281 (16901901): 30412-30418
- Abnormal metabolism of glycogen phosphate as a cause for lafora disease.J. Biol. Chem. 2008; 283 (18852261): 33816-33825
- Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo.Proc. Natl. Acad. Sci. U.S.A. 2007; 104 (18040046): 19262-19266
- Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii.FEBS J. 2013; 280 (22364389): 525-537
- Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease.J. Biol. Chem. 2015; 290 (25416783): 841-850
- Structural mechanism of laforin function in glycogen dephosphorylation and Lafora disease.Mol. Cell. 2015; 57 (25544560): 261-272
- The RING finger domain: a recent example of a sequence-structure family.Curr. Opin. Struct. Biol. 1996; 6 (8804826): 395-401
- Insights into Lafora disease: malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (15930137): 8501-8506
- A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease.Genes Dev. 2007; 21 (17908927): 2399-2409
- Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway.Hum. Mol. Genet. 2008; 17 (18029386): 667-678
- Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy.Nat. Neurosci. 2007; 10 (17952067): 1407-1413
- Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG).J. Biol. Chem. 2008; 283 (18070875): 4069-4076
- Deciphering the role of malin in the lafora progressive myoclonus epilepsy.IUBMB Life. 2012; 64 (22815132): 801-808
- PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism.Science. 1997; 275 (9045612): 1475-1478
- Genetic depletion of the malin E3 ubiquitin ligase in mice leads to lafora bodies and the accumulation of insoluble laforin.J. Biol. Chem. 2010; 285 (20538597): 25372-25381
- Glycogen hyperphosphorylation underlies lafora body formation.Ann. Neurol. 2010; 68 (21077101): 925-933
- Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease.EMBO Mol. Med. 2011; 3 (21882344): 667-681
- Glycogen and its metabolism.Curr. Mol. Med. 2002; 2 (11949930): 101-120
- Laforin and malin knockout mice have normal glucose disposal and insulin sensitivity.Hum. Mol. Genet. 2012; 21 (22186021): 1604-1610
- Laforin, a dual specificity phosphatase involved in Lafora disease, regulates insulin response and whole-body energy balance in mice.Hum Mol. Genet. 2011; 20 (21493628): 2571-2584
- Lafora disease: insights into neurodegeneration from plant metabolism.Trends Biochem. Sci. 2009; 34 (19818631): 628-639
- Glycogen and its metabolism: some new developments and old themes.Biochem. J. 2012; 441 (22248338): 763-787
- Helix-breaking news: fighting crystalline starch energy deposits in the cell.Trends Plant Sci. 2010; 15 (20149714): 236-240
- The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity.Int. J. Biol. Macromol. 2000; 27 (10828367): 211-218
- Nakamura Y. Starch. Springer, Tokyo, Japan2015: 399-424
- Nakamura Y. Starch. Springer, Tokyo, Japan2015: 239-290
- Structural biology of glucan phosphatases from humans to plants.Curr. Opin. Struct. Biol. 2016; 40 (27498086): 62-69
- Formation of starch in plant cells.Cell. Mol. Life Sci. 2016; 73 (27166931): 2781-2807
- Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines.Int. J. Biol. Macromol. 2007; 40 (17188347): 449-460
- Rapid and sensitive quantification of C3- and C6-phosphoesters in starch by fluorescence-assisted capillary electrophoresis.Carbohydr. Polym. 2016; 152 (27516330): 784-791
- The role of phosphate in muscle glycogen.Biofactors. 1994; 4 (7916962): 167-171
- Glycogen contains phosphodiester groups that can be introduced by UDPglucose: glycogen glucose 1-phosphotransferase.FEBS Lett. 1993; 329 (8396041): 263-267
- The presence of phosphate in glycogen.FEBS Lett. 1980; 109 (6153366): 85-92
- Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1.Biochem. Biophys. Res. Commun. 2011; 413 (21893048): 420-425
- Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice.J. Biol. Chem. 2015; 290 (26216881): 22686-22698
- Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy Lafora disease.Cell Metab. 2013; 17 (23663739): 756-767
- Phosphate incorporation during glycogen synthesis and Lafora disease.Cell Metab. 2011; 13 (21356517): 274-282
- Incorporation of phosphate into glycogen by glycogen synthase.Arch. Biochem. Biophys. 2016; 597 (27036853): 21-29
- Glycogen metabolism in tissues from a mouse model of Lafora disease.Arch. Biochem. Biophys. 2007; 457 (17118331): 264-269
- Glycogen phosphorylation and Lafora disease.Mol. Aspects Med. 2015; 46 (26278984): 78-84
- Structural basis for 2′-phosphate incorporation into glycogen by glycogen synthase.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (24324135): 20976-20981
- Are there errors in glycogen biosynthesis and is laforin a repair enzyme?.FEBS Lett. 2011; 585 (21930129): 3216-3218
- Mechanistic insights into glucan phosphatase activity against polyglucan substrates.J. Biol. Chem. 2015; 290 (26231210): 23361-23370
- Pluralistic roles for glycogen in the central and peripheral nervous systems.Metab. Brain Dis. 2015; 30 (24610115): 299-306
- Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?.Metab. Brain Dis. 2015; 30 (24643875): 307-316
- Astrocyte glycogen as an emergency fuel under conditions of glucose deprivation or intense neural activity.Metab. Brain Dis. 2015; 30 (25037166): 233-239
- Contributions of glycogen to astrocytic energetics during brain activation.Metab. Brain Dis. 2015; 30 (24515302): 281-298
- Sugar for the brain: the role of glucose in physiological and pathological brain function.Trends Neurosci. 2013; 36 (23968694): 587-597
- Lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.J. Neurosci. Res. 2017; 95 (28151548): 2103-2125
- Astrocyte glycogen and brain energy metabolism.Glia. 2007; 55 (17659525): 1263-1271
- Regulation of glycogen metabolism in primary and transformed astrocytes in vitro.J. Neurochem. 1983; 40 (6294244): 128-136
- Differences in glycogen metabolism in astroglia-rich primary cultures and sorbitol-selected astroglial cultures derived from mouse brain.Glia. 1993; 8 (8225556): 143-149
- High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes.J. Cereb. Blood Flow Metab. 2002; 22 (12468892): 1476-1489
- Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain.J. Cereb. Blood Flow Metab. 2013; 33 (23281428): 550-556
- Rapid turnover of glycogen in memory formation.Neurochem. Res. 2012; 37 (22664636): 2456-2463
- Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.Neuron. 2012; 75 (22998876): 1094-1104
- Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain.Neurochem. Res. 2013; 38 (23232850): 472-485
- Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level.Front. Neuroenergetics. 2012; 4 (22403540): 3
- Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient.Neurotox. Res. 2010; 18 (20306167): 94-99
- Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy.Front. Cell. Neurosci. 2015; 9 (26578889): 431
- Polyglucosan bodies and temporal lobe epilepsy: an incidental finding or more?.Clin. Neuropathol. 2001; 20 (11495006): 172-175
- The presence of polyglucosan bodies in temporal lobe epilepsy: its role and significance.J. Clin. Neurosci. 2005; 12 (16246565): 911-914
- Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes.J. Neurocytol. 1986; 15 (3018177): 511-524
- Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies.J. Neurochem. 2003; 85 (12641728): 73-81
- The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex.J. Neurosci. 2007; 27 (17989291): 12255-12266
- Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.J. Cereb. Blood Flow Metab. 2014; 34 (24569689): 945-955
- Deleterious effects of neuronal accumulation of glycogen in flies and mice.EMBO Mol. Med. 2012; 4 (22549942): 719-729
- Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy.Hum Mol. Genet. 2012; 21 (22186026): 1521-1533
- Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice.Hum. Mol. Genet. 2002; 11 (12019206): 1251-1262
- PTG protein depletion rescues malin-deficient Lafora disease in mouse.Ann. Neurol. 2014; 75 (24419970): 442-446
- PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease.PLoS Genet. 2011; 7 (21552327): e1002037
- Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease.Hum. Mol. Genet. 2014; 23 (24452334): 3147-3156
- Laforin, the most common protein mutated in Lafora disease, regulates autophagy.Hum. Mol. Genet. 2010; 19 (20453062): 2867-2876
- Increased endoplasmic reticulum stress and decreased proteasomal function in Lafora disease models lacking the phosphatase laforin.PLoS ONE. 2009; 4 (19529779): e5907
- Laforin in autophagy: a possible link between carbohydrate and protein in Lafora disease?.Autophagy. 2010; 6 (20818153): 1229-1231
- Neuroscience. Metabolic control of epilepsy.Science. 2015; 347 (25792315): 1312-1313
- Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy.Science. 2015; 347 (25792327): 1362-1367
- Chronic inhibition of brain glycolysis initiates epileptogenesis.J. Neurosci. Res. 2017; 95 (28150440): 2195-2206
- Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing.J. Neurosci. 2012; 32 (22745494): 8940-8951
- Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin.Hum. Mol. Genet. 2010; 19 (20858601): 4726-4734
- Neuronal glycogen synthesis contributes to physiological aging.Aging Cell. 2014; 13 (25059425): 935-945
- The dynamic life of the glycogen granule.J. Biol. Chem. 2018; 293 (29483195): 7089-7098
Article info
Publication history
Footnotes
This work was supported by the National Institutes of Health under Award Numbers R01NS070899 (to M. S. G.), P01NS097197 (to M. S. G.), R01NS056454 (to P. J. R.), and R01DK037221 (to P. J. R.); a Mitzutani Foundation for Glycoscience award 130095 (to M. S. G.); a National Science Foundation CAREER award MCB-1252345 (to M. S. G.); and Ministerio de Economia de Spain, Industria y Competitividad Grants SAF2014-59594-R (to J. M. S.) and SAF2014-55525-P (to J. J. G.). This is the fourth article in the Thematic Minireview series “Brain glycogen metabolism.” The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, Mitzutani Foundation, National Science Foundation, and Ministerio de Economia de Spain.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy