Withdrawal:
Common inhibitory serine sites phosphorylated by IRS-1 kinases, triggered by insulin and inducers of insulin resistance.
Avia Herschkovitz, Yan-Fang Liu, Erez Ilan, Denise Ronen, Sigalit Boura-Halfon, and Yehiel Zick

This article has been withdrawn by Erez Ilan, Sigalit Boura-Halfon, and Yehiel Zick. The withdrawing authors have become aware of several errors in the way images were presented in this manuscript. Because the original data are no longer available, the authors wish to withdraw the article in the interests of maintaining their publication standards and those of the journal. Lanes 3–6 of the IRS-1 immunoblot in Fig. 3A was reused in lanes 2–5 of the IRS-1 immunoblot in Fig. 3B. Fig. 7, A and B, was inappropriately manipulated. The withdrawing authors state that these presentational errors do not impact the underlying scientific findings of the article, which are also presented as quantitative line/bar graphs that essentially summarize data of a number of experiments. Therefore, the withdrawing authors stand by the original scientific results as described, which in the authors’ opinion has been confirmed in other laboratories (Zhang, J., Gao, Z., Yin, J., Quon, M. J., and Ye, J. (2008) S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-signaling through IKK2. J. Biol. Chem. 283, 35375–35382 and Hanc¸er, N. J., Qiu, W., Cherella, C., Li, Y., Copps, K. D., and White, M. F. (2014) Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J. Biol. Chem. 289, 12467–12484).