Introduction
Results and discussion
PUL1,6-β-glucan orchestrates the degradation and utilization of 1,6-β-glucan by B. thetaiotaomicron

Contribution of surface proteins to 1,6-β-glucan degradation
BT3312 is a endo-1,6-β-glucanase

Substrate | kcat/Km | Relative activity | |
---|---|---|---|
Enzyme variant | |||
Wild type | 1,6-β-Glucan (pustulan) | 1776 ± 20.6 | 1 |
Wild type | 1,3-β-Glucan | 0 | 0 |
Wild type | 1,4-β-Glucan | 0 | 0 |
Wild type | 1,6-β-Galactan | 0 | 0 |
E238A | 1,6-β-Glucan (pustulan) | 0 | 0 |
H281A | 1,6-β-Glucan (pustulan) | 10 ± 1 | 0.006 |
N282A | 1,6-β-Glucan (pustulan) | 17 ± 1 | 0.009 |
D286A | 1,6-β-Glucan (pustulan) | 475 ± 30 | 0.27 |
E339A | 1,6-β-Glucan (pustulan) | 0 | 0 |
E339Q | 1,6-β-Glucan (pustulan) | 0 | 0 |
W345A | 1,6-β-Glucan (pustulan) | 7 ± 1 | 0.004 |
C393S | 1,6-β-Glucan (pustulan) | 9 ± 1 | 0.005 |
C396S | 1,6-β-Glucan (pustulan) | 55 ± 3 | 0.03 |
Oligosaccharides | |||
Wild type | 1,6-β-Glucotriose | 1.7 × 106 ± 1.1 × 104 | |
Wild type | 1,6-β-Glucotetraose | 2.6 × 106 ± 3.4 × 105 | |
Wild type | 1,6-β-Glucohexaose | 6.0 × 106 ± 6.0 × 105 | |
Wild type | 1,6-β-Glucooctaose | 6.4 × 106 ± 1.4 × 105 |
Crystal structure of BT3312

BT3312 no ligand | BT3312 ligand | |
---|---|---|
Data collection | ||
Date | 26/01/14 | 04/07/15 |
Source | I02 | I03 |
Wavelength (Å) | 0.9794 | 0.7749 |
Space group | P21 | P21 |
Cell dimensions | ||
a, b, c (Å) | 62.4, 156.0, 78.0 | 62.4, 78.8, 145.5 |
α, β, γ (°) | 90.0, 95.0, 90.0 | 90.0, 100.4, 90.0 |
No. of measured reflections | 429,705 (10,374) | 445,926 (22,895) |
No. of independent reflections | 114,209 (4871) | 116,665 (5762) |
Resolution (Å) | 48.24–1.90 (1.93–1.90) | 48.79–1.85 (1.88–1.85) |
CC1/2 | 0.996 (0.466) | 0.996 (0.644) |
I/σI | 9.0 (1.8) | 7.8 (1.6) |
Completeness (%) | 97.4 (97.6) | 99.2 (86.2) |
Redundancy | 3.8 (4.0) | 3.8 (2.1) |
Refinement | ||
Rwork/Rfree | 18.19/22.12 | 18.84/22.80 |
No. atoms | ||
Protein | 10,813 | 10,738 |
Ligand/ions | 0 | 68 |
Water | 607 | 606 |
B-factors | ||
Protein | 34.3 | 30.6 |
Ligand/Ions | N.A. | 29.5 |
Water | 37.5 | 32.5 |
Root mean square deviations | ||
Bond lengths (Å) | 0.013 | 0.013 |
Bond angles (°) | 1.53 | 1.52 |
PDB code | 5NGK | 5NGL |

Surface glycan-binding proteins
Protein | Ligand | Ka | ΔH | N |
---|---|---|---|---|
m−1 | kcal | |||
BT3311 | 1,6-β-Glucan (fit as 1 mm) | 6.5 × 104 ± 0.2 | −19 × 104 ± 0 | 0.8 ± 0.02 |
BT3311 | 1,6-β-Glucoheptaose | 2.1 × 104 ± 0.1 | −14 × 104 ± 0 | 1.2 ± 0.02 |
BT3311 | 1,6-β-Glucohexaose | 1.6 × 104 ± 0.1 | −14 × 104 ± 1 | 1.0 ± 0.04 |
BT3311 | 1,6-β-Glucopentaose | 8.3 × 103 ± 0.3 | −16 × 104 ± 3 | 1.1 ± 0.1 |
BT3311 | 1,6-β-Glucotetraose | Low | Low | Low |
BT3311 | 1,6-β-Glucobiose | NB | NB | NB |
BT3313 | 1,6-β-Glucan (fit as 1 mm) | 5.3 × 105 ± 0.1 | −36 × 104 ± 1 | 1.02 ± 0.04 |
BT3313 | 1,6-β-Glucoheptaose | 1.5 × 104 ± 0.2 | −24 × 104 ± 3 | 1.23 ± 0.1 |
BT3313 | 1,6-β-Glucohexaose | 8.0 × 103 ± 0.7 | −15 × 104 ± 2 | 1.38 ± 0.2 |
BT3313 | 1,6-β-Glucopentaose | 3.6 × 103 ± 0.2 | −15 × 104 ± 3 | 1.28 ± 0.2 |
BT3313 | 1,6-β-Glucotetraose | Low | Low | Low |
BT3313 | 1,6-β-Glucobiose | NB | NB | NB |

Periplasmic processing of 1,6-β-glucooligosaccharides
Enzyme | Substrate | Km | kcat | kcat/Km |
---|---|---|---|---|
μm | min−1 | μm−1 min−1 | ||
BT3314 | pNP-β-d-Glc | 2403 ± 379 | 40.82 ± 2.9 | 0.02 |
BT3314 | 1,3-β-Glucobiose | ND | ND | 0.18 ± 0.01 |
BT3314 | 1,4-β-Glucobiose | ND | ND | 0.05 ± 0.01 |
BT3314 | 1,6-β-Glucobiose | ND | ND | 5.6 ± 0.2 |
BT3314 | 1,6-β-Glucotriose | ND | ND | 6.7 ± 0.6 |
BACOVA_00946 | pNP-β-d-Glc | 1052 ± 87 | 195.8 ± 5.5 | 0.19 |
BACOVA_00946 | 1,3-β-Glucobiose | ND | ND | 3.73 ± 0.1 |
BACOVA_00946 | 1,4-β-Glucobiose | ND | ND | 0.65 ± 0.02 |
BACOVA_00946 | 1,6-β-Glucobiose | ND | ND | 38.8 ± 0.8 |
Distribution of the PUL1,6-β-glucan within the Bacteroidetes

Conclusions

Materials and methods
Bacterial strains
Gene expression studies
Oligosaccharide production
Recombinant protein production
Enzyme assays
Whole cell assays
Isothermal titration calorimetry
Crystallography and structure determination
Synthesis of β-glucosyl-1,6-deoxynojirimycin (GlcDNJ)
2,3,4-Tri-O-benzoyl-N-benzyloxycarbonyl-deoxynojirimycin (2)
6-O-(2-O-acetyl-3,4,6-tri-O-benzyl-d-β-glucopyranosyl)-2,3,4-tri-O-benzoyl-N-benzyloxycarbonyl-deoxynojirimycin (4)
β-d-Glucopyranosyl-1,6-deoxynojirimycin (GlcDNJ, 5)
Genetic manipulation of B. thetaiotaomicron
Author contributions
Acknowledgment
Supplementary Material
References
- Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.PLoS Biol. 2011; 9: e1001221
- Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont.Cell Host Microbe. 2008; 4: 447-457
- How glycan metabolism shapes the human gut microbiota.Nat. Rev. Microbiol. 2012; 10: 323-335
- Complex pectin metabolism by gut bacteria reveals novel catalytic functions.Nature. 2017; 544: 65-70
- Structural basis for nutrient acquisition by dominant members of the human gut microbiota.Nature. 2017; 541: 407-411
- The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42: D490-D495
- Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5).BMC Evol. Biol. 2012; 12: 186
- Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization.Appl. Environ. Microbiol. 2016; 82: 1686-1692
- Differential metabolism of exopolysaccharides from probiotic lactobacilli by the human gut symbiont Bacteroides thetaiotaomicron.Appl. Environ. Microbiol. 2015; 81: 3973-3983
- Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.Nature. 2015; 517: 165-169
- Interactions of fungal pathogens with phagocytes.Nat. Rev. Microbiol. 2016; 14: 163-176
- Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations.Cell. 2010; 141: 1241-1252
- Molecular characterization and heterologous expression of an endo-β-1,6-glucanase gene from the mycoparasitic fungus Trichoderma harzianum.Mol. Gen. Genet. 1995; 247: 639-645
- Purification and characterization of an endo-β-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism.J. Bacteriol. 1995; 177: 1864-1871
- The first bacterial β-1,6-endoglucanase from Saccharophagus degradans 2–40T for the hydrolysis of pustulan and laminarin.Appl. Microbiol. Biotechnol. 2017; 101: 197-204
- Nomenclature for sugar-binding subsites in glycosyl hydrolases.Biochem. J. 1997; 321: 557-559
- The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved.J. Biol. Chem. 1998; 273: 32187-32199
- Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes.J. Bacteriol. 1989; 171: 3192-3198
- Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases.Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 7090-7094
- Identification of Glu340 as the active-site nucleophile in human glucocerebrosidase by use of electrospray tandem mass spectrometry.J. Biol. Chem. 1994; 269: 10975-10978
- New insights into the structure of (1→3,1→6)-β-d-glucan side chains in the Candida glabrata cell wall.PLoS One. 2011; 6: e27614
- Structures and mechanisms of glycosyl hydrolases.Structure. 1995; 3: 853-859
- Dissecting conformational contributions to glycosidase catalysis and inhibition.Curr. Opin. Struct. Biol. 2014; 28: 1-13
- Conformational analyses of the reaction coordinate of glycosidases.Acc. Chem. Res. 2012; 45: 308-316
- Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase.FEBS J. 2011; 278: 2105-2116
- Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases.J. Biol. Chem. 2004; 279: 11777-11788
- The structural basis for the ligand specificity of family 2 carbohydrate-binding modules.J. Biol. Chem. 2000; 275: 41137-41142
- Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases.Proteins. 2000; 41: 257-269
- Automatic prediction of polysaccharide utilization loci in Bacteroidetes species.Bioinformatics. 2015; 31: 647-655
- Heterologous expression and characterization of a β-1,6-glucanase from Aspergillus fumigatus.Appl. Microbiol. Biotechnol. 2009; 82: 663-669
- Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 1959; 31: 426-428
- Automated search-model discovery and preparation for structure solution by molecular replacement.Acta Crystallogr. D Biol. Crystallogr. 2007; 63: 447-457
- An approach to multi-copy search in molecular replacement.Acta Crystallogr. D Biol. Crystallogr. 2000; 56: 1622-1624
- Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7.Nat. Protoc. 2008; 3: 1171-1179
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 486-501
- Refinement of macromolecular structures by the maximum-likelihood method.Acta Crystallogr. D Biol. Crystallogr. 1997; 53: 240-255
- Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67: 235-242
- MolProbity: all-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 12-21
- Quantifying electronic effects of common carbohydrate protecting groups in a piperidine model system.Chemistry. 2010; 16: 13982-13994
- Total synthesis of woodrosin I: Part 1. Preparation of the building blocks and evaluation of the glycosylation strategy.Chem-Eur. J. 2003; 9: 307-319
- 1,3-Dideoxynojirimycin-3-yl glycosides of β-(1→3)- and β-(1→6)-linked gluco-oligosaccharides.Carbohydr. Res. 2006; 341: 2115-2125
- Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices.Structure. 2008; 16: 1105-1115
Article info
Publication history
Footnotes
This work was supported by Wellcome Trust Grant WT097907/Z/11/Z and Biotechnology and Biological Research Council Grant BB/K020358/1. The authors declare that they have no conflicts of interest with the contents of this article.
The atomic coordinates and structure factors (codes 5NGK and 5NGL) have been deposited in the Protein Data Bank (http://wwpdb.org/).
This article contains supplemental Table S1.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy