Introduction
Results
Structural fold of AnGDH

Apo-AnGDH | AnGDH-AKG-NADPH | fiAnGDH-AKG | AnGDH- AIG -NADP+ | AnGDH-IPT- NADPH | |
---|---|---|---|---|---|
Data collection statistics | |||||
Space group | P1 | H32 | P1 | H32 | H32 |
Unit cell dimensions | |||||
a, b, c (Å) | 92.8, 92.8, 111.7 | 174.5, 174.5, 240.4 | 92.3, 92.2, 111.1 | 173.7, 173.7, 241.9 | 173.5, 173.5, 241.1 |
α, β, γ (°) | 103.5, 94.2, 120.1 | 90.0, 90.0, 120.0 | 103.4, 93.5, 120.4 | 90.0, 90.0, 120.0 | 90.0, 90.0, 120.0 |
Resolution (Å) | 40.0–2.8 (2.9–2.8) | 35.0–1.8 (1.9–1.8) | 35.0–2.25 (2.35–2.25) | 35.0–1.75 (1.85–1.75) | 70.0–1.9 (2.0–1.9) |
Wavelength (Å) | 1.5418 | 0.9763 | 1.5418 | 0.95372 | 0.9763 |
Temperature (K) | 100 | 100 | 100 | 100 | 100 |
Observed reflections | 128,417 (10,559) | 1,571,927 (207,073) | 270,254 (31,489) | 1,103,599 (168,659) | 809,288 (106,698) |
Unique reflections | 69,072 (6502) | 128,967 (18,853) | 135,737 (15,991) | 138,857 (21,413) | 109,208 (15,446) |
Completeness (%) | 92.0 (86.0) | 99.6 (97.9) | 95.5 (92.0) | 99.0 (99.9) | 99.9 (98.8) |
Rmerge (%) | 6.2 (28.6) | 9.2 (41.5) | 9.5 (39.8) | 10.9 (110.5) | 5.4 (41.9) |
Rmeas (%) | 8.8 (40.5) | 9.6 (43.5) | 13.4 (56.3) | 11.6 (118.3) | 5.8 (45.2) |
I/σI | 11.2 (3.6) | 17.1 (5.1) | 8.0 (2.1) | 13.4 (1.9) | 24.3 (4.5) |
CC1/2 (%) | 99.0 (83.7) | 99.8 (96.4) | 98.9 (67.9) | 99.8 (69.9) | 99.9 (61.3) |
Redundancy | 2.0 (1.6) | 12.2 (10.9) | 2.0 (1.9) | 7.9 (7.9) | 7.4 (6.9) |
Refinement | |||||
Resolution (Å) | 35.0–2.8 | 34.0–1.8 | 33.0–2.25 | 34–1.75 | 34–1.9 |
No. of reflections (working set/test set) | 65,578/3451 | 1225,17/6448 | 128,936/6786 | 131,488/6920 | 103,732/5460 |
Rfactor (%) | 22.6 | 13.5 | 15.8 | 15.5 | 16.8 |
Rfree (%) | 31.0 | 14.8 | 19.8 | 16.9 | 18.0 |
No. of atoms | |||||
Protein | 20,940 | 3669 | 20,933 | 3544 | 3513 |
Water | 601 | 674 | 1515 | 528 | 308 |
AKG | 0 | 10 | 30 | 0 | 0 |
NADPH | 0 | 48 | 0 | 0 | 48 |
NADP+ | 0 | 0 | 0 | 48 | 0 |
β-Mercaptoethanol (BME) | 0 | 0 | 24 | 0 | 0 |
IPT | 0 | 0 | 0 | 0 | 12 |
AIG | 0 | 0 | 0 | 10 | 0 |
AHG | 0 | 0 | 0 | 11 | 0 |
Average isotropic B-factor (Å2) for active-site ligands | |||||
AKG | 26.8 | 48.6 | |||
NADPH | 24.0 | 26.9 | |||
NADP+ | 22.4 | ||||
IPT | 20.4 | ||||
AIG | 20.1 | ||||
AHG | 31.6 | ||||
Average isotropic B-factor Average isotropic(Å2) of all atoms | 27.5 | 29.3 | 25.9 | 28.3 | 31.0 |
Occupancy for active-site ligands | |||||
AKG | 1.0 | 1.0 | |||
NADPH | 1.0 | 1.0 | |||
NADP+ | 1.0 | ||||
IPT | 1.0 | ||||
AIG | 0.8 | ||||
AHG | 0.2 (0.6 for O atom of 2-OH ) | ||||
r.m.s.d. | |||||
Bond length (Å) | 0.011 | 0.014 | 0.011 | 0.012 | 0.011 |
Bond angle (°) | 1.42 | 1.65 | 1.43 | 1.65 | 1.44 |
Protein geometry | |||||
Ramachandran plot favored (%) | 92.92 | 97.07 | 96.20 | 96.34 | 96.41 |
Ramachandran plot allowed (%) | 6.09 | 2.93 | 3.39 | 3.43 | 3.14 |
Ramachandran plot outliers (%) | 1.00 | 0.0 | 0.41 | 0.23 | 0.45 |
PBD codes | 5XVI | 5XVX | 5XVV | 5XWC | 5XW0 |
Conformational flexibility in AnGDH structure
Structure | Chain | Distances (Å) between Cα atoms of Arg-280 and Lys-122 | Position of subunits |
---|---|---|---|
Apo-AnGDH (hexamer) | A | 13.0 | Upper part of hexamer |
B | 15.1 | ||
C | 13.4 | ||
D | 19.7 | Lower part of hexamer | |
E | 21.3 | ||
F | 19.4 | ||
AnGDH ternary complex (monomer) | A | 6.0 | |
fiAnGDH-AKG complex (hexamer) | A | 12.2 | Upper part of hexamer |
B | 14.8 | ||
C | 13.3 | ||
D | 20.2 | Lower part of hexamer | |
E | 21.3 | ||
F | 19.2 |
Active site of AnGDH complexed with α-ketoglutarate and NADPH

Wildtype | H84A | K122A | S253A | K277A | Q282A | |
---|---|---|---|---|---|---|
NADPH | ||||||
Km | 24 ± 2.1 | 25.6 ± 2.2 | 53.8 ± 0.9 | 44.8 ± 0.7 | 132.4 ± 1.2 | 66 ± 1.3 |
kcat | 198.3 ± 1.3 | 123.7 ± 0.8 | 145.6 ± 0.4 | 1.7 ± 0.3 | 28.3 ± 0.8 | 0.17 ± 0.03 |
kcat/Km | 8.3 ± 0.8 | 4.8 ± 0.4 | 2.7 ± 0.05 | 3.7 × 10−2 ± 0.005 | 2.1 × 10−1 ± 0.005 | 2.5 × 10−3 ± 4 × 10−4 |
Reaction intermediates in the AnGDH active site

Binding mode of an inhibitor isophthalate in the AnGDH active site

Hexameric structure of fiAnGDH with open and partially closed subunits

Intersubunit interactions in AnGDH structures

Discussion
Structural basis of α-ketoglutarate cooperativity in AnGDH

Structural basis of NADP(H) recognition by AnGDH

- Sundaramoorthy R.
- Iulek J.
- Barrett M.P.
- Bidet O.
- Ruda G.F.
- Gilbert I.H.
- Hunter W.N.
GDH reaction mechanism: Conversion of α-ketoglutarate to l-glutamate

Conclusions
Experimental procedures
AnGDH expression and purification
Enzyme assay
Site-directed mutagenesis
Kinetics of WT and mutant AnGDH
Fluorescence quenching experiment
Preparation of forward-inhibited AnGDH
Crystallization
Data collection and processing
Structure determination, model building, and refinement
Author contributions
Acknowledgments
Supplementary Material
References
- X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate.Nat. Struct. Biol. 2001; 8 (11473259): 689-694
- The ensemble nature of allostery.Nature. 2014; 508 (24740064): 331-339
- Allostery: an illustrated definition for the 'second secret of life'.Trends Biochem. Sci. 2008; 33 (18706817): 420-425
- l-Glutamate dehydrogenases: distribution, properties and mechanism.Comp. Biochem. Physiol. B. 1993; 106 (8299344): 767-792
- Purification, crystallization and preliminary X-ray diffraction analysis of NADP-dependent glutamate dehydrogenase from Aspergillus niger.Acta Crystallogr. F Struct. Biol. Commun. 2014; 70 (25372818): 1508-1512
- Competitive inhibition of glutamate dehydrogenase reaction.FEBS Lett. 2007; 581 (17531979): 2733-2736
- The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum.J. Mol. Biol. 2005; 345 (15571725): 325-337
- Glutamate dehydrogenases: The why and how of coenzyme specificity.Neurochem. Res. 2014; 39 (23761034): 426-432
- The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs.J. Mol. Biol. 2005; 349 (15878595): 597-607
- Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation.Biochemistry. 2003; 42 (12653548): 3446-3456
- The structure and allosteric regulation of mammalian glutamate dehydrogenase.Arch. Biochem. Biophys. 2012; 519 (22079166): 69-80
- Structure of NADP+-dependent glutamate dehydrogenase from Escherichia coli–reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases.FEBS J. 2013; 280 (23879525): 4681-4692
- Conformational flexibility in glutamate dehydrogenase: role of water in substrate recognition and catalysis.J. Mol. Biol. 1993; 234 (8263917): 1131-1139
- Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus.J. Mol. Biol. 1999; 293 (10547290): 1121-1132
- Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of neurospora.J. Biol. Chem. 1974; 249 (4372225): 7922-7928
- A marriage full of surprises; forty-five years living with glutamate dehydrogenase. Neurochem.Int. 2011; 59 (21419817): 489-494
- Catalysis of α-iminoglutarate formation from α-ketoglutarate and ammonia by bovine glutamate dehydrogenase.J. Biol. Chem. 1972; 247 (4346809): 6271-6276
- Identification and characterization of kinetically competent carbinolamine and α-iminoglutarate complexes in the glutamate dehydrogenase-catalyzed oxidation of l-glutamate using a multiwavelength transient state approach.Biochemistry. 1998; 37 (9772187): 14585-14590
- Mechanism of formation of bound α-iminoglutarate from α-ketoglutarate in the glutamate dehydrogenase reaction. A chemical basis for ammonia recognition.J. Biol. Chem. 1988; 263 (3339011): 2304-2308
- Carbonyl oxygen exchange evidence of imine formation in the glutamate dehydrogenase reaction and identification of the “occult role” of NADPH.Proc. Natl. Acad. Sci. U.S.A. 1984; 81 (6144102): 2747-2751
- Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation.J. Mol. Biol. 2001; 307 (11254391): 707-720
- Molecular basis for Nup37 and ELY5/ELYS recruitment to the nuclear pore complex.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22955883): 15241-15246
- Crystal structure of a chimaeric bacterial glutamate dehydrogenase.Acta Crystallogr. F Struct. Biol. Commun. 2016; 72 (27303899): 462-466
- Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Curr.Genet. 1998; 34 (9683675): 50-59
- Delineation of an in vivo inhibitor for Aspergillus glutamate dehydrogenase. Enzyme Microb.Technol. 2008; 42 (22578865): 151-159
- Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface.Microbiology. 2005; 151 (15870451): 1409-1419
- Mixed disulfide formation at Cys-141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity.PLoS ONE. 2014; 9 (24987966): e101662
- An ancient fingerprint indicates the common ancestry of Rossmann-fold enzymes utilizing different ribose-based cofactors.PLoS Biol. 2016; 14 (26938925): e1002396
- Comparison of super-secondary structures in proteins.J. Mol. Biol. 1973; 76 (4737475): 241-256
- Structural insights into domain movement and cofactor specificity of glutamate dehydrogenase from Corynebacterium glutamicum.Biochem. Biophys. Res. Commun. 2015; 459 (25727019): 387-392
- A method for the analysis of domain movements in large biomolecular complexes.Proteins. 2009; 76 (19137621): 201-212
- Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity.J. Mol. Biol. 1992; 228 (1453469): 662-671
- Analysis of the structure and substrate binding of Phormidium lapideum alanine dehydrogenase.Nat. Struct. Mol. Biol. 1998; 5 (9665169): 561-567
- Interaction of pyrophosphate moieties with α-helixes in dinucleotide-binding proteins.Biochemistry. 1985; 24: 1346-1357
- The crystal structure of isophthalic acid.Acta Crystallogr. Sect. B Struct. Sci. 1972; 28: 1671-1677
- On the nature of allosteric transitions: a plausible model.J. Mol. Biol. 1965; 12 (14343300): 88-118
- Comparison of experimental binding data and theoretical models in proteins containing subunits.Biochemistry. 1966; 5 (5938952): 365-385
- Understanding the glutamate dehydrogenase nightmare.Trends Biochem. Sci. 2008; 33 (18819805): 557-564
- Positive cooperativity with Hill coefficients of up to 6 in the glutamate concentration dependence of steady-state reaction rates measured with clostridial glutamate dehydrogenase and the mutant A163G at high pH.Biochemistry. 1995; 34 (7547869): 11417-11422
- Crystal structures of bacterial 6-phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of high-energy reaction intermediates.FEBS J. 2007; 274 (17222187): 275-286
- Crystal structure of NAD+-dependent Peptoniphilus asaccharolyticus glutamate dehydrogenase reveals determinants of cofactor specificity.J. Struct. Biol. 2012; 177 (22068154): 543-552
- A single amino acid substitution in lactate dehydrogenase improves the catalytic efficiency with an alternative coenzyme.Biochem. Biophys. Res. Commun. 1990; 166 (2302233): 667-672
- Redesign of the coenzyme specificity of a dehydrogenase by protein engineering.Nature. 1990; 343 (2296288): 38-43
- Crystal structure of 2-iminoglutarate-bound complex of glutamate dehydrogenase from Corynebacterium glutamicum.FEBS Lett. 2017; 591 (28486765): 1611-1622
- On the role of amino groups in the structure and function of glutamate dehydrogenase II. Effect of acetylation on molecular properties.J. Biol. Chem. 1966; 241 (4288133): 3661-3670
- A peptide containing a reactive lysyl group from ox liver glutamate dehydrogenase.Biochem. J. 1969; 111 (5783469): 689-694
- Bovine liver glutamate dehydrogenase sequence of a hexadecapeptide containing a lysyl residue reactive with pyridoxal 5′-phosphate.J. Biol. Chem. 1970; 245 (5463048): 2622-2626
- Studies of glutamate dehydrogenase. Identification of an amino group involved in the substrate binding.FEBS J. 1974; 41 (4856315): 603-606
- 5 Glutamate dehydrogenases.Enzymes. 1975; 11: 293-367
- Determination of the chemical mechanism of glutamate dehydrogenase from pH studies.Biochemistry. 1980; 19 (7190025): 2328-2333
- α-Ketoglutaric acid: solution structure and the active form for reductive amination by bovine liver glutamate dehydrogenase.Biochemistry. 1982; 21 (7074017): 339-345
- Alteration of the quaternary structure of glutamate dehydrogenase from Clostridium symbiosum by a single mutation distant from the subunit interfaces.Eur. Biophys. J. 1997; 25 (9188163): 417-422
- A theoretical analysis of the proton and hydride transfer in liver alcohol dehydrogenase (LADH).J. Phys. Chem. B. 2002; 106: 2721-2740
- Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature. 1970; 227 (5432063): 680-685
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem. 1976; 72 (942051): 248-254
- Modular coenzyme specificity: a domain-swopped chimera of glutamate dehydrogenase.Proteins. 2009; 77 (19425107): 268-278
- Crystallization experiments with 2-enoyl-CoA hydratase, using an automated fast-screening crystallization protocol.Acta Crystallogr. D Biol. Crystallogr. 1994; 50 (15299399): 443-447
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (21460441): 235-242
- Solvent content of protein crystals.J. Mol. biol. 1968; 33 (5700707): 491-497
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Refinement of macromolecular structures by the maximum-likelihood method.Acta Crystallogr. D Biol. Crystallogr. 1997; 53 (15299926): 240-255
- The Buccaneer software for automated model building. 1. Tracing protein chains.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16929101): 1002-1011
- Coot: Model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
Article info
Publication history
Footnotes
This work was supported by Ramalingaswami Re-entry Fellowship (Department of Biotechnology, Ministry of Science and Technology, India) and a research seed grant from IRCC, IIT Bombay (to P. B.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. 1–10, Table 1, and supporting Refs. 1–3.
The atomic coordinates and structure factors (codes 5XVI, 5XVX, 5XVV, 5XWC, and 5XW0) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy