Introduction
Acquisition and trafficking of copper in mammals
Copper signaling in neurobiology

Copper in immunology: Toxin or resource?
- Wagner D.
- Maser J.
- Lai B.
- Cai Z.
- Barry 3rd., C.E.
- Höner zu Bentrup K.
- Russell D.G.
- Bermudez L.E.
Controlling cancer with labile copper
- Denoyer D.
- Pearson H.B.
- Clatworthy S.A.
- Smith Z.M.
- Francis P.S.
- Llanos R.M.
- Volitakis I.
- Phillips W.A.
- Meggyesy P.M.
- Masaldan S.
- Cater M.A.
- Jain S.
- Cohen J.
- Ward M.M.
- Kornhauser N.
- Chuang E.
- Cigler T.
- Moore A.
- Donovan D.
- Lam C.
- Cobham M.V.
- Schneider S.
- Hurtado Rúa S.M.
- Benkert S.
- Mathijsen Greenwood C.
- Zelkowitz R.
- et al.
- Chan N.
- Willis A.
- Kornhauser N.
- Ward M.M.
- Lee S.B.
- Nackos E.
- Seo B.R.
- Chuang E.
- Cigler T.
- Moore A.
- Donovan D.
- Vallee Cobham M.
- Fitzpatrick V.
- Schneider S.
- Wiener A.
- et al.

Copper regulation of fat metabolism
Conclusion
References
- Lippard S.J. Berg J.M. Principles of Bioinorganic Chemistry. University Science Books, Mill Valley, CA1994
- Transition metals in plant photosynthesis.Metallomics. 2013; 5 (23739807): 1090-1109
- Searching for harmony in transition-metal signaling.Nat. Chem. Biol. 2015; 11 (26379012): 744-747
- Mechanisms for copper acquisition, distribution and regulation.Nat. Chem. Biol. 2008; 4 (18277979): 176-185
- Characterization of mouse embryonic cells deficient in the Ctr1 high affinity copper transporter.J. Biol. Chem. 2002; 277 (12177073): 40253-40259
- Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1.Am. J. Physiol. Cell Physiol. 2013; 304 (23426973): C768-C779
- Copper metallochaperones.Annu. Rev. Biochem. 2010; 79 (20205585): 537-562
- Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis.Arch. Biochem. Biophys. 2007; 463 (17531189): 149-167
- Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins.J. Bioenerg. Biomembr. 2007; 39 (18000748): 403-407
- Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool.Biochem. J. 2004; 378 (14640979): 1031-1037
- Activation of superoxide dismutases: putting the metal to the pedal.Biochim. Biophys. Acta. 2006; 1763 (16828895): 747-758
- Copper chaperones for cytochrome c oxidase and human disease.J. Bioenerg. Biomembr. 2002; 34 (12539965): 381-388
- Charting the travels of copper in eukaryotes from yeast to mammals.Biochim. Biophys. Acta. 2012; 1823 (22387373): 1580-1593
- Synthetic fluorescent probes for studying copper in biological systems.Chem. Soc. Rev. 2015; 44 (25692243): 4400-4414
- Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation.Science. 2010; 327 (19965379): 331-334
- Metal ionophores: An emerging class of anticancer drugs.IUBMB Life. 2009; 61 (19859983): 1013-1018
- Factors influencing the fungistatic action of 8-hydroxyquinoline (oxine) and its metal complexes.Aust. J. Sci. Res. B. 1951; 4 (14886274): 275-282
- Analytical methods for imaging metals in biology: from transition metal metabolism to transition-metal signaling.Anal. Chem. 2017; 89 (27976855): 22-41
- Copper as a key regulator of cell signalling pathways.Expert Rev. Mol. Med. 2014; 16 (24849048): e11
- Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67-copper.Synapse. 1988; 2 (3187909): 412-415
- NMDA receptor activation mediates copper homeostasis in hippocampal neurons.J. Neurosci. 2005; 25 (15634787): 239-246
- Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity.Proc. Natl. Acad. Sci. U.S.A. 2006; 103 (17003121): 14919-14924
- Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21444780): 5980-5985
- Copper is an endogenous modulator of neural circuit spontaneous activity.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (25378701): 16280-16285
- Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability.Neurosci. Lett. 1989; 103 (2549468): 139-144
- High-affinity copper block of GABA(A) receptor-mediated currents in acutely isolated cerebellar Purkinje cells of the rat.Eur. J. Neurosci. 1998; 10 (9749714): 522-528
- Copper block of extrasynaptic GABAA receptors in the mature cerebellum and striatum.J. Neurosci. 2013; 33 (23946400): 13431-13435
- Multiple effects of copper on NMDA receptor currents.Brain Res. 2014; 1542 (24161827): 20-31
- Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons.J. Neurophysiol. 1996; 76 (8899625): 2536-2546
- The effects of copper ions on glutamate receptors in cultured rat cortical neurons.Brain Res. 1996; 742 (9117397): 211-218
- Zinc and copper modulate differentially the P2X4 receptor.J. Neurochem. 2000; 74 (10737610): 1529-1537
- Potent and long-lasting inhibition of human P2X2 receptors by copper.Neuropharmacology. 2014; 77 (24067922): 167-176
- Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms.J. Neurophysiol. 2001; 86 (11600628): 1652-1660
- Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons.J. Membr. Biol. 2003; 195 (14724759): 121-136
- Copper (I): A possible olfactory binding site.J. Inorg. Nucl. Chem. 1978; 40: 1453
- Crucial role of copper in detection of metal-coordinating odorants.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22328155): 3492-3497
- Suppression of long-term potentiation in hippocampal slices by copper.Hippocampus. 1997; 7 (9443062): 666-669
- Interference of chronically ingested copper in long-term potentiation (LTP) of rat hippocampus.Brain Res. 2005; 1056 (16112097): 176-182
- Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze.Brain Res. 2009; 1256 (19133238): 69-75
- In vivo and in vitro analyses of amygdalar function reveal a role for copper.J. Neurophysiol. 2014; 111 (24554785): 1927-1939
- Copper enhances cellular and network excitabilities, and improves temporal processing in the rat hippocampus.Eur. J. Neurosci. 2015; 42 (26470005): 3066-3080
- Copper chelation and exogenous copper affect circadian clock phase resetting in the suprachiasmatic nucleus in vitro.Neuroscience. 2014; 256 (24161278): 252-261
- The cellular prion protein binds copper in vivo.Nature. 1997; 390 (9414160): 684-687
- Copper promotes the trafficking of the amyloid precursor protein.J. Biol. Chem. 2011; 286 (21177866): 8252-8262
- Function of PrP(C) as a copper-binding protein at the synapse.Arch. Virol. Suppl. 2000; 16 (11214928): 239-249
- Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice.Brain Res. 1999; 842 (10526140): 439-444
- Overexpression of Alzheimer's disease amyloid-β opposes the age-dependent elevations of brain copper and iron.J. Biol. Chem. 2002; 277 (12215434): 44670-44676
- Increasing Cu bioavailability inhibits A oligomers and τ phosphorylation.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19122148): 381-386
- Phosphorylation of amyloid precursor protein at threonine 668 is essential for its copper-responsive trafficking in SH-SY5Y neuroblastoma cells.J. Biol. Chem. 2014; 289 (24610780): 11007-11019
- Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1–42.J. Neurochem. 2000; 75 (10936205): 1219-1233
- Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23980182): 14995-15000
- Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19416874): 7774-7779
- SOD1 aggregation and ALS: role of metallation states and disulfide status.Curr. Top. Med. Chem. 2012; 12 (23339308): 2560-2572
- Protection by dietary zinc in ALS mutant G93A SOD transgenic mice.Neurosci. Lett. 2005; 379 (15814196): 42-46
- Copper at synapse: release, binding and modulation of neurotransmission.Neurochem. Int. 2015; 90 (26187063): 36-45
- Copper signaling in the mammalian nervous system: synaptic effects.J. Neurosci. Res. 2013; 91 (23115049): 2-19
- Copper: from neurotransmission to neuroproteostasis.Front. Aging Neurosci. 2014; 6 (25071552): 143
- Copper-coated textiles: armor against MDR nosocomial pathogens.Diagn. Microbiol. Infect. Dis. 2016; 85 (27055400): 205-209
- Bacterial killing by dry metallic copper surfaces.Appl. Environ. Microbiol. 2011; 77 (21148701): 794-802
- Phagosome maturation in polarized macrophages.J. Leukocyte Biol. 2014; 96 (24868088): 729-738
- A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity.J. Biol. Chem. 2009; 284 (19808669): 33949-33956
- The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence.mBio. 2014; 5 (24549843): e00813-e00876
- Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance.Infect. Immun. 2015; 83 (25667262): 1684-1694
- Copper homeostasis in Salmonella is atypical and copper-CueP Is a major periplasmic metal complex.J. Biol. Chem. 2010; 285 (20534583): 25259-25268
- Host and pathogen copper-transporting P-type ATPases function antagonistically during Salmonella infection.Infect. Immun. 2017; 85 (28652309): e00317-e00351
- Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system.J. Immunol. 2005; 174 (15661908): 1491-1500
- A copper hyperaccumulation phenotype correlates with pathogenesis in Cryptococcus neoformans.Metallomics. 2013; 5 (23511945): 363-371
- Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence.Cell Host Microbe. 2013; 13 (23498952): 265-276
- Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26351691): E5336-E5342
- Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24711423): 5866-5871
- Exploiting innate immune cell activation of a copper-dependent antimicrobial agent during infection.Chem. Biol. 2014; 21 (25088681): 977-987
- Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents.Pharmacol. Res. 2017; 115 (27940016): 275-287
- ROS-modulated therapeutic approaches in cancer treatment.J. Cancer Res. Clin. Oncol. 2017; 143 (28647857): 1789-1809
- Copper signaling axis as a target for prostate cancer therapeutics.Cancer Res. 2014; 74 (25320179): 5819-5831
- Increasing intracellular bioavailable copper selectively targets prostate cancer cells.ACS Chem. Biol. 2013; 8 (23656859): 1621-1631
- Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution.Oncotarget. 2016; 7 (27175597): 37064-37080
- Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse.Ann. Oncol. 2013; 24 (23406736): 1491-1498
- Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases.Clin. Cancer Res. 2017; 23 (27769988): 666-676
- Mutations of the BRAF gene in human cancer.Nature. 2002; 417 (12068308): 949-954
- Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling.J. Clin. Oncol. 2011; 29 (21383288): 3085-3096
- A novel role for copper in Ras/Mitogen-activated protein kinase signaling.Mol. Cell. Biol. 2012; 32 (22290441): 1284-1295
- Copper is required for oncogenic BRAF signalling and tumorigenesis.Nature. 2014; 509 (24717435): 492-496
- The role of insufficient copper in lipid synthesis and fatty-liver disease.IUBMB Life. 2017; 69 (28271632): 263-270
- Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a fish model.Environ. Sci. Technol. 2010; 44 (20020678): 820-826
- Valenzuela Baez R The Role of Copper as a Modifier of Lipid Metabolism. InTech, London, UK2013
- A role for low hepatic copper concentrations in nonalcoholic fatty liver disease.Am. J. Gastroenterol. 2010; 105 (20407430): 1978-1985
- In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease.Proc. Natl. Acad. Sci. U.S.A. 2016; 113 (27911810): 14219-14224
- High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease.J. Biol. Chem. 2007; 282 (17205981): 8343-8355
- Targeted inactivation of copper transporter Atp7b in hepatocytes causes liver steatosis and obesity in mice.Am. J. Physiol. Gastrointest. Liver Physiol. 2017; 313 (28428350): G39-G49
- The relationship between copper and steatosis in Wilson's disease.Clin. Res. Hepatol. Gastroenterol. 2013; 37 (22572525): 36-40
- Modifying factors and phenotypic diversity in Wilson's disease.Ann. N.Y. Acad. Sci. 2014; 1315 (24702697): 56-63
- Copper regulates cyclic-AMP-dependent lipolysis.Nat. Chem. Biol. 2016; 12 (27272565): 586-592
- Signalling mechanisms regulating lipolysis.Cell. Signal. 2006; 18 (16182514): 401-408
- Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas.Nat. Chem. Biol. 2014; 10 (25344811): 1034-1042
- The role of copper chaperone Atox1 in coupling redox homeostasis to intracellular copper distribution.Antioxidants. 2016; 5 (27472369): 25
- Copper chaperones: personal escorts for metal ions.J. Bioenerg. Biomembr. 2002; 34 (12539964): 373-379
- Synthetic fluorescent probes for monovalent copper.Curr. Opin. Chem. Biol. 2013; 17 (23769869): 656-662
- Bioinorganic life and neural activity: toward a chemistry of consciousness?.Acc. Chem. Res. 2017; 50 (28945425): 535-538
Article info
Publication history
Footnotes
This work was supported in part by National Institutes of Health Grant R01 GM079465. This is the third article in the Thematic Minireview series “Metals in Biology 2018: Copper homeostasis and utilization in redox enzymes.” The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Supported by a Fannie and John Hertz Foundation Fellowship and National Institutes of Health Chemical Biology Interface Training Grant T32 GM066698.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy