Introduction
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andréasson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
Results
A soluble and functional RD3 mutant

RD3d and full-length RD3 have a similar fold
RD3d shows the ability to bind and inhibit RetGC1 in vitro and in cyto

NMR structure of RD3d

NMR restraints | Value (restraint violation) |
---|---|
Short-range NOEs | 727 (0.0 ± 0.0) |
Long-range NOEs | 216 (0.0 ± 0.0) |
Hydrogen bonds | 144 (not used in water refinement) |
Dihedral angles | 172 (0.1 ± 0.3) |
1DHN RDC | 72 (0.0 ± 0.0) |
RDC Q-factor | 0.289 |
Coordinate precision (Å) | |
RMSD backbone atoms | 0.548 |
RMSD all heavy atoms | 1.177 |
Deviation from idealized geometry | |
Bonds (Å) | 0.006 ± 0.000 |
Angles (°) | 0.633 ± 0.012 |
Impropers (°) | 0.827 ± 0.029 |
Ramachandran plot (%) | |
Favored region | 85.1 |
Allowed region | 11.7 |
Outlier region | 3.2 |
Structure quality | |
Clash score | 6 |
Ramachandran outliers | 0.5% |
Side-chain outliers | 4.8% |
Hot-spot residues on the surface of RD3d

Validation of the RD3 NMR structure by site-directed mutagenesis


Discussion
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andréasson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andréasson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andréasson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Friedman J.S.
- Chang B.
- Kannabiran C.
- Chakarova C.
- Singh H.P.
- Jalali S.
- Hawes N.L.
- Branham K.
- Othman M.
- Filippova E.
- Thompson D.A.
- Webster A.R.
- Andréasson S.
- Jacobson S.G.
- Bhattacharya S.S.
- et al.
- Jacobson S.G.
- Cideciyan A.V.
- Peshenko I.V.
- Sumaroka A.
- Olshevskaya E.V.
- Cao L.
- Schwartz S.B.
- Roman A.J.
- Olivares M.B.
- Sadigh S.
- Yau K.W.
- Heon E.
- Stone E.M.
- Dizhoor A.M.
Experimental procedures
GCAP1 expression and purification
RetGC1 expression and activity assay
RetGC–RD3 co-expression and imaging
RD3 mutagenesis, expression, and purification
NMR spectroscopy
NMR structure calculation
Light-scattering experiments
CD spectroscopy
Author contributions
References
- Current understanding of signal amplification in phototransduction.Cell. Logist. 2014; 4 (25279249): e29390
- G proteins and phototransduction.Annu. Rev. Physiol. 2002; 64 (11826267): 153-187
- Protein and signaling networks in vertebrate photoreceptor cells.Front. Mol. Neurosci. 2015; 8 (26635520): 67
- Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase.Mol. Cell Biochem. 2010; 334 (19953307): 117-124
- The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator.Neuron. 1994; 12 (7912093): 1345-1352
- Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2.Proc. Natl. Acad. Sci. U.S.A. 1995; 92 (7777544): 5535-5539
- Two membrane forms of guanylyl cyclase found in the eye.Proc. Natl. Acad. Sci. U.S.A. 1995; 92 (7831337): 602-606
- Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1.Front. Mol. Neurosci. 2014; 7 (24672427): 19
- Insights into the role of RD3 in guanylate cyclase trafficking, photoreceptor degeneration, and Leber congenital amaurosis.Front. Mol. Neurosci. 2014; 7 (24904271): 44
- Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration.Am. J. Hum. Genet. 2006; 79 (17186464): 1059-1070
- RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (21078983): 21158-21163
- Impaired association of retinal degeneration-3 with guanylate cyclase-1 and guanylate cyclase-activating protein-1 leads to leber congenital amaurosis-1.J. Biol. Chem. 2015; 290 (25477517): 3488-3499
- Retinal degeneration 3 (RD3) protein inhibits catalytic activity of retinal membrane guanylyl cyclase (RetGC) and its stimulation by activating proteins.Biochemistry. 2011; 50 (21928830): 9511-9519
- Functional study and mapping sites for interaction with the target enzyme in retinal degeneration 3 (RD3) protein.J. Biol. Chem. 2016; 291 (27471269): 19713-19723
- Dimerization domain of retinal membrane guanylyl cyclase 1 (RetGC1) is an essential part of guanylyl cyclase-activating protein (GCAP) binding interface.J. Biol. Chem. 2015; 290 (26100624): 19584-19596
- Characterization of gelatine and acid soluble collagen by size exclusion chromatography coupled with multi angle light scattering (SEC-MALS).Biomacromolecules. 2003; 4 (14606902): 1727-1732
- NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection.Biochemistry. 2010; 49 (20088570): 1469-1476
- Purification and identification of photoreceptor guanylate cyclase.J. Biol. Chem. 1991; 266 (1673683): 8634-8637
- Binding of guanylyl cyclase activating protein 1 (GCAP1) to retinal guanylyl cyclase (RetGC1): The role of individual EF-hands.J. Biol. Chem. 2008; 283 (18541533): 21747-21757
- Evaluating the role of retinal guanylyl cyclase 1 (RetGC1) domains in binding guanylyl cyclase activating proteins (GCAP).J. Biol. Chem. 2015; 290 (25616661): 6913-6924
- Quantitative colocalization analysis of confocal fluorescence microscopy images.Curr. Prot. Cell Biol. 2008; 39: 4191-4195
- Chemical shift assignments of retinal degeneration 3 protein (RD3).Biomol. NMR Assign. 2018; 12 (29327102): 167-170
- Determining the structures of large proteins and protein complexes by NMR.Curr. Opin. Chem. Biol. 1998; 2 (9818180): 564-570
- Direct measurement of disances and angles in biomolecules by NMR in a dilute liquid crystalline medium.Science. 1997; 278 (9353189): 1111-1114
- AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR.J. Biomol. NMR. 1996; 8 (9008363): 477-486
- RD3 gene delivery restores guanylate cyclase localization and rescues photoreceptors in the Rd3 mouse model of Leber congenital amaurosis 12.Hum. Mol. Genet. 2013; 22 (23740938): 3894-3905
- The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors.J. Biol. Chem. 2007; 282 (17255100): 8837-8847
- Guanylate cyclase-activating proteins and retina disease.Subcell. Biochem. 2007; 45 (18193635): 71-91
- Control of the nucleotide cycle in photoreceptor cell extracts by retinal degeneration protein 3.Front. Mol. Neurosci. 2018; 11 (29515371): 52
- Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D.Prog. Retin. Eye Res. 2018; 63 (29061346): 69-91
- Mutations in RD3 are associated with an extremely rare and severe form of early onset retinal dystrophy.Invest. Ophthalmol. Vis. Sci. 2012; 53 (22531706): 3463-3472
- Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants.Hum. Mol. Genet. 2013; 22 (23035049): 168-183
- Leber congenital amaurosis: a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture.Am. J. Ophthalmol. 2007; 144 (17964524): 791-811
- Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis.Proc. Natl. Acad. Sci. U.S.A. 1997; 94 (9391039): 13414-13419
- Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity.J. Biol. Chem. 2001; 276 (11306565): 26218-26229
- Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase.Proc. Natl. Acad. Sci. U.S.A. 1998; 95 (9600905): 5993-5997
- Ca2+ and Mg2+ binding properties of GCAP-1: evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase.J. Biol. Chem. 2006; 281 (16793776): 23830-23841
- Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors.J. Biol. Chem. 2004; 279 (14993224): 16903-16906
- A new generation of Ca2+ indicators with greatly improved fluorescence properties.Methods Cell Biol. 1989; 30 (2538708): 127-156
- Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.Gene. 1989; 77 (2744488): 61-68
- NMRPipe: a multidimensional spectral processing system based on UNIX pipes.J. Biomol. NMR. 1995; 6 (8520220): 277-293
- Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination.J. Magn. Reson. 1998; 134 (9761712): 365-369
- NMR: prediction of molecular alignment from structure using the PALES software.Nat. Protoc. 2008; 3 (18388951): 679-690
- The Xplor-NIH NMR molecular structure determination package.J. Magn. Reson. 2003; 160 (12565051): 65-73
- TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.J Biomol NMR. 2009; 44 (19548092): 213-223
- Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy.J. Biomol. NMR. 1998; 11 (9679292): 135-152
- The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data.J. Biomol. NMR. 2016; 65 (27169728): 51-57
- Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.Biochemistry. 1994; 33 (8075075): 10743-10753
- MolProbity: all-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20057044): 12-21
- Combined differential light scattering with various liquid chromatography separation techniques.Biochem. Soc. Trans. 1991; 19 (1889645): 485
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grants EY11522 (to A. M. D.) and EY012347 (to J. B. A.) and a Pennsylvania Department of Health CURE Formula grant (to A. M. D.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The atomic coordinates and structure factors (code 6DRF) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy