Introduction
- Wevers A.
- Monteggia L.
- Nowacki S.
- Bloch W.
- Schütz U.
- Lindstrom J.
- Pereira E.F.
- Eisenberg H.
- Giacobini E.
- de Vos R.A.
- Steur E.N.
- Maelicke A.
- Albuquerque E.X.
- Schröder H.
- Eaton J.B.
- Lucero L.M.
- Stratton H.
- Chang Y.
- Cooper J.F.
- Lindstrom J.M.
- Lukas R.J.
- Whiteaker P.
- Timmermann D.B.
- Sandager-Nielsen K.
- Dyhring T.
- Smith M.
- Jacobsen A.M.
- Nielsen E.Ø.
- Grunnet M.
- Christensen J.K.
- Peters D.
- Kohlhaas K.
- Olsen G.M.
- Ahring P.K.

- Albrecht B.K.
- Berry V.
- Boezio A.A.
- Cao L.
- Clarkin K.
- Guo W.
- Harmange J.C.
- Hierl M.
- Huang L.
- Janosky B.
- Knop J.
- Malmberg A.
- McDermott J.S.
- Nguyen H.Q.
- Springer S.K.
- Waldon D.
- Woodin K.
- McDonough S.I.
Results
- Timmermann D.B.
- Sandager-Nielsen K.
- Dyhring T.
- Smith M.
- Jacobsen A.M.
- Nielsen E.Ø.
- Grunnet M.
- Christensen J.K.
- Peters D.
- Kohlhaas K.
- Olsen G.M.
- Ahring P.K.
- Albrecht B.K.
- Berry V.
- Boezio A.A.
- Cao L.
- Clarkin K.
- Guo W.
- Harmange J.C.
- Hierl M.
- Huang L.
- Janosky B.
- Knop J.
- Malmberg A.
- McDermott J.S.
- Nguyen H.Q.
- Springer S.K.
- Waldon D.
- Woodin K.
- McDonough S.I.

Effect of amino acid substitutions at the α4:α4 subunit extracellular interface on modulation by CMPI


Combination | R(NS9283) | R(CMPI) | R(dFBr) | ACh (1 mm/10 μm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ave ± S.E. | N | P | Ave ± S.E. | N | P | Ave ± S.E. | N | P | Ave ± S.E. | N | |
α4:β2 | 3.8 ± 0.3 | 23 | <0.001 | 4.3 ± 0.3 | 23 | <0.001 | 5.1 ± 0.4 | 23 | <0.001 | 8.8 ± 1.1 | 23 |
α4L37I:β2 | 3.8 ± 0.2 | 5 | <0.001 | 4.6 ± 0.4 | 9 | <0.001 | 3.5 ± 0.3 | 5 | <0.001 | 10.0 ± 1.4 | 5 |
α4L37T:β2 | 3.3 ± 0.4 | 5 | <0.001 | 3.7 ± 0.3 | 10 | <0.001 | 3.7 ± 0.3 | 5 | <0.001 | 7.9 ± 1.0 | 8 |
α4R39Q:β2 | 3.5 ± 0.2 | 3 | <0.001 | 3.7 ± 0.4 | 7 | <0.001 | 5.2 ± 0.4 | 3 | <0.001 | 7.6 ± 0.7 | 10 |
α4R39H:β2 | 4.6 ± 0.2 | 3 | <0.001 | 4.6 ± 0.5 | 7 | <0.001 | 5.3 ± 1.8 | 3 | <0.001 | 12.2 ± 1.0 | 4 |
α4G41M:β2 | 4.1 ± 0.7 | 3 | <0.001 | 1.2 ± 0.1 | 6 | 0.664 | 3.3 ± 0.2 | 3 | 0.011 | 7.9 ± 1.1 | 7 |
α4G41E:β2 | 3.9 ± 0.4 | 6 | <0.001 | 1.7 ± 0.2 | 11 | 0.023 | 4.1 ± 0.2 | 6 | <0.001 | 10.8 ± 1.7 | 8 |
α4K64T:β2 | 7.4 ± 0.3 | 4 | <0.001 | 1.4 ± 0.1 | 8 | 0.186 | 4.2 ± 0.3 | 4 | <0.001 | 8.1 ± 0.6 | 7 |
α4E66I:β2 | 5.6 ± 0.4 | 6 | <0.001 | 1.2 ± 0.1 | 10 | 0.564 | 9.3 ± 1.8 | 7 | <0.001 | 10.0 ± 1.1 | 10 |
α4H68N:β2 | 4.8 ± 0.3 | 7 | <0.001 | 4.7 ± 0.3 | 10 | <0.001 | 5.8 ± 0.5 | 7 | <0.001 | 8.7 ± 0.7 | 10 |
α4H68E:β2 | 3.0 ± 0.5 | 5 | <0.001 | 4.0 ± 0.5 | 8 | <0.001 | 5.5 ± 1.1 | 5 | <0.001 | 8.5 ± 1.0 | 9 |
α4H116V:β2 | 1.1 ± 0.1 | 4 | 0.718 | 5.3 ± 0.4 | 8 | <0.001 | 5.9 ± 0.4 | 4 | <0.001 | 7.8 ± 0.9 | 8 |
α4H116L:β2 | 1.6 ± 0.2 | 5 | 0.200 | 3.1 ± 0.3 | 9 | <0.001 | 8.1 ± 0.6 | 5 | <0.001 | 12 ± 2.2 | 8 |
α4H116A:β2 | 1.3 ± 0.2 | 3 | 0.426 | 7.6 ± 0.4 | 6 | <0.001 | 8.1 ± 0.9 | 3 | <0.001 | 11.2 ± 2.4 | 5 |
α4R122S:β2 | 2.9 ± 0.4 | 4 | <0.001 | 4.0 ± 0.7 | 8 | <0.001 | 8.0 ± 2.2 | 5 | <0.001 | 11.3 ± 1.4 | 9 |
α4R122E: β2 | 3.0 ± 0.2 | 4 | <0.001 | 3.6 ± 0.3 | 8 | <0.001 | 10.3 ± 2.4 | 5 | <0.001 | 15.9 ± 2.5 | 9 |
α4Q124T:β2 | 2.0 ± 0.1 | 6 | 0.001 | 1.6 ± 0.1 | 9 | 0.051 | 3.9 ± 0.1 | 6 | <0.001 | 4.9 ± 0.2 | 9 |
α4Q124F:β2 | 1.8 ± 0.1 | 4 | 0.034 | 1.4 ± 0.1 | 11 | 0.255 | 6.3 ± 0.8 | 4 | <0.001 | 8.2 ± 1.0 | 9 |
α4T126L:β2 | 1.3 ± 0.2 | 3 | 0.496 | 1.3 ± 0.1 | 7 | 0.460 | 5.1 ± 0.6 | 4 | <0.001 | 3.3 ± 0.5 | 9 |
α4T126I:β2 | 1.3 ± 0.1 | 8 | 0.252 | 0.7 ± 0.1 | 10 | 0.448 | 2.6 ± 0.4 | 8 | 0.004 | 2.3 ± 0.5 | 15 |
α4C233F:β2 | 3.0 ± 0.4 | 5 | <0.001 | 2.9 ± 0.2 | 5 | <0.001 | 3.1 ± 0.3 | 5 | <0.001 | 4.8 ± 0.4 | 5 |
α4I249V:β2 | 2.5 ± 0.1 | 4 | <0.001 | 3.0 ± 0.4 | 4 | <0.001 | 4.1 ± 0.6 | 4 | <0.001 | 5.8 ± 0.9 | 4 |
α4L265V:β2 | 3.1 ± 0.4 | 3 | <0.001 | 3.8 ± 0.4 | 3 | <0.001 | 3.2 ± 0.1 | 3 | <0.001 | 6.5 ± 1.1 | 3 |
α4H306Y:β2 | 2.4 ± 0.1 | 3 | <0.001 | 5.1 ± 0.1 | 3 | <0.001 | 5.9 ± 0.3 | 3 | <0.001 | 11 ± 0.7 | 3 |
Effect of amino acid substitutions in the transmembrane domain on modulation by CMPI
CMPI concentration-dependent potentiation of WT and mutant (α4)3(β2)2 nAChRs

Subunits | CMPI Potentiation of 10 μm ACh | |||
---|---|---|---|---|
EC50 Ave ± S.E. | Imax Ave ± S.E | N | P | |
α4:β2 | 0.18 ± 0.03 | 386 ± 15 | 6 | <0.001 |
α4L37I:β2 | 0.28 ± 0.05 | 498 ± 31 | 4 | <0.001 |
α4L37T:β2 | 0.20 ± 0.04 | 355 ± 19 | 5 | <0.001 |
α4R39Q:β2 | 0.12 ± 0.02 | 361 ± 11 | 4 | <0.001 |
α4R39H:β2 | 0.20 ± 0.04 | 434 ± 22 | 4 | <0.001 |
α4G41M:β2 | ND | 136 ± 7 | 3 | 0.195 |
α4G41E:β2 | ND | 153 ± 34 | 5 | 0.026 |
α4K64T:β2 | ND | 140 ± 6 | 4 | 0.116 |
α4E66I:β2 | ND | 101 ± 3 | 4 | 0.968 |
α4H68N:β2 | 0.04 ± 0.01 | 405 ± 12 | 3 | <0.001 |
α4H68E:β2 | 0.10 ± 0.01 | 354 ± 11 | 3 | <0.001 |
α4H116V:β2 | 0.13 ± 0.02 | 542 ± 17 | 4 | <0.001 |
α4H116L:β2 | 0.35 ± 0.07 | 283 ± 16 | 4 | <0.001 |
α4H116A:β2 | 0.29 ± 0.06 | 786 ± 56 | 3 | <0.001 |
α4R122S:β2 | 0.17 ± 0.03 | 342 ± 14 | 4 | <0.001 |
α4R122E: β2 | 0.31 ± 0.06 | 349 ± 15 | 4 | <0.001 |
α4Q124T:β2 | ND | 173 ± 14 | 3 | 0.010 |
α4Q124F:β2 | ND | 140 ± 11 | 7 | 0.069 |
α4T126L:β2 | ND | 162 ± 6 | 4 | 0.016 |
α4T126I:β2 | ND | 105 ± 2 | 6 | 0.819 |
The effect of CMPI on ACh concentration-response curves of WT and mutant (α4)3(β2)2 nAChRs
- Eaton J.B.
- Lucero L.M.
- Stratton H.
- Chang Y.
- Cooper J.F.
- Lindstrom J.M.
- Lukas R.J.
- Whiteaker P.

Combination | ACh | ACh (+1 μm CMPI) | |||||||
---|---|---|---|---|---|---|---|---|---|
EC50 | Imax % | hn | N | EC50 | Imax % | hn | N | P | |
μm | μm | ||||||||
α4:β2 | 99 ± 23 | 115 ± 8 | 0.8 ± 0.1 | 12 | 0.6 ± 0.2 | 98 ± 4 | 0.6 ± 0.1 | 6 | 0.009 |
α4L37I:β2 | 250 ± 43 | 113 ± 6 | 1.1 ± 0.2 | 6 | 0.6 ± 0.1 | 90.3 ± 3 | 0.6 ± 0.1 | 4 | 0.002 |
α4L37T:β2 | 144 ± 20 | 110 ± 5 | 1.1 ± 0.2 | 3 | 0.6 ± 0.2 | 98 ± 4 | 0.7 ± 0.1 | 3 | 0.002 |
α4R39Q:β2 | 100 ± 11 | 110 ± 3 | 0.9 ± 0.1 | 8 | 3.6 ± 2.3 | 75 ± 8 | 0.5 ± 0.1 | 6 | <0.001 |
α4R39H:β2 | 159 ± 17 | 110 ± 3 | 1.1 ± 0.1 | 4 | 1.1 ± 0.2 | 88 ± 2 | 0.7 ± 0.1 | 3 | <0.001 |
α4G41M:β2 | 165 ± 41 | 117 ± 7 | 0.7 ± 0.1 | 4 | 104 ± 86 | 90 ± 16 | 0.5 ± 0.1 | 7 | 0.624 |
α4G41E:β2 | 169 ± 34 | 114 ± 6 | 0.9 ± 0.1 | 4 | 190 ± 110 | 100 ± 14 | 0.7 ± 0.2 | 5 | 0.875 |
α4K64T:β2 | 57 ± 11 | 108 ± 6 | 1.1 ± 0.2 | 3 | 65 ± 37 | 105 ± 15 | 0.7 ± 0.1 | 4 | 0.865 |
α4E66I:β2 | 227 ± 78 | 120 ± 15 | 0.9 ± 0.1 | 3 | 222 ± 173 | 120 ± 28 | 0.7 ± 0.2 | 4 | 0.986 |
α4H68N:β2 | 126 ± 20 | 111 ± 5 | 1.0 ± 0.1 | 5 | 0.7 ± 0.1 | 91 ± 4 | 0.7 ± 0.1 | 6 | <0.001 |
α4H68E:β2 | 127 ± 21 | 112 ± 5 | 0.9 ± 0.1 | 4 | 1.5 ± 0.4 | 97 ± 5 | 0.9 ± 0.2 | 4 | <0.001 |
α4H116V:β2 | 146 ± 18 | 113 ± 4 | 0.9 ± 0.1 | 5 | 5.9 ± 1.2 | 84 ± 3 | 0.8 ± 0.1 | 4 | <0.001 |
α4H116A:β2 | 195 ± 65 | 100 ± 12 | 1.3 ± 0.5 | 3 | 1.0 ± 0.2 | 87 ± 3 | 1.0 ± 0.2 | 5 | <0.001 |
α4R122S:β2 | 136 ± 15 | 111 ± 3 | 0.9 ± 0.1 | 4 | 5.8 ± 2 | 95 ± 5 | 0.5 ± 0.1 | 5 | <0.001 |
α4Q124T:β2 | 284 ± 236 | 136 ± 23 | 0.5 ± 0.1 | 5 | 19 ± 10 | 110 ± 9 | 0.5 ± 0.1 | 5 | 0.294 |
α4Q124F:β2 | 269 ± 92 | 127 ± 11 | 0.7 ± 0.1 | 5 | 202 ± 143 | 107 ± 15 | 0.5 ± 0.1 | 4 | 0.694 |
α4T126L:β2 | 44 ± 7 | 103 ± 6 | 1.5 ± 0.3 | 9 | 22 ± 12 | 97 ± 13 | 0.6 ± 0.1 | 4 | 0.223 |
α4T126I:β2 | 11 ± 1 | 102 ± 4 | 1.1 ± 0.1 | 7 | 14 ± 5 | 104 ± 6 | 0.5 ± 0.1 | 7 | 0.567 |
ACh, CMPI, and NS9283 docking at the α4:α4 extracellular interface


Discussion
Overlapping ACh- and PAM-binding sites at the α4:α4 subunit extracellular interface
PAM recognition at the α4:α4 extracellular interface
- Albrecht B.K.
- Berry V.
- Boezio A.A.
- Cao L.
- Clarkin K.
- Guo W.
- Harmange J.C.
- Hierl M.
- Huang L.
- Janosky B.
- Knop J.
- Malmberg A.
- McDermott J.S.
- Nguyen H.Q.
- Springer S.K.
- Waldon D.
- Woodin K.
- McDonough S.I.
- Albrecht B.K.
- Berry V.
- Boezio A.A.
- Cao L.
- Clarkin K.
- Guo W.
- Harmange J.C.
- Hierl M.
- Huang L.
- Janosky B.
- Knop J.
- Malmberg A.
- McDermott J.S.
- Nguyen H.Q.
- Springer S.K.
- Waldon D.
- Woodin K.
- McDonough S.I.
Relevance to allosteric modulation of nAChR
- Eaton J.B.
- Lucero L.M.
- Stratton H.
- Chang Y.
- Cooper J.F.
- Lindstrom J.M.
- Lukas R.J.
- Whiteaker P.
Experimental procedures
Materials
cDNA plasmids and site-directed mutagenesis
Receptor expression in Xenopus oocytes
Electrophysiological recording
Data analysis
where Ix is the normalized ACh current in the presence of CMPI at concentration x, Imax is the maximum potentiation of current, h is the Hill coefficient, and EC50 is the CMPI concentration producing 50% of maximal potentiation. For CMPI enhancement, I0 = 100, and the probability (P) that the Imax differs from no potentiation (Imax = 100) was analyzed using one-way analysis of variance with the Holm-Sidak test and is reported in Table 2. For ACh concentration response, I0 = 0, and the probability (P) that the ACh EC50 in the presence of CMPI differs from ACh EC50 in the absence of CMPI was analyzed by the t test and is reported in Table 3.
Molecular modeling
Author contributions
Acknowledgments
References
- Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system.Nat. Rev. Drug Discov. 2009; 8: 733-750
- Nicotinic acetylcholine receptors: from basic science to therapeutics.Pharmacol. Ther. 2013; 137: 22-54
- X-ray structure of the human α4β2 nicotinic receptor.Nature. 2016; 538: 411-415
- Targeting α4β2 nicotinic acetylcholine receptors in central nervous system disorders: perspectives on positive allosteric modulation as a therapeutic approach.Basic Clin. Pharmacol. Toxicol. 2015; 116: 187-200
- Nicotinic ACh receptors as therapeutic targets in CNS disorders.Trends Pharmacol. Sci. 2015; 36: 96-108
- Brain nicotinic acetylcholine receptors: native subtypes and their relevance.Trends Pharmacol. Sci. 2006; 27: 482-491
- Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain.J. Neurochem. 1988; 50: 1243-1247
- Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine.Nature. 1998; 391: 173-177
- Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors.EMBO J. 1999; 18: 1235-1244
- Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer's disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein.Eur. J. Neurosci. 1999; 11: 2551-2565
- Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.Biochem. Pharmacol. 2011; 82: 915-930
- Nicotinic receptors at the amino acid level.Annu. Rev. Pharmacol. Toxicol. 2000; 40: 431-458
- α4β2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine.Mol. Pharmacol. 2006; 70: 755-768
- The positive allosteric modulator morantel binds at noncanonical subunit interfaces of neuronal nicotinic acetylcholine receptors.J. Neurosci. 2009; 29: 8734-8742
- Multiple transmembrane binding Sites for p-trifluoromethyldiazirinyl etomidate, a photoreactive Torpedo nicotinic acetylcholine receptor allosteric inhibitor.J. Biol. Chem. 2011; 286: 20466-20477
- Physostigmine and galantamine bind in the present of agonist at the canonical and non-canonical subunit interfaces of nicotinic acetylcholine receptors.J. Neurosci. 2013; 33: 485-494
- Structural and functional studies of the modulator ns9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors.J. Biol. Chem. 2014; 289: 24911-24921
- Potentiation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site.Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 14686-14691
- Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector.J. Biol. Chem. 2008; 283: 22051-22062
- A portable site: a binding element for 17β-estradiol can be placed on any subunit of a nicotinic α4β2 receptor.J. Neurosci. 2011; 31: 5045-5054
- A novel α2/α4 subtype-selective positive allosteric modulator of nicotinic acetylcholine receptors acting from the c-tail of an α subunit.J. Biol. Chem. 2015; 290: 28834-28846
- Allosteric modulation of nicotinic acetylcholine receptors: the concept and therapeutic trends.Curr. Pharm. Des. 2016; 22: 1986-1997
- Four pharmacologically distinct subtypes of α4β2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes.Mol. Pharmacol. 1998; 54: 1124-1131
- Alternate stoichiometries of α4β2 nicotinic acetylcholine receptors.Mol. Pharmacol. 2003; 63: 332-341
- Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors.J. Neurosci. 2011; 31: 10759-10766
- The unique α4(+)/(−)α4 agonist-binding site in (α4)3(β2)2 subtype nicotinic acetylcholine receptors permits differential agonist desensitization pharmacology versus the (α4)2(β2)3 subtype.J. Pharmacol. Exp. Ther. 2014; 348: 46-58
- Non-equivalent ligand selectivity of agonist sites in (α4β2)2α4 nicotinic acetylcholine receptors: a key determinant of agonist efficacy.J. Biol. Chem. 2014; 289: 21795-21806
- Augmentation of cognitive function by NS9283, a stoichiometry-dependent positive allosteric modulator of α2- and α4-containing nicotinic acetylcholine receptors.Br. J. Pharmacol. 2012; 167: 164-182
- The nicotinic α5 subunit can replace either an acetylcholine-binding or nonbinding subunit in the α4β2* neuronal nicotinic receptor.Mol. Pharmacol. 2014; 85: 11-17
- Photolabeling a nicotinic acetylcholine receptor (nachr) with an (α4)3(β2)2 nachr-selective positive allosteric modulator.Mol. Pharmacol. 2016; 89: 575-584
- Discovery and optimization of substituted piperidines as potent, selective, CNS-penetrant α4β2 nicotinic acetylcholine receptor potentiators.Bioorg. Med. Chem. Lett. 2008; 18: 5209-5212
- Two distinct allosteric binding sites at α4β2 nicotinic acetylcholine receptors revealed by NS206 and NS9283 give unique insights to binding activity-associated linkage at Cys-loop receptors.J. Biol. Chem. 2013; 288: 35997-36006
- Desformylflustrabromine (dFBr) and [3H]dFBr-labeled binding sites in a nicotinic acetylcholine receptor.Mol. Pharmacol. 2015; 88: 1-11
- Desformylflustrabromine modulates α4β2 neuronal nicotinic acetylcholine receptor high- and low-sensitivity isoforms at allosteric clefts containing the β2 subunit.J. Pharmacol. Exp. Ther. 2015; 354: 184-194
- Potentiation of human α4β2 neuronal nicotinic receptors by a Flustra foliacea metabolite.Neurosci. Lett. 2005; 373: 144-149
- Structure and pharmacology of pentameric receptor channels: from bacteria to brain.Structure. 2012; 20: 941-956
- Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures.Neuron. 2004; 41: 907-914
- [3H]Epibatidine photolabels non-equivalent amino acids in the agonist-binding sites of torpedo and α4β2 nicotinic acetylcholine receptors.J. Biol. Chem. 2009; 284: 24939-24947
- CHARMM: A program for macromolecular energy, minimization, and dynamics calculations.J. Comput. Chem. 1983; 4: 187-217
- Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm.J. Comput. Chem. 2003; 24: 1549-1562
Article info
Publication history
Footnotes
This work was supported, in whole or in part, by National Institutes of Health Grant NS-093590 (NINDS; to A. K. H.). This work was also supported in part by Faculty Development Fund of Texas A&M Health Sciences Center (to A. K. H.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy