Introduction

Results
Structure determination of SbnI

Data collection | |
Resolution range (Å) | 42–2.50 (2.59–2.50) |
Space group | P31 |
Unit cell dimensions | |
a, b, c (Å) | 55.1, 55.1, 92.7 |
Unique reflections | 10,883 (1,564) |
Completeness (%) | 99.9 (100) |
Redundancy | 2.9 (2.9) |
Average I/σI | 15.8 (2.2) |
Rmerge | 0.051 (1.007) |
Wilson B-factor (Å2) | 56.4 |
Anisotropy | 0.501 |
Refinement | |
Rwork (Rfree) | 0.219 (0.259) |
No. of water molecules | 12 |
RMSD bond length (Å) | 0.003 |
Average B-values (Å2) | 95.0 |
Ramachandran plot (%) | |
Most favored regions | 97.5 |
Disallowed regions | 0.4 |
PDB code | 5UJE |


SbnI is a dimer in solution
SbnI is a serine kinase that uses l-serine and ATP to generate OPS



SbnI active-site variants
Kinetic analysis of SbnI kinase activity
Km | kcat | kcat/Km | |
---|---|---|---|
mm | min−1 | mm−1 min−1 | |
ATP | |||
SbnI | 0.6 ± 0.1 | 3.9 ± 0.1 | 6.8 ± 1.0 |
SbnI | 0.2 ± 0.1 | 3.9 ± 0.1 | 17.3 ± 3.6 |
SbnI(1–240) | 1.2 ± 0.3 | 2.1 ± 0.1 | 1.7 ± 0.7 |
ADP | |||
SerK | 2.4 ± 0.5 | 12,240 ± 720 | 5,100 |
l-Serine | |||
SbnI | 340 ± 40 | 14.3 ± 0.8 | 0.04 ± 0.01 |
SbnI | 150 ± 20 | 10.0 ± 0.6 | 0.07 ± 0.01 |
SbnI(1–240) | 900 ± 450 | 2.1 ± 0.1 | 0.02 ± 0.01 |
SerK | 5.1 ± 0.5 | 13,100 ± 300 | 2,600 |
Physiological function of ATP-dependent serine kinase activity in S. aureus

Discussion
Experimental procedures
Cloning and site-directed mutagenesis
Bacterial strains and plasmids | Description | Source or reference |
---|---|---|
Strains | ||
E. coli | ||
BL21 (λDE3) | F− ompT gal dcm lon hsdSB (rB− mB+)λ (DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) | Novagen |
S. aureus | ||
USA300 | USA300 LAC cured of antibiotic resistance plasmid | Ref. 68 |
JE2 serC::ΦNΣ | JE2 serC::ΦNΣ; EmR (SAUSA300_1669) | Ref. 69 |
JE2 sbnI::ΦNΣ | JE2 sbnI::ΦNΣ; EmR (SAUSA300_0126) | Ref. 69 |
serC | USA300 serC::ΦNΣ; EmR (SAUSA300_1669) | This study |
sbnI | USA300 sbnI::ΦNΣ; EmR (SAUSA300_0126) | This study |
sirA | RN6390ΔsirA::KmR; SB transport–deficient mutant | Ref. 35 |
htsABC | RN6390ΔhtsABC:TcR; SA transport–deficient mutant | Ref. 72 |
Plasmids | ||
pET28a-sbnI | IPTG-inducible expression vector containing sbnI; KmR | This study |
pET28a-sbnI1–240 | IPTG-inducible expression vector containing sbnI1–240; KmR | This study |
pET28a-sbnI-E20A | IPTG-inducible expression vector containing sbnIE20A; KmR | This study |
pET28a-sbnI-D58A | IPTG-inducible expression vector containing sbnID58A; KmR | This study |
Protein expression and purification
Crystallization, data collection, and structure determination of SbnI(1–240)
Genomic neighborhood and conservation analysis
Dynamic light scattering
UV-visible spectrophotometry analysis of SbnI OPS production using SbnA
HPLC
31P NMR spectra of SbnI kinase reaction
Measurement of serine kinase activity
S. aureus bacterial strains and growth conditions
Disc diffusion assays to assess siderophore production
Author contributions
Acknowledgments
Supplementary Material
References
- Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: a five-year summary from the SENTRY Antimicrobial Surveillance Program (1997–2001).Semin. Respir. Crit. Care Med. 2003; 24 (16088531): 121-134
- Pathogenesis of methicillin-resistant Staphylococcus aureus infection.Clin. Infect. Dis. 2008; 46 (18462090): S350-S359
- Staphylococcus aureus infections.N. Engl. J. Med. 1998; 339 (9709046): 520-532
- Molecular mechanisms of Staphylococcus aureus iron acquisition.Annu. Rev. Microbiol. 2011; 65 (21639791): 129-147
- Recent developments in understanding the iron acquisition strategies of Gram positive pathogens.FEMS Microbiol. Rev. 2015; 39 (25862688): 592-630
- Iron in infection and immunity.Cell Host Microbe. 2013; 13 (23684303): 509-519
- Transferrin: structure, function and potential therapeutic actions.Drug Discov. Today. 2005; 10 (15708745): 267-273
- Iron metabolism and infection.Food Nutr. Bull. 2007; 28 (18297890): S515-S523
- Structural biology of heme binding in the Staphylococcus aureus Isd system.J. Inorg. Biochem. 2010; 104 (19853304): 341-348
- Staphyloferrin A: a structurally new siderophore from staphylococci.Eur. J. Biochem. 1990; 191 (2379505): 65-74
- Isolation and biological characterization of staphyloferrin B, a compound with siderophore activity from staphylococci.FEMS Microbiol. Lett. 1994; 115 (8138126): 125-130
- Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence.Infect. Immun. 2011; 79 (21402762): 2345-2355
- Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore.Infect. Immun. 2004; 72 (14688077): 29-37
- Staphylococcus aureus gene expression in a rat model of infective endocarditis.Genome Med. 2014; 6 (25392717): 93
- Staphylococcus aureus redirects central metabolism to increase iron availability.PLoS Pathog. 2006; 2 (16933993): e87
- Global changes in Staphylococcus aureus gene expression in human blood.PLoS One. 2011; 6 (21525981)e18617
- In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study.BMC Microbiol. 2016; 16 (27150914): 80
- TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase.Mol. Microbiol. 2014; 92 (24666349): 824-839
- A global investigation of the Bacillus subtilis iron-sparing response identifies major changes in metabolism.J. Bacteriol. 2012; 194 (22389480): 2594-2605
- Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A.Biochemistry. 2009; 48 (19138128): 1025-1035
- Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus.Mol. Microbiol. 2009; 74 (19775248): 594-608
- Breaking a pathogen's iron will: inhibiting siderophore production as an antimicrobial strategy.Biochim. Biophys. Acta. 2015; 1854 (25970810): 1054-1070
- Discovery of an iron-regulated citrate synthase in Staphylococcus aureus.Chem. Biol. 2012; 19 (23261600): 1568-1578
- SbnG, a citrate synthase in Staphylococcus aureus: a new fold on an old enzyme.J. Biol. Chem. 2014; 289 (25336653): 33797-33807
- Synthesis of l-2,3-diaminopropionic acid, a siderophore and antibiotic precursor.Chem. Biol. 2014; 21 (24485762): 379-388
- Deciphering the substrate specificity of SbnA, the enzyme catalyzing the first step in staphyloferrin B biosynthesis.Biochemistry. 2016; 55 (26794841): 927-939
- A heme-responsive regulator controls synthesis of staphyloferrin B in Staphylococcus aureus.J. Biol. Chem. 2016; 291 (26534960): 29-40
- Iron-source preference of Staphylococcus aureus infections.Science. 2004; 305 (15361626): 1626-1628
- Intracellular localization of P1 ParB protein depends on ParA and parS.Proc. Natl. Acad. Sci. U.S.A. 1999; 96 (10611311): 14905-14910
- Insights into ParB spreading from the complex structure of Spo0J and parS.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (25964325): 6613-6618
- Structural study on the reaction mechanism of a free serine kinase involved in cysteine biosynthesis.ACS Chem. Biol. 2017; 12 (28358477): 1514-1523
- An archaeal ADP-dependent serine kinase involved in cysteine biosynthesis and serine metabolism.Nat. Commun. 2016; 7 (27857065)13446
- The PSIPRED protein structure prediction server.Bioinformatics. 2000; 16 (10869041): 404-405
- The DISOPRED server for the prediction of protein disorder.Bioinformatics. 2004; 20 (15044227): 2138-2139
- Involvement of SirABC in iron-siderophore import in Staphylococcus aureus.J. Bacteriol. 2004; 186 (15576785): 8356-8362
- Multiple enzymatic activities of ParB/Srx superfamily mediate sexual conflict among conjugative plasmids.Nat. Commun. 2014; 5 (25358815)5322
- Protein engineering of the quaternary sulfiredoxin-peroxiredoxin enzyme-substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation.J. Biol. Chem. 2009; 284 (19812042): 33305-33310
- Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages.Science. 2015; 349 (26339031): 1120-1124
- Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus.Mol. Microbiol. 2004; 53 (15228524): 419-432
- Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate.J. Biol. Chem. 2008; 283 (18579529): 23846-23851
- Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator.J. Bacteriol. 2004; 186 (15547261): 7896-7904
- Close linkage of the genes serC (for phosphohydroxy pyruvate transaminase) and serS (for seryl-transfer ribonucleic acid synthetase) in Escherichia coli K-12.J. Bacteriol. 1973; 113 (4570768): 1091-1095
- Adaptation of proteins from hyperthermophiles to high pressure and high temperature JMMB symposium.J. Mol. Microbiol. Biotechnol. 1999; 1 (10941791): 101-105
- Characterization of a serine/threonine kinase involved in virulence of Staphylococcus aureus.J. Bacteriol. 2009; 191 (19395491): 4070-4081
- Bacterial serine/threonine protein kinases in host-pathogen interactions.J. Biol. Chem. 2014; 289 (24554701): 9473-9479
- Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression.MBio. 2017; 8 (28196956): e1434-16
- Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine.J. Biol. Chem. 2004; 279 (15448164): 50994-51001
- Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin.J. Biol. Chem. 2006; 281 (16565085): 14400-14407
- Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.J. Exp. Bot. 2010; 61 (20176891): 1509-1521
- Modular co-evolution of metabolic networks.BMC Bioinformatics. 2007; 8 (17723146): 311
- The human serum metabolome.PLoS One. 2011; 6 (21359215)e16957
- Staphylococcus aureus lactate- and malate-quinone oxidoreductases contribute to nitric oxide resistance and virulence.Mol. Microbiol. 2016; 100 (26851155): 759-773
- Metabolic reprogramming in macrophages and dendritic cells in innate immunity.Cell Res. 2015; 25 (26045163): 771-784
- Directed evolution of copper nitrite reductase to a chromogenic reductant.Protein Eng. Des. Sel. 2010; 23 (20083495): 137-145
- Multiple-mutation reaction: a method for simultaneous introduction of multiple mutations into the glpK gene of Mycoplasma pneumoniae.Appl. Environ. Microbiol. 2005; 71 (16000825): 4097-4100
- Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin.J. Mol. Biol. 1993; 229 (7678431): 105-124
- 08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source.J. Synchrotron Radiat. 2014; 21 (24763655): 633-637
- XDS. XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Integration, scaling, space-group assignment and post-refinement.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 133-144
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16552146): 439-450
- Dali server: conservation mapping in 3D.Nucleic Acids Res. 2010; 38 (20457744): W545-W549
- ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids.Nucleic Acids Res. 2010; 38 (20478830): W529-W533
- Phosphorus magnetic resonance spectra of adenosine diphosphate and triphosphate. I. Effect of pH.J. Biol. Chem. 1960; 235 (13694477): 3250-3253
- Techniques in coupled enzyme assays.Methods Enzymol. 1979; 63 (228153): 22-42
- A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems.Proc. Natl. Acad. Sci. U.S.A. 1992; 89 (1534409): 4884-4887
- Induction of the staphylococcal proteolytic cascade by antimicrobial fatty acids in community acquired methicillin resistant Staphylococcus aureus.PLoS One. 2012; 7 (23029337)e45952
- A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes.MBio. 2013; 4 (23404398): e00537-12
- Genetic systems in Staphylococci.Methods Enzymol. 1991; 204 (1658572): 587-636
- FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer.J. Biol. Chem. 2004; 279 (15475351): 53152-53159
- Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus.Mol. Microbiol. 2009; 72 (19400778): 947-963
Article info
Publication history
Footnotes
This work was supported by Canadian Institutes of Health Research (CIHR) Grants MOP-49597 (to M. E. P. M) and MOP-38002 (to D. E. H.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Table S1 and Figs. S1–S4.
The atomic coordinates and structure factors (code 5UJE) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy