Introduction
- Edwards L.M.
- Murray A.J.
- Tyler D.J.
- Kemp G.J.
- Holloway C.J.
- Robbins P.A.
- Neubauer S.
- Levett D.
- Montgomery H.E.
- Grocott M.P.
- Clarke K.
- Caudwell Xtreme Everest Research Group
- Subudhi A.W.
- Bourdillon N.
- Bucher J.
- Davis C.
- Elliott J.E.
- Eutermoster M.
- Evero O.
- Fan J.L.
- Jameson-Van Houten S.
- Julian C.G.
- Kark J.
- Kark S.
- Kayser B.
- Kern J.P.
- Kim S.E.
- et al.
Results and discussion
Systemic responses to high-altitude hypoxia
- Subudhi A.W.
- Bourdillon N.
- Bucher J.
- Davis C.
- Elliott J.E.
- Eutermoster M.
- Evero O.
- Fan J.L.
- Jameson-Van Houten S.
- Julian C.G.
- Kark J.
- Kark S.
- Kayser B.
- Kern J.P.
- Kim S.E.
- et al.
Hypoxia improves muscle mitochondrial energetics and increases metabolic substrate availability

Remodeling of the muscle metabolic proteome in hypoxia
Hypoxia increases resting phosphorylation potential and purine nucleotide turnover
- Edwards L.M.
- Murray A.J.
- Tyler D.J.
- Kemp G.J.
- Holloway C.J.
- Robbins P.A.
- Neubauer S.
- Levett D.
- Montgomery H.E.
- Grocott M.P.
- Clarke K.
- Caudwell Xtreme Everest Research Group

Hypoxia directs muscle glucose utilization toward biosynthetic pathways

Muscle proteolysis supports PNC/MAS flux and anaplerotic imbalance in hypoxia

Altered mitochondrial protein stoichiometry parallels improvements in long-chain acylcarnitine oxidation capacity

Potential regulatory mechanisms

Summary and conclusions
Experimental procedures
Human subjects and sample collection
- Subudhi A.W.
- Bourdillon N.
- Bucher J.
- Davis C.
- Elliott J.E.
- Eutermoster M.
- Evero O.
- Fan J.L.
- Jameson-Van Houten S.
- Julian C.G.
- Kark J.
- Kark S.
- Kayser B.
- Kern J.P.
- Kim S.E.
- et al.
Mitochondrial respirometry
Metabolomic profiling
Proteomic profiling
Western blotting
Statistical analyses
Author contributions
Acknowledgments
Supplementary Material
References
- Variation in human performance in the hypoxic mountain environment.Exp. Physiol. 2010; 95 (19946029): 463-470
- Metabolic impairment in heart failure: the myocardial and systemic perspective.J. Am. Coll. Cardiol. 2014; 64 (25257642): 1388-1400
- Metabolic derangements in COPD muscle dysfunction.J. Appl. Physiol. 2013; 114 (23288549): 1282-1290
- Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target.Exp. Physiol. 2013; 98 (23377494): 1063-1078
- Muscle bioenergetics and metabolic control at altitude.High Alt. Med. Biol. 2009; 10 (19480606): 165-174
- Muscle tissue adaptations to hypoxia.J. Exp. Biol. 2001; 204 (11581327): 3133-3139
- Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus.Extrem. Physiol. Med. 2014; 3 (25473486): 19
- Mitochondrial function at extreme high altitude.J. Physiol. 2016; 594 (26033622): 1137-1149
- Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis.Respir. Physiol. 1983; 52 (6612104): 303-313
- Muscle ultrastructure and biochemistry of lowland Tibetans.J. Appl. Physiol. 1996; 81 (8828694): 419-425
- Muscle structure and performance capacity of Himalayan Sherpas.J. Appl. Physiol. 1991; 70 (1864773): 1938-1942
- Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest.FASEB J. 2012; 26: 1431-1441
- The effect of high-altitude on human skeletal muscle energetics: P-MRS results from the Caudwell Xtreme Everest expedition.PloS One. 2010; 5 (20502713)e10681
- Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise.J. Appl. Physiol. 1992; 73 (1490988): 2701-2708
- HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia.Cell Metab. 2006; 3 (16517405): 177-185
- Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1.J. Biol. Chem. 1994; 269 (8089148): 23757-23763
- HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells.Cell. 2007; 129 (17418790): 111-122
- Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate.J. Appl. Physiol. 1996; 81 (8904597): 1762-1771
- Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.Proc. Natl. Acad. Sci. U.S.A. 2012; 109 (22586089): 8635-8640
- New aspects of altitude adaptation in Tibetans: a proteomic approach.FASEB J. 2004; 18: 612-614
- Sparing effect of chronic high-altitude exposure on muscle glycogen utilization.J. Appl. Physiol. 1982; 52 (7085419): 857-862
- Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle.J. Physiol. 2016; 594 (26339730): 1151-1166
- Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria.FASEB J. 2012; 26: 5192-5200
- Changes in muscle proteomics in the course of the Caudwell Research Expedition to Mt. Everest.Proteomics. 2015; 15 (25370915): 160-171
- Metabolic basis to Sherpa altitude adaptation.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (28533386): 6382-6387
- AltitudeOmics: the integrative physiology of human acclimatization to hypobaric hypoxia and its retention upon reascent.PLoS ONE. 2014; 9 (24658407)e92191
- How wasting is saving: weight loss at altitude might result from an evolutionary adaptation.BioEssays. 2014; 36: 721-729
- Increased exercise SaO2 independent of ventilatory acclimatization at 4,300 m.J. Appl. Physiol. 1989; 66 (2745337): 2733-2738
- High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle.Methods Mol. Biol. 2012; 810 (22057559): 25-58
- Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPD.J. Appl. Physiol. 2013; 114 (22815389): 1319-1328
- Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives.Am. J. Clin. Nutr. 2000; 71 (10799364): 1033-1047
- Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects.J. Physiol. 2012; 590 (22586215): 3349-3360
- Mitochondrial creatine kinase in human health and disease.Biochim. Biophys. Acta. 2006; 1762 (16236486): 164-180
- Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 content?.Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003; 284: R304-R316
- Elevated inosine monophosphate levels in resting muscle of patients with stable chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med. 1998; 157 (9476857): 453-457
- Implication of xanthine oxidase in muscle oxidative stress in COPD patients.Free Radic. Res. 2008; 42 (18821156): 807-814
- AMP deamination delays muscle acidification during heavy exercise and hypoxia.J. Biol. Chem. 2006; 281 (16314416): 3057-3066
- Adenine nucleotide depletion in human muscle during exercise: causality and significance of AMP deamination.Int. J. Sports Med. 1990; 11 (2361781): S62-S67
- HIF-1α in the heart: remodeling nucleotide metabolism.J. Mol. Cell. Cardiol. 2015; 82 (25681585): 194-200
- Global regulation of nucleotide biosynthetic genes by c-Myc.PloS One. 2008; 3 (18628958)e2722
- HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation.Cancer Cell. 2007; 12 (17692803): 108-113
- Facilitating understanding of the purine nucleotide cycle and the one-carbon pool: Part I: the purine nucleotide cycle.Biochem. Mol. Biol. Ed. 2005; 33: 165-168
- The purine nucleotide cycle. Studies of ammonia production by skeletal muscle in situ and in perfused preparations.J. Biol. Chem. 1977; 252 (873929): 5054-5060
- The pentose phosphate pathway and cancer.Trends Biochem. Sci. 2014; 39 (25037503): 347-354
- Control analysis of mammalian serine biosynthesis: feedback inhibition on the final step.Biochem. J. 1988; 256 (2851987): 97-101
- One-carbon metabolism in health and disease.Cell Metab. 2017; 25 (27641100): 27-42
- Serine, glycine and one-carbon units: cancer metabolism in full circle.Nat. Rev. Cancer. 2013; 13 (23822983): 572-583
- Serine catabolism regulates mitochondrial redox control during hypoxia.Cancer Dis. 2014; 4 (25186948): 1406-1417
- Weight loss and changes in body composition at high altitude.J. Appl. Physiol. 1984; 57 (6520055): 1580-1585
- Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains.Mol. Cell. Biochem. 2012; 364 (22215202): 101-113
- The key role of anaplerosis and cataplerosis for citric acid cycle function.J. Biol. Chem. 2002; 277 (12087111): 30409-30412
- Protein and amino acid metabolism in human muscle.Adv. Exp. Med. Biol. 1998; 441 (9781336): 307-319
- Ammonia and amino acid metabolism in skeletal muscle: human, rodent and canine models.Med. Sci. Sports Exerc. 1998; 30 (9475642): 34-46
- Interorgan glutamine flow in metabolic acidosis.Am. J. Physiol. 1987; 253 (3322041): F1069-F1076
- Purification and properties of cytosolic malic enzyme from human skeletal muscle.Int. J. Biochem. 1988; 20 (3169368): 857-866
- Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles.Circ. Res. 1978; 43 (709743): 808-815
- Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.Biochim. Biophys. Acta. 2016; 1857 (26971832): 1086-1101
- Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases.J. Biol. Chem. 2015; 290 (26152730): 20712-20722
- Hypoxia-inducible factor 1 (HIF-1) pathway.Science's STKE. 2007; 2007 (17925579): cm8
- Structure of mammalian respiratory supercomplex I1III2IV1.Cell. 2016; 167 (27912063): 1598-1609.e10
- Structure of mammalian respiratory complex I.Nature. 2016; 536 (27509854): 354-358
- Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP.J. Biol. Chem. 2004; 279 (15166242): 31761-31768
- Low expression of long-chain acyl-CoA dehydrogenase in human skeletal muscle.Mol. Genet. Metab. 2010; 100 (20363655): 163-167
- The mitochondrial trifunctional protein: centre of a β-oxidation metabolon?.Biochem. Soc. Trans. 2000; 28 (10816122): 177-182
- Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes.J. Biol. Chem. 2010; 285 (20663895): 29834-29841
- Evidence for intermediate channeling in mitochondrial β-oxidation.J. Biol. Chem. 1995; 270 (7822275): 530-535
- Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients.J. Clin. Invest. 1995; 95 (7769092): 2465-2473
- Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening.J. Inherited Metab. Dis. 2010; 33 (20449660): 527-532
- Acylcarnitines: old actors auditioning for new roles in metabolic physiology.Nat. Rev. Endocrinol. 2015; 11 (26303601): 617-625
- Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle.J. Exp. Biol. 2004; 207 (15472017): 3865-3871
- Air to muscle O2 delivery during exercise at altitude.High Alt. Med. Biol. 2009; 10 (19555296): 123-134
Marin, T. L., Gongol, B., Zhang, F., Martin, M., Johnson, D. A., Xiao, H., Wang, Y., Subramaniam, S., Chien, S., and Shyy, J. Y. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci. Signal. 10.
- Metabolic regulation of mitochondrial dynamics.J. Cell Biol. 2016; 212 (26858267): 379-387
- Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and leads to tau hyperphosphorylation and neurodegeneration.PLoS Genet. 2012; 8 (23144624)e1003021
- Integrated physiology and systems biology of PPARα.Mol. Metab. 2014; 3 (24944896): 354-371
- Genetic evidence for high-altitude adaptation in Tibet.Science. 2010; 329 (20466884): 72-75
- Fundamentals of cancer metabolism.Sci. Adv. 2016; 2 (27386546)e1600200
- Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle.J. Physiol. 2006; 576 (16873412): 613-624
- Endoplasmic reticulum stress activation during total knee arthroplasty.Physiol. Rep. 2013; 1 (24159375)e00052
Article info
Publication history
Footnotes
This work was supported in part by U.S. Department of Defense Grants W81XWH-11-2-0040 TATRC (to R. C. R.), W81XWH-10- 2-0114 (to A. T. L.), National Institutes of Health NICHID Grant K01HD057332 (to H. C. D.), Grant T32 HL007171 from the National Institutes of Health, NHLBI (to T. N.), Oroboros Instruments, Innsbruck, Austria, the Mitochondrial Physiology Laboratory at Colorado State University, the Altitude Research Center, and the Charles S. Houston Endowed Professorship, Department of Medicine, University of Colorado, Denver. E. G. is Chief Executive Officer of Oroboros Instruments, Innsbruck, Austria. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains “Materials and methods,” Tables S1 and S2, and Figs. S1–S3.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy