Molecular Mechanisms and Kinetic Effects of FXYD1 and Phosphomimetic Mutants on Purified Human Na,K-ATPase

Neeraj Kumar Mishra1, Michael Habbeck2,1, Corinna Kirchner5, Haim Haviv4, Yoav Peleg4, Miriam Eisenstein4, Hans Juergen Apell6, and Steven J. D. Karlish3

From the 1Department of Biological Chemistry, 2Department of Chemical Research Support, and 4Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel and the 3Department of Biology, University of Konstanz, 78464 Konstanz, Germany

Background: FXYD1 regulates Na,K-ATPase in heart and other tissues.

Results: Purified human isoforms (α1β1 and α2β1) reconstituted with wild-type FXYD1 or phosphomimetic mutants S63E, S68E, and S63E,S68E provide detailed information on kinetic effects.

Conclusion: FXYD1 slows conformational transition E2(2K)ATP → E3Na(3K)ATP and raises binding affinity to Na+ site III.

Significance: A detailed picture emerges of the regulatory mechanism of FXYD1 that complements physiological studies.

Phospholemman (FXYD1) is a single-transmembrane protein regulator of Na,K-ATPase, expressed strongly in heart, skeletal muscle, and brain and phosphorylated by protein kinases A and C at Ser-68 and Ser-63, respectively. Binding of FXYD1 reduces Na,K-ATPase activity, and phosphorylation at Ser-68 or Ser-63 relieves the inhibition. Despite the accumulated information on physiological effects, whole cell studies provide only limited information on molecular mechanisms. As a complementary approach, we utilized purified human Na,K-ATPase (α1β1 and α2β1) reconstituted with FXYD1 or mutants S63E, S68E, and S63E,S68E that mimic phosphorylation at Ser-63 and Ser-68. Compared with control α1β1, FXYD1 reduces Vmax and turnover rate and raises KcatNa. The phosphomimetic mutants reverse these effects and reduce KcatNa below control KcatNa. Effects on α2β1 are similar but smaller. Experiments in proteoliposomes reconstituted with α1β1 show analogous effects of FXYD1 on KcatNa, which are abolished by phosphomimetic mutants and also by increasing mole fractions of DOPS in the proteoliposomes. Stopped-flow experiments using the dye RH421 show that FXYD1 slows the conformational transition E2(2K)ATP → E3Na(3K)ATP but does not affect 3NaE1P → 3P3Na. This regulatory effect is explained simply by molecular modeling, which indicates that a cytoplasmic helix (residues 60–70) docks between the αN and αP domains in the E2 conformation, but docking is weaker in E3 (also for phosphomimetic mutants). Taken together with previous work showing that FXYD1 also raises binding affinity for the Na+−selective site III, these results provide a rather comprehensive picture of the regulatory mechanism of FXYD1 that complements the physiological studies.

Animal cells need an inwardly directed Na+ concentration gradient and an outwardly directed gradient for K+ ions in order to maintain viability. Numerous cellular functions depend on the presence of these electrochemical potential gradients; therefore, a strict regulation is required. The K+ gradient preferentially controls the electric membrane potential, and the Na+ gradient is required to fuel a variety of coupled transporters, such as the uptake of sugars, amino acids, or phosphate and the extrusion of Ca2+ at the expense of a Na+ influx into the cells. The primary actor maintaining the cation gradients is the Na,K-ATPase. Because the demand for the ion pump capacity differs widely between various types of cells, four α and three β isoforms are expressed and assembled as complexes at appropriately adapted densities in the various cell membranes (1). In addition, in specific tissues, such as excitable cells or kidney, the Na+ extrusion and K+ uptake capacity must be modulated acutely. For this purpose, a third, regulatory subunit, has evolved, and these subunits are referred to as the FXYD family (2–4). FXYD proteins are a group of seven short, single-transmembrane proteins named after the invariant extracellular motif FXYD (5). The molecular mechanism of the regulatory effects of these FXYD proteins is still under investigation. Many years before its function was revealed, FXYD1 (known also as phospholemman) was identified as the major substrate for PKA and PKC in the heart (6, 7).

FXYD1 is a member of the family and is expressed prominently in heart and skeletal muscle and the brain (8, 9). According to NMR-spectroscopic investigations of purified FXYD1 in SDS-detergent micelles, the molecule is organized into four α-helices. H1 (Asp-12 to Gln-17) is located at the extracellular side; H2 (Ile-19 to Leu-36) forms the transmembrane domain; and the cytoplasmic domain contains two helices, H3 (Ser-37 to Lys-43) and H4 (Thr-59 to Ser-68) (10). Whereas helices H1, H2, and H3 are rigidly connected, H4 is linked to the others by a long and highly flexible loop. The high mobility of the C-terminal domain of all FXYD proteins, which contains H4 in FXYD1, is reflected in the fact that it is not resolved in any of the x-ray structures of crystallized Na,K-ATPase complexes containing FXYD2 and FXYD10, respectively (11, 12).
In order to modulate the Na,K-ATPase activity in the short term, cells must be able to rapidly switch the regulatory function on and off. This switching function is largely attributable to the phosphorylation of FXYD1 by PKA and PKC. It has been found that this process occurs in vivo at residues Ser-63, Ser-68, and Thr-69, which are located in helix H4 (6, 13, 14). Numerous studies have provided evidence that FXYD1 phosphorylation raises the apparent affinity of the Na,K-ATPase for Na\(^+\) ions in cardiac myocytes (15–17) and in heterologous expression systems (18–20) (reviewed in Ref. 21).

At a mechanistic level, the transduction of the regulatory information may occur at two different locations: (a) via the close contact of the transmembrane helix H2 of FXYD1 and helix TM9 of the cytoplasmic domain of the Na,K-ATPase for Na\(^+\) ions in cardiac myocytes (15–17) and in heterologous expression systems (18–20) (reviewed in Ref. 21).

The current study was performed in order to gain deeper insight into the kinetic mechanism and regulatory function of FXYD1. The experimental investigations were performed with complexes of isolated and reconstituted purified human FXYD1. The experimental investigations were performed with detergent-solubilized isolated complexes and in native cell membrane and is important for maintaining stability of the protein (22, 23). In recent studies, it has been shown that the charge of the cytoplasmic domain plays an important role in the regulation of the Na,K-ATPase (21). The strongly positively charged H4 helix of FXYD1 is assumed to adhere to a negatively charged region in the cytoplasmic domain of the Na,K-ATPase when unphosphorylated. Upon phosphorylation, negative charges are deposited on the surface of H4 of FXYD1, and it has been proposed that this modification will substantially weaken the attachment to the cytoplasmic domain of the Na,K-ATPase and thus affect the pump function (21).

The current study was performed in order to gain deeper insight into the kinetic mechanism and regulatory function of FXYD1. The experimental investigations were performed with complexes of isolated and reconstituted purified human α1His\(^{10}\)-β1 and α2His\(^{10}\)-β1 isoforms of the Na,K-ATPase expressed in Pichia pastoris and purified human FXYD1 and three phosphomimetic mutants, S63E, S68E, and S63E,S68E, expressed in Escherichia coli. Fluorescence techniques using the electrochromic shift dye RH421 were applied to obtain information on rates of conformational changes and electrogenic Na\(^+\) binding (25) and a voltage-sensitive dye, 1,5-bis-(5-oxo-3-propylisoxazol-4-yl)-pentamethine oxonol (oxonol VI), to detect pump currents across reconstituted proteoliposome membranes (26). Computational docking studies reveal mechanistic concepts on a molecular level that allow a consistent explanation of the results. Overall, the results are consistent with the predominant current hypothesis of FXYD1 regulation of Na,K-ATPase (21) and add novel insights into the molecular mechanisms of functional and regulatory effects of FXYD1.

Materials

n-Dodecyl-β-maltoside (DDM) was purchased from Ana-trace, and BD-Talon metal affinity resin was from Clontech. Soy phosphatidylcholine, 1,2-dioleoyl-sn-glycero-3-phospho-1-serine (DOPS), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were purchased from Avanti Polar Lipids. AcTET\(^{TM}\) protease was from Life Technologies. ATP (disodium salt, special quality) was obtained from Roche Applied Science. The membrane potential-sensitive fluorescent dye oxonol VI and N-(4-sulfobutyl)-4-(4-(4-(dipentylamino)phenyl) butadienyl)pyridinium (RH421) were ordered from MoBiTec. Recombinant PKA (2,500,000 units/ml, catalog no. P6000L) was obtained from New England Biolabs. All other reagents were purchased from Merck or Sigma-Aldrich at the highest quality level available.

Methods

Recombinant Human Na,K-ATPase Expression and Purification—P. pastoris transformation, yeast growth, membrane preparation, and His tag purification of recombinant human α1β1FXYD1 and α2β1FXYD1 Na,K-ATPase were done essentially as described previously (27–30). Purified detergent-soluble Na,K-ATPase complexes were eluted from BD-Talon beads in a medium containing 250 mM imidazole, pH 7.2, 10% glycerol, 100 mM NaCl, 25 mM Tris-Tricine, pH 7.4, 0.12 mg/ml C\(_{12}\)E\(_{5}\), 0.025 mg/ml cholesterol, 0.075 mg/ml SOPS, and 0.075 mg/ml SOPC. For stopped-flow measurements, the enzyme was eluted from BD-Talon beads in a medium containing 20 mM Na\(^+\) and all other components as above. For steady-state Na,K-ATPase measurements, the enzyme was usually prepared in batch mode (specific activities 15–25 μmol/min/mg protein), whereas a gravity column-purified enzyme was used for stopped-flow kinetic measurements (specific activities 22–30 μmol/min/mg protein). For the turnover measurements in Table 3, the enzyme was prepared as described previously (29) in an elution buffer containing 100 mM NaCl, 30 mM imidazole, 10% glycerol, 20 mM MOPS/Tris, pH 7.4, 0.3 mg/ml C12 E8, 0.05 mg/ml cholesterol, 0.07 mg/ml SOPC plus 0.1 mg/ml soy phosphatidylcholine (specific activities 30–40 μmol/min/mg protein).

FXYD1 Mutants—Mutations were introduced into the wild-type hFXYD1 gene cloned into the expression vector pET28-TevH (23). Mutagenesis was performed using a transfer-PCR platform (31, 32). For the transfer-PCRs, each of the mutagenic primers was used in combination with PetRev primer (Table 1). Introduction of the mutations and the integrity of the entire protein open reading frame were verified by DNA sequencing. Reaction conditions and DNA amplification reactions were performed as described previously (31, 32).

Recombinant Human FXYD1 Expression, Purification, and Reconstitution—Human FXYD1 (phospholemman) and its three mutants, S63E, S68E, and the double mutant S63E,S68E, were expressed in E. coli CD41 cells from the pET28-TevH vector, as described for wild-type FXYD1 elsewhere (23, 30). FXYD1 purification has been described in detail (23, 30). For
reconstitution with the Na,K-ATPase, FXYD1 was dialyzed against 500 mM NaCl, 10% glycerol, 0.1 mM DTT, and 25 mM MOPS, pH 7.4, and the His tag was removed by AcTev-protease as described (23). The cleaved FXYD1 was then added to the solubilized yeast membranes with the Na,K-ATPase bound to BD-Talon beads at a molar ratio of 10:1 (FXYD1/Na,K-ATPase) and incubated overnight. After washing off the excess FXYD1, the αβFXYD1 complex was eluted as usual.

Na,K-ATPase Activity Measurements—Enzyme activity was measured using the PiColor Lock malachite green assay (Innova Biosciences) detecting free phosphate from ATP hydrolysis in a medium containing 130 mM NaCl, 20 mM KCl, 3 mM MgCl₂, 1 mM EGTA, 25 mM histidine, pH 7.4, and 1 mM ATP at 37 °C. For ion titrations, activity was measured at varying concentrations of Na⁺ plus choline chloride and KCl (80 mM) with constant total ionic strength (170 mM total).

Data were fitted using KaleidaGraph (Synergy Software). Na⁺ ion titrations were fitted using the Hill equation.

\[
V([\text{Na}^+]_o) = V_{\text{max}} \times \frac{[\text{Na}^+]_o^{n}}{K_{0.5}[\text{Na}^+]_o^{n} + [\text{Na}^+]_o^{n}} \quad (\text{Eq. 1})
\]

Determination of Phosphoenzyme—Phosphoenzyme was determined as described previously (29).

Preparation of Proteoliposomes—Proteoliposomes were prepared with lipid mixtures of synthesized lipids. The composition of 34 mol % DPPC and 10 mol % cholesterol was kept constant, whereas DOPS was varied between 0 and 30 mol %, and DOPC was varied between 56 and 26 mol % to complement anionic lipids for Na⁺ ions for Na,K-ATPase and MgATP was added to trigger pump activity. The pump activity is reflected in a fluorescence increase that exponentially approaches a steady-state level at which the pump current is compensated by the leak current due to the membrane conductance. The experiments were carried out in a PerkinElmer Life Sciences LS 50B luminescence spectrometer. The excitation wavelength was set to 580 nm (slit width 15 nm), and the emission wavelength was set to 660 nm (slit width 15 nm).

Fluorescence Experiments with Oxonol VI—The negatively charged fluorescent dye oxonol VI has been introduced previously as an indicator of inside-positive membrane potentials in vesicles (26), and it has been shown to detect successfully the electrogenic pump activity of the α1His₁₀β₁ reconstituted in proteoliposomes. Experiments were performed corresponding to a recent study from this laboratory (24). In short, 1 ml of buffer solutions containing 25 mM imidazole, 1 mM EDTA, 2.5 mM MgSO₄, and various concentrations of Na₂SO₄, pH 7.2, were thermally equilibrated in a cuvette equipped with a magnetic stirrer. Afterward, 25 nm oxonol VI and a volume of proteoliposomes corresponding to 80 μg/ml lipid were added. When a steady-state fluorescence level was obtained, 2.5 mM MgATP was added to trigger pump activity. The pump activity can be exploited to evaluate the electrogenic pump activity of the α1His₁₀β₁ reconstituted in proteoliposomes. Experiments were performed corresponding to a recent study from this laboratory (24). In short, 1 ml of buffer solutions containing 25 mM imidazole, 1 mM EDTA, 2.5 mM MgSO₄, and various concentrations of Na₂SO₄, pH 7.2, were thermally equilibrated in a cuvette equipped with a magnetic stirrer. Afterward, 25 nm oxonol VI and a volume of proteoliposomes corresponding to 80 μg/ml lipid were added. When a steady-state fluorescence level was obtained, 2.5 mM MgATP was added to trigger pump activity. The pump activity is reflected in a fluorescence increase that exponentially approaches a steady-state level at which the pump current is compensated by the leak current due to the membrane conductance. The experiments were carried out in a PerkinElmer Life Sciences LS 50B luminescence spectrometer. The excitation wavelength was set to 580 nm (slit width 15 nm), and the emission wavelength was set to 660 nm (slit width 15 nm).

Stopped-Flow Experiments with RH421—Stopped-flow measurements (27) were performed with an Applied Photophysics SX20 system. To detect electrogenic reaction steps with RH421, the monochromator for excitation was set to 577 ± 6 nm. The emitted light was collected at wavelengths of ≥665 nm using a cut-off filter. Measurements were carried out at 23 or 30 °C, and the solutions were mixed in a ratio of 1:1 using 120 μl/syringe.

TABLE 1

Primer sequences used for transfer-PCR mutagenesis are underlined.

<table>
<thead>
<tr>
<th>Mutations</th>
<th>Primer name</th>
<th>Primer sequence (5’–3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S63E</td>
<td>TPhPLMS63EF</td>
<td>GCCGGGAACCTTTCGCGCAATCCGCGCGCTGTCGCC</td>
</tr>
<tr>
<td>S68E</td>
<td>TPhPLMS68EF</td>
<td>GCTCCATCGCGCGCTGGAACCCGCAGCGCGTACGGG</td>
</tr>
<tr>
<td>S63E,S68E</td>
<td>TPhPLMS63_68EF</td>
<td>GAGGGGAACCTTTCGCGCAATCCGCGCGCTGTCGCC</td>
</tr>
<tr>
<td></td>
<td>PetRev</td>
<td>ATGCTAGTTATTGCTCAGCGGT</td>
</tr>
</tbody>
</table>
For the reaction $3\text{Na}^+ + \text{ATP} \rightarrow \text{E}_2\text{P} + 3\text{Na}^+$, syringe 1 was loaded with 10 μg/ml purified Na,K-ATPase, 300 nm RH421, 100 mM NaCl, and 4 mM MgCl$_2$. Syringe 2 contained 100 mM NaCl, 4 mM MgCl$_2$, and 1 mM ATP.

For the reaction $\text{E}_2(2K) + 3\text{Na}^+ + \text{ATP} \rightarrow 3\text{Na}^+_2\text{ATP} + 2\text{K}^+$, syringe 1 was filled with 30 μg/ml Na,K-ATPase, 300 nm RH421, 20 mM KCl (or RbCl), 1 mM EDTA, and syringe 2 was filled with 100 mM NaCl, 1 mM EDTA, and 2 mM ATP (0 Mg$^{2+}$).

All solutions were buffered at pH 7.2 using MOPS/Tris. Choline chloride was added appropriately to the buffer solutions to keep the ionic strength constant at 120 mM. The fluorescence signals were detected for up to $t_{max} = 500$ ms. To compare various experiments, the fluorescence amplitude was normalized according to Equation 3,

$$F_{\text{norm}}(t) = \frac{F(t)}{F(t_{max}) - F(t_0)} \quad (\text{Eq. 3})$$

where $F(t_0)$ is the fluorescence level at $t = 0$, the time point when the detection chamber is filled with the reaction mixture, and $F(t_{max})$ is the level after 500 ms. Traces from 15 individual shots were averaged.

Data were fitted using KaleidaGraph (Synergy Software). Stopped-flow traces were fitted to a monoexponential function,

$$F = A \cdot e^{-kt} + c \quad (\text{Eq. 4})$$

or double exponential function,

$$F = A_1 \cdot e^{-k_1t} + A_2 \cdot e^{-k_2t} + c \quad (\text{Eq. 5})$$

where A is the amplitude of the fluorescence signal, k is the rate of the reaction, and c is the equilibrium fluorescence level after the reaction is complete.

Computational Docking—Computational docking was used to determine a plausible location for the C-terminal helix (residues 60–70) of FXYD1. The NMR structure of free FXYD1 (Protein Data Bank code 2jo1) provides a range of conformers for this segment (10). Each of them was docked to the E_2 conformation of the Na,K-ATPase in an occluded state with two rubidium ions bound (as potassium congeners (Protein Data Bank code 3kdp) (11) using the geometric-electrostatic-hydrophobic (GEH) version of MolFit (33–35). Arginine residues Arg-71 and Arg-72, which show high backbone mobility in the C-terminal segment 60–70 in the elongated groove between the intracellular Na,K-ATPase domains N and P, and a fourth, with significantly lower GEH scores, that binds in an elongated depression on the surface of the transmembrane helices. Docking models from the first three clusters were refined in two steps: (a) local rigid body refinement with MolFit in which small angular rotations in steps of 2° were used to obtain the highest GEH score and (b) energy minimization of the complex, keeping the C$_\alpha$ atoms of Na,K-ATPase restrained to their starting positions and allowing the side chains and the docked FXYD1 segment to adjust. Minimization was performed with Discovery Studio (Discovery Studio Modeling Environment, Accelrys Software, Inc., San Diego, CA). To establish independently the validity of the docking model, we determined the preferred binding locations of single amino acids on the surface of Na,K-ATPase using ANCHORSmap (40). ANCHORSmap scatters numerous amino acid probes on the surface of a protein and detects low ΔG binding locations (anchoring spots) taking into consideration that the excised amino acid is part of an approaching hypothetical protein. Anchoring spots with $\Delta G < -4$ kcal/mol were found to correspond to experimentally determined hot spot residues.

Results

Fig. 1 shows an SDS-polyacrylamide gel of the high specific activity purified human $\alpha_1\beta_1$ and reconstituted $\alpha_1\beta_1FXYD1$ complexes prepared by the gravity column procedure (see “Methods”). The Coomassie Blue-stained gel illustrates the high purity of the preparation in which only the α and β subunits (with two glycosylated forms), without or with the reconstituted FXYD1 protein, are present in significant amounts. The BD-Talon beads were washed, and the protein was eluted in a medium containing 0.12 mg/ml C12E8, 0.07 mg/ml SOPS, 0.07 mg/ml SOPC, and 0.025 mg/ml cholesterol (see “Methods”). The rather high concentration of phospholipids used to make the preparations is important to maintain full stability of the control sample, which is inherently less stable than those made with FXYD1 (22, 23). This feature allows assessment of the true kinetic effects of the FXYD1 protein without the contribution of superimposed stabilizing effects of FXYD1.
Mechanism of Kinetic Effects of FXYD1 on Na,K-ATPase

observed previously as an apparent increase in \(V_{\text{max}} \) compared with the partially inactivated control (41).

Effects of FXYD1 and Phosphomimetic Mutants on Na,K-ATPase Activity—The Na,K-ATPase activity of the purified detergent-solubilized protein (\(\alpha 1\beta 1 \)) was measured as a function of the Na\(^{+}\) concentration in the incubation medium. Fig. 2 shows Na\(^{+}\) activation curves for Na,K-ATPase activity of the control and of the four tested complexes of \(\alpha 1\beta 1 \) with WT FXYD1 or the FXYD1S63E, FXYD1S63E, or FXYD1S63E,68E mutant, respectively. The concentration dependence has been fitted with the Hill function, shown under “Methods.”

Table 2 summarizes the kinetic parameters (\(V_{\text{max}}, K_{0.5Na}, \) and \(n_{H} \)) of the best fit curves for two full experiments in all five conditions, using different enzyme preparations. Measurements with and without FXYD1 were performed 5–7 times with average \(K_{0.5Na} \) values as follows: control, 22.5 ± 0.48 mM (\(n = 5 \)); with FXYD1, 24.83 ± 0.62 mM (\(n = 7 \)); and with phosphomimetic mutants, 18.21 ± 0.35 mM (\(n = 6 \)). The last two columns of the table depict the average values for all of the experiments. The obvious effects of WT FXYD1 are a 25–30% inhibition of \(V_{\text{max}} \) and an increase of \(K_{0.5Na} \) on the order of 15–20%, with no systematic effect on \(n_{H} \). By contrast, all three phosphomimetic mutants abolish the effect of FXYD1 on \(V_{\text{max}} \) and reduce \(K_{0.5Na} \) to values below that of the control. The differences of \(K_{0.5Na} \) between control and +FXYD1 (\(p < 0.01 \)) and between phosphomimetic mutants and both wild-type FXYD1 and control (\(p \approx 0.0001 \)) are all significant. The maximal turnover rates with and without FXYD1 (Table 3) were estimated by comparing the Na,K-ATPase activity (\(V_{\text{max}} \)) of complexes at saturating Na\(^{+}\) and K\(^{+}\) concentrations (140 mM Na\(^{+}\) and 20 mM K\(^{+}\)), and the active-site concentration was estimated from the phosphoenzyme level (4.2–4.3 nmol/mg protein). From these measurements (7–9 experiments), it is seen that FXYD1 reduced the maximal turnover rate by about 25%, from 8163 ± 284 to 6248 ± 115 min\(^{-1} \) (\(p < 0.0001 \)). The combined effects of FXYD1, to reduce turnover rate and increase \(K_{0.5Na} \), lead to a significant overall reduction of Na,K-ATPase activity, particularly at subsaturating Na\(^{+}\) concentrations, similar to those in physiological conditions. For example, at a cytoplasmic concentration of 15 mM Na\(^{+}\) (and 80 mM K\(^{+}\)), using the average best fit parameters derived for all experiments (see Table 2) and the Hill function above, the ratio of Na,K-ATPase activities for \(\alpha 1\beta 1 $$FXYD1$$ complexes of high Na,K-ATPase specific activity (see Table 3) were applied to each lane.

FIGURE 1. Purified Na,K-ATPase: \(\alpha 1\beta 1 \) and \(\alpha 1\beta 1$$FXYD1$$). 10 \(\mu \)g of column-purified \(\alpha 1\beta 1 \) or \(\alpha 1\beta 1$$FXYD1$$ complexes of high Na,K-ATPase specific activity (see Table 3) were applied to each lane.

FIGURE 2. Effects of wild-type FXYD1 and phosphomimetic mutants on Na,K-ATPase activity of \(\alpha 1\beta 1 \) at varying Na\(^{+}\) concentrations. Experimental points and best fit curves are presented for Control (\(\alpha 1\beta 1 \)), + WT FXYD1, + FXYD1 S63E, + FXYD1 S63E, and + FXYD1 S63E,68E. Experimental points were carried out in triplicate, but for clarity, error bars, all with amplitudes \(\pm 10\% \) of the values, have been omitted.

In a real physiological situation associated with the phosphorylated FXYD1, the increase in rate of pumping would be greater than the 95% calculated here because the cytoplasmic Na\(^{+}\) concentration would itself be raised...
Mechanism of Kinetic Effects of FXYD1 on Na,K-ATPase

The effects of wild-type FXYD1 by the S63E, S68E, and S63E,S68E mutants, seen in Fig. 2 and Table 2, suggests that the mutations altered the interaction of the cytoplasmic helix H4 with the α subunit and raise the issue of whether the mutated proteins are still associated with the Na,K-ATPase activity against either thermal or detergent-mediated inactivation by a mechanism involving amplification of the phosphatidyserine binding to the protein (23). The control enzyme was prepared with both SOPS and soy phosphatidylcholine (see "Methods") and has a specific activity similar to that of purified pig kidney enzyme (58). Note that the enzyme was prepared with both SOPS and soy phosphatidylcholine (see "Methods") and has a specific activity similar to that of purified pig kidney enzyme (58).

TABLE 2

<table>
<thead>
<tr>
<th>Effects of FXYD1 and phosphomimetic mutants on V_{max} and $K_{n.5},\text{Na}$ for activation of Na,K-ATPase activity ($\alpha 1\beta 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The values in columns 2–5 represent best fit parameters ± S.E. for two experiments using different enzyme preparations not reconstituted (control) or reconstituted with WT FXYD1, FXYD1S63E, FXYD1S68E, or FXYD1S63E,S68E. The average values of V_{max}($\alpha 1\beta 1$/FXYD1)/V_{max}(control), $K_{n.5},\text{Na}$ ± S.E., and n_β ± S.E. (columns 6 and 7) are quoted for all experiments done in the same conditions as the two full experiments (i.e. seven experiments for control without or without WT FXYD1). The average values of $K_{n.5},\text{Na}$ and n_β for all three mutants (i.e. data from six experiments) were calculated on the assumption there are no significant differences between the mutants. The p values in the $K_{n.5},\text{Na}$ column are for control compared with WT FXYD1 (line 3) and control compared with mutants or FXYD1 compared with the mutants (line 5). Expt., experiment.</td>
</tr>
<tr>
<td>$\text{Expt.} 1$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$\alpha 1\beta 1$</td>
</tr>
<tr>
<td>$\alpha 1\beta 1$/FXYD1 WT</td>
</tr>
<tr>
<td>$\alpha 1\beta 1$/FXYD1S63E</td>
</tr>
<tr>
<td>$\alpha 1\beta 1$/FXYD1S68E</td>
</tr>
<tr>
<td>$\alpha 1\beta 1$/FXYD1S63E,S68E</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Effect of FXYD1 on Na,K-ATPase ($\alpha 1\beta 1$) turnover rate at 37 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note that the enzyme was prepared with both SOPS and soy phosphatidylcholine (see "Methods") and has a specific activity similar to that of purified pig kidney enzyme (58).</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$\alpha 1\beta 1$</td>
</tr>
<tr>
<td>$\alpha 1\beta 1$/FXYD1</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>Effects of FXYD1 on V_{max} and $K_{n.5},\text{Na}$ for $\alpha 2\beta 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na,K-ATPase activity</td>
</tr>
<tr>
<td>$\mu\text{mol/mg/min}$</td>
</tr>
<tr>
<td>Without FXYD1</td>
</tr>
<tr>
<td>With FXYD1</td>
</tr>
<tr>
<td>($n = 4$, $p = 0.0044$)</td>
</tr>
</tbody>
</table>

FIGURE 3

Stabilization of Na,K-ATPase ($\alpha 1\beta 1$) by wild-type FXYD1 and phosphomimetic mutants. Control ($\alpha 1\beta 1$), +WT FXYD1, +FXYD1 S63E, +FXYD1 S68E, +FXYD1S63E, and +FXYD1S68E complexes were heated to 45 °C for 30 min. Na,K-ATPase activity was then measured in triplicate. Results are presented as a percentage of control prior to heating (n/Ag) ± S.E. (error bars).

The abolishment of the kinetic effects of wild-type FXYD1 by the S63E, S68E, and S63E,S68E mutants, seen in Fig. 2 and Table 2, suggests that the mutations altered the interaction of the cytoplasmic helix H4 with the α subunit and raise the issue of whether the mutated proteins are still associated with the α subunit or, perhaps, are completely dissociated. An answer to this question was obtained in experiments to assess stabilization of the Na,K-ATPase activity by both wild-type and mutated FXYD1 (Fig. 3). As described previously, all FXYD proteins, but especially FXYD1, protect the Na,K-ATPase activity against either thermal or detergent-mediated inactivation by a mechanism involving amplification of the phosphatidyserine binding to the protein (23). The control enzyme $\alpha 1\beta 1$ and the reconstituted $\alpha 1\beta 1$/FXYD1 complexes, wild type or the different phosphomimetic mutants, were heated to 45 °C for 30 min before the Na,K-ATPase activity was measured. In the control, Na,K-ATPase activity was reduced to about 35% of the initial activity, whereas all reconstituted complexes ($\alpha 1\beta 1$/FXYD1, $\alpha 1\beta 1$/FXYD1S63E, $\alpha 1\beta 1$/FXYD1S68E, and $\alpha 1\beta 1$/FXYD1S63E,S68E) were strongly protected, the activity being maintained at about 80% of the initial value. The persistence of the stabilizing effect for the phosphomimetic mutants is consistent with a previous observation that stabilization by FXYD1 is not abolished by phosphorylation of the FXYD1 at Ser-68. In short, both wild type and phosphomimetic mutants must still be associated with the $\alpha 1\beta 1$ complex, presumably via the transmembrane segment, whereas the interactions of the cytoplasmic helix are different, as will be discussed below.

Mechanism of Kinetic Effects of FXYD1—The effects of wild-type FXYD1 and the phosphomimetic mutants on the steady-state kinetic properties of the Na,K-ATPase beg the question of their detailed mechanism. In principle, the FXYD1-mediated inhibition of the steady-state V_{max} and rise in $K_{n.5}\,\text{Na}$ for Na,K-ATPase activity (as well as reduced K_v for inhibition by vanadate) could all be indicative of a partial stabilization of the $E_2(2K)$ conformation. A reduction of the maximal turnover rate by FXYD1 is

NOVEMBER 27, 2015 • VOLUME 290 • NUMBER 48

JOURNAL OF BIOLOGICAL CHEMISTRY 28751
necessarily caused by a partial inhibition of rate-limiting steps of the enzymatic cycle, namely either or both of the conformational changes, E,P(3Na) → E,P and E,(2K)ATP → E,3NaATP.

We have addressed this question directly using the electrochromic dye RH421 and the stopped-flow technique. These experiments permit determination of rate constants of the rate-limiting partial reactions. The RH421 fluorescence detects changes in the local electric field associated with electrogenic ion-binding and dissociation reactions. These effects were first described in detail using the purified renal Na,K-ATPase embedded in membrane fragments and, as shown more recently, also in the purified detergent-solubilized renal and recombinant Na,K-ATPase (25, 42, 43). Standard RH421 fluorescence changes detect ion binding and dissociation in three partial reactions of the pump cycle: (a) Na""° binding in the E1 conformation, E1 + 3 Na""° → 3NaE1; (b) ATP/Mg-induced transition from E1 in the presence of Na""° to E2P and Na""° release (3NaE1 → E2P + 3Na""°); and (c) K""° binding to the E2 conformation (E2P + 2K""° → E2(2K)). Equilibrium Na""° and K""° titrations of RH421 fluorescence signals (a and c) provide a measure of the intrinsic binding affinities of 3Na""° ions to E1 and of 2K""° ions to E2P, respectively. Previously, we have reported that FXDY1 binding to α1β1 induces a rise in the intrinsic binding affinity of Na""° but not of K""° (or Rb""°) (43). In stopped-flow experiments, the protein undergoes the 3NaE1 → E2P reaction when the Na,K-ATPase, prebound with Na""° and Mg2+°, is mixed with ATP. Similarly, the protein undergoes the E2(2K/Rb)ATP → 3NaE1, ATP transition when the enzyme, prebound with K'° or Rb'° ions, is mixed with Na""° plus ATP. The time course of the interconversion between the initial and final charged states does not track cation binding or release directly because cation binding and release are diffusion-controlled processes and are orders of magnitude faster than the preceding conformational transition. Rather, the time course tracks the rate-limiting conformational transitions, namely 3NaE1,P → E2P3Na in the ATP-induced reaction or E2(2K)ATP → E,3NaATP, respectively. A recent example of measurements of the rates of the conformational changes using the purified human α1β1FXDY1 complex can be seen in Ref. 27. Fig. 4 shows the time course of fluorescence traces corresponding to 3NaE1,P → E2P (left) and E2(2Rb)ATP → 3NaE1ATP (right) for the α,β1 isoform, with and without FXDY1. In Table 5, the fitted rate constants of the conformation transitions are compiled for both types of reaction. The fluorescence signals of the reaction 3NaE1,P → E2P are fitted with a sum of two exponents, a behavior that was observed also in the case of native Na,K-ATPase isolated from shark salt gland (44). However, the minor slow component contributed less than 10% to the total fluorescence increase. For the dominant fast process with a rate of 170 s−1, no difference was found without or with FXDY1. For the second type of experiment that detects E2(2K/2Rb)ATP → 3NaE1ATP, the presence of FXDY1 reduced the rate constant by 28–36% when measured at either 23 or 30 °C. Fig. 5 and Table 6 show the corresponding results of experiments with the α2β1 isoform with and without FXDY1. As in the case of the α1β1 complex, FXDY1 has no effect on the 3NaE1,P → E2P reaction (left) but reduces the rate of the Rb+° (or K+°)-dependent transition, E2(2Rb)ATP → 3NaE1ATP, by about 25% (right). The difference between the traces of E2(2Rb)ATP → 3NaE1ATP transition appears a bit more distinct for the α2β1 complex than for the α1β1 complex. This is due to the lower rates and better signal/background ratio, but the effects are quite reproducible and significant for both isoform complexes.

A final point concerns a lack of effect of FXDY1 when the conformation transition back to E1 is performed in the absence of ATP, E2(2Rb) → 3NaE1 (Table 5, bottom line). To induce this reaction, syringe 1 was filled with 30 μg/ml Na,K-ATPase, 300 nM RH421, 20 mM KCl (or RbCl), 1 mM EDTA, and syringe 2 was filled with 100 mM NaCl and 1 mM EDTA only. In the absence of ATP, only a slow rate on the order of 0.37 s−1 was observed for the reaction E2(2K) → E1,3Na in the presence and absence of FXDY1. A similarly slow transition has been observed previously using FITC-labeled Na,K-ATPase from pig kidney (45). In contrast to the non-covalently bound probe RH421 used here, the pig kidney protein was labeled with FITC selectively at Lys-515 and is therefore unable to bind ATP, thus precluding measurement of the conformational transition with ATP bound to the low affinity binding site. The different effect of FXDY1 on the rate-limiting reaction step in the absence and presence of ATP indicates that different molecular processes control the conformational transition in both conditions, so that the reaction rate, in the absence of ATP, is controlled by an
Mechanism of Kinetic Effects of FXYD1 on Na,K-ATPase

TABLE 5
Rates of conformational changes for α1β1 without and with FXYD1

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>−FXYD1</th>
<th>+FXYD1</th>
<th>+FXYD1/−FXYD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3NaE1 + ATP → E3P</td>
<td>k1 = 170 ± 8.0, k2 = 30 ± 3.8 (n = 3)</td>
<td>k1 = 170 ± 6.5, k2 = 21 ± 2.3 (n = 3)</td>
<td>1.0</td>
</tr>
<tr>
<td>E2(2Rb) + ATP → E3NaATP</td>
<td>24.3 ± 2.19 (n = 4)</td>
<td>15.5 ± 1.18 (n = 4) (p = 0.01)</td>
<td>0.64</td>
</tr>
<tr>
<td>E2(2Rb) + ATP → E3NaATP</td>
<td>45 (average of 2)</td>
<td>32 (average of 2)</td>
<td>0.71</td>
</tr>
<tr>
<td>E2(2K) + ATP → E3NaATP</td>
<td>80 (average of 2)</td>
<td>58 (average of 2)</td>
<td>0.725</td>
</tr>
<tr>
<td>E2(2Rb) → E3Na</td>
<td>0.37 (average of 2)</td>
<td>0.36 (average of 2)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

TABLE 6
Rates of conformational changes for α2β1 without and with FXYD1 at 23 °C

<table>
<thead>
<tr>
<th>T</th>
<th>−FXYD1</th>
<th>+FXYD1</th>
<th>Ratio +FXYD1/−FXYD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3NaE1 + ATP → E3P</td>
<td>k1 = 90.6, k2 = 18.5</td>
<td>k1 = 91.3, k2 = 13</td>
<td>0.99</td>
</tr>
<tr>
<td>E2(2Rb) + ATP → E3NaATP</td>
<td>13.7</td>
<td>10.2</td>
<td>0.74</td>
</tr>
</tbody>
</table>

extremely slow process that is unaffected by the presence of FXYD1.

Effects of FXYD1 and Phosphomimetic Mutants on the Na,K-ATPase Reconstituted in Proteoliposomes—We have shown recently that after reconstitution of the detergent-soluble recombinant Na,K-ATPase into proteoliposomes, generation of the pump-mediated electrogenic potential is conveniently detected using the voltage-sensitive dye, oxonol VI (24). These experiments allow determination of the half-saturating Na⁺ concentration, K⁰.⁵ Na for generation of the electrogenic potential accompanying Na,K-ATPase activity with and without FXYD1 and the three phosphomimetic mutants. The recent experiments have shown that FXYD1 significantly raises K⁰.⁵ Na in proteoliposomes made only with phosphatidylcholine, but either phosphorylation of FXYD1 on Ser-68 or inclusion of even small amounts of excess DOPS (≥5 mol %) into the proteoliposomes abrogates the effect.⁵ Therefore, we have now reconstituted proteoliposomes with all five recombinant complexes, α1His10⁰1 Hist10⁰β1FXYD1S63E, α1His10⁰β1FXYD1S63E, S68E, and phospholipid compositions with 0, 5, 10, 18, and 30 mol % DOPS. At least two different enzyme preparations were used for each type of WT FXYD1 or S63E, S68E, and S63E,S68E mutant proteins. With each vesicle preparation, the initial slope of the ATP-dependent oxonol VI fluorescence signal was measured in triplicate in buffers containing nine Na⁺ concentrations between 0 and 50 mM. Because the initial slope of the oxonol VI fluorescence signal is proportional to the rate of active pumping and the number of active ion pumps per vesicle is constant within the same proteoliposome preparation, the initial slopes in the same preparation can be compared directly and plotted against the respective Na⁺ concentration (24). The concentration dependence was fitted by the Hill function to obtain the half-saturating Na⁺ concentration, K⁰.⁵ Na, for generation of the electrogenic potential. The results in Fig. 6 show the effects of the wild-type FXYD1 and the phosphomimetic mutants as well as the data on phosphorylated FXYD1 (Ser-68) taken from Ref. 24. Consistent with our recent report, the wild-type FXYD1 significantly raised the K⁰.⁵ Na in proteoliposomes made only with phosphatidylcholine, compared with the control without FXYD1, and in proteoliposomes made with added DOPS (≥10% mol %) the effect was abolished. All three phos-
Mechanism of Kinetic Effects of FXYD1 on Na,K-ATPase

The effects of wild-type FXYD1 and phosphomimetic mutants on $K_{0.5}^{\text{Na}}$ in proteoliposomes prepared with increasing mole fractions of DOPS. α-His$_{11}$, β_1, complexes with three mutant FXYD1 subunits, S63E (solid squares), S68E (solid triangles), and S63E, S68E (solid circles), were prepared in lipid mixtures containing 10 mol % cholesterol, 34 mol % DPPC, and 56 mol % (DOPS + DOPE), $K_{0.5}^{\text{Na}}$ for generation of the electrogenic voltage is plotted as a function of the fraction of DOPS in the membranes. The results obtained with native FXYD1 (24) and phosphorylated FXYD1 (P-FXYD1) are included as gray squares and triangles, respectively. The straight lines are linear regression curves. The line through the native FXYD1 data is drawn to guide the eye. Error bars, S.E.

phosphomimetic mutants (S68E, S63E, and S63E, S68E) behaved similarly in that there was no significant difference of $K_{0.5}^{\text{Na}}$ from the control (−FXYD1) and no dramatic dependence of $K_{0.5}^{\text{Na}}$ on the concentration of DOPS in the membrane. Especially in the range of 0–10 mol % DOPS, the variation of $K_{0.5}^{\text{Na}}$ is on the order of 10% or less. In short, either phosphorylation at Ser-68 or the phosphomimetic mutants cancels the effects of the wild-type FXYD1, so that no significant differences in the $K_{0.5}^{\text{Na}}$ values were observed between any of the FXYD1 forms. This behavior corresponds to what was observed for α1B1-phospho-FXYD1 complexes in proteoliposomes made with excess DOPS (≥10 mol %), which leads to a membrane with a considerable negative surface charge (24).

Molecular Docking of a Cytoplasmic Helix of FXYD1—The Na,K-ATPase in complex with the transmembrane helix of FXYD2 (Protein Data Bank code 3kdp) (11) was used to construct a model that also includes the C-terminal H4 helix of FXYD1. In a first step, the transmembrane helix in the free FXYD1 structure (yellow), determined by NMR spectroscopy in SDS micelles (Protein Data Bank code 2jo1) (10) was superimposed onto the corresponding transmembrane segment in the Na,K-ATPase/FXYD2 complex by optimizing the match of Ca atoms of residues 25–45. Fig. 7A shows the superposition of free FXYD1 and the complex of Na,K-ATPase and the FXYD2 transmembrane helix (green). The H4 helix of the superposed FXYD1 is located near the transmembrane region of Na,K-ATPase, with only minor interactions (Fig. 7A). This position cannot explain, for example, the effects of phosphorylation of Ser-63 and Ser-68 on function, making it clear that in the real α_1β1,FXYD1 complex, the H4 helix must be located differently and should be repositioned in the model. The best docking model for the H4 helix (residues 60–70) was obtained as described under “Methods,” and, as seen in Fig. 7A, the H4 helix (green) is located in a groove between the Na,K-ATPase domains N and P. The GEH score is higher by 2σ than the next best model, which is also located in the same groove. The distance between the N terminus of the docked H4 helix docked segment, residues 60–70, and the C terminus of segment 13–39 of FXYD2 is 37 Å, a distance that can be spanned by 21 amino acids, making this position of the H4 helix feasible. The amino acids of segment 60–70 form an amphipathic helix with a strongly positively charged face and a hydrophobic face on the opposite side (Fig. 7C), which makes numerous electrostatic and hydrophobic interactions with the α subunit, respectively (Fig. 7B). Further support of this docking model was obtained by calculating preferred binding locations (anchoring spots) for arginine, isoleucine, and leucine on the surface of Na,K-ATPase, using ANCHORSmap. This independent computational approach identified anchoring spots that correspond well to the contacts made by Arg-61, Arg-65, Ile-64, and Leu-67 of the helical segment 60–70 colored according to its electrostatic potential.

Fig. 8A presents details of the cytoplasmic helix of FXYD1 bound to the cytoplasmic domain in the E_2 conformation (gray ribbon). This specific arrangement emphasizes direct electrostatic interactions of the four arginine residues with negatively charged residues (Arg-61 with Glu-392, Arg-65 with Glu-392...
Mechanism of Kinetic Effects of FXYD1 on Na,K-ATPase

and Glu-537, Arg-66 with Glu-629, and Arg-70 with Asp-632). Residues Asp-394, Glu-543, Asp-594, and Glu-632 further strengthen the negative environment of the proposed Na,K-ATPase binding site and may contribute additionally to FXYD1 binding via indirect interactions facilitated by the solvent. Notably, Ser-63 and Ser-68, phosphorylation of which regulates the functional effects of FXYD1, point toward negatively charged surface regions of Na,K-ATPase (Figs. 7B and 8A). Thus, Ser-68 is located close to the strongly negative surface patch formed by the side chains of Glu-392, Glu-537, and Glu-543. Ser-63 is located close to a mildly negative region formed by the side chain of Asp-594 and the backbone carbonyl atoms of Gly-623, Val-624, and Pro-593. Replacement of each of these residues with glutamic acid and a local optimization of the position of the mutated segment 60–70 resulted in practically unchanged geometric and hydrophobic complementarity scores and significantly reduced electrostatic complementarity scores that led to a drop of 1.4 in the GEH score. Replacement of both Ser-63 and Ser-68 with glutamic acid led to a drop of 2.5 in the GEH score. Fig. 8B represents a superposition of the P domain in the E1 conformation (Protein Data Bank code 3wgu; blue ribbon) (46) and in the E2 conformation, which reveals the large N domain movement that takes place during the E2 to E1 conformation transition. Due to this movement, some of the negatively charged residues (Asp-394, Glu-392, Glu-537, and Glu-543) that line the binding site for the H4 helix of FXYD1 in E2 are displaced and can no longer interact with the FXYD1 helix. Thus, the predicted binding location of the H4 helix of FXYD1 in the groove between the N and P domains of the Na,K-ATPase is available only when Na,K-ATPase has adopted the E2 conformation.

Discussion

Here we present a hypothesis to explain the mechanism of functional effects of FXYD1 and its structural interactions, based on the experiments with the pure recombinant proteins, as described here and in our previous publications (23, 24, 43). The effects of FXYD1 on steady-state Na,K-ATPase activity, and in particular on the conformational changes and Na\(^{+}\) binding affinity, are explained in relation to the crystal structures of the Na,K-ATPase in E1 and E2 conformations. This leads to an integrated concept of the regulatory effects of FXYD1 in non-phosphorylated and phosphorylated states. The hypothesis is then compared with functional effects of FXYD1 observed in other intact cell systems, primarily Xenopus oocytes and cardiomyocytes.

As an experimental system, the detergent-solubilized purified human recombinant Na,K-ATPase is very useful for analysis of the detailed mechanistic and structural interactions of FXYD1 (23, 24, 43). Several factors are important. First, measurements are accurate due to the high purity of the preparations (Fig. 1). This avoids the necessity of subtracting background effects of other ATP-consuming or ion-transporting systems from the pump-mediated activities, unlike the situation with native cell preparations. Second, detection and detailed analysis of effects on conformational changes and cation binding and release is possible only with pure \(\alpha\beta\) complexes, prepared with and without the FXYD proteins. Third, the observed effects of FXYD1 are reproducible due to experimental control of in vitro reconstitution of the \(\alpha\beta\)FXYD1 complex, ensuring that the stoichiometric ratio of bound FXYD/\(\alpha\beta\) is maximal (shown in crystal structures and by native protein
Mechanism of Kinetic Effects of FXYD1 on Na,K-ATPase

mass spectrometry to equal 1:1). Fourth, recognition of the stabilizing effects of FXYD1 has led to establishment of experimental conditions, namely the use of sufficiently high lipid concentrations in the enzyme preparations, that allow detection of the true kinetic effects of FXYD1. Finally, the fact that FXYD1 expressed in E. coli is fully unphosphorylated (43), in contrast to FXYD1 expressed in P. pastoris, which is at least 50% phosphorylated on Ser-68 (41), allows analysis of the true kinetic effects of the unphosphorylated FXYD1 and the phosphomimetic mutants used in this study.

Mechanism of Functional Effects and Structural Interactions of FXYD1

Below, we discuss the detailed mechanisms of two separate kinetic effects of FXYD1 and separate structural interactions.

\[E_2(2K)ATP \rightarrow E_3NaATP \]

FXYD1 slows the conformational transition \(E_2(2K)ATP \rightarrow E_3NaATP \), an effect attributed to docking of the H4 cytoplasmic helix in the groove between N and P domains. The interactions of H4 are significantly weakened in S63E or S68E mutants (or FXYD1 phosphorylated on Ser-63 or Ser-68).

The stopped-flow experiments have been crucial for identification of the reaction step affected by FXYD1. They demonstrate that the Na\(^{\text{+}}\)-translocating part of the Post-Albers cycle (namely \(E_2P(3Na) \rightarrow E_2P \)) is unaffected by FXYD1 (Tables 4 and 5), whereas the rate constant of \(E_2(2K)ATP \rightarrow E_3NaATP \), the K\(^{\text{+}}\)-translocating half-cycle, was reduced 20–40% by the wild-type FXYD1 (Table 4). Because the \(E_2(2K)ATP \rightarrow E_3NaATP \) conformational transition is the rate-limiting step of the Post-Albers cycle (47, 48) the 25–40% reduction in rate suffices to explain a FXYD1-mediated reduction of the turnover rate of about 25% (Tables 4 and 5). When this partial reaction was performed in non-physiological conditions, namely in the absence of ATP, FXYD1 had no effect. In this condition, the rate-limiting step of \(E_2(2K) \rightarrow E_3Na \) is about 70 times slower than in the presence of ATP (Table 5), a fact known for many years (49).

The structure of the Na,K-ATPase in the \(E_2 \) conformation together with the molecular modeling presented above provides a simple explanation for the different effects of FXYD1 on the conformational transition, with and without ATP. In the absence of ATP, the rate-limiting step of \(E_2(2K) \rightarrow E_3Na \) is thought to be dissociation of salt bridges, Glu-216 to Arg-544 between A and N and Glu-231 to Arg-685 between A and P domains (12, 50). ATP accelerates the rate of dissociation of these two salt bridges by competing with Glu-216 and Glu-231 for Arg-544 and Arg-685, which are direct ATP binding residues, and thus strongly accelerates the rate of the reaction sequence \(E_2(2K) \rightarrow E_3Na \). In the presence of ATP, the reaction sequence \(E_2(2K)ATP \rightarrow E_3NaATP \) is no longer limited by the dissociation of the Glu-216 to Arg-544 and Glu-231 to Arg-685 salt bridges, and interaction of the FXYD1 with the N domain residues (primarily Arg-61 with Glu-392 and Arg-65 with Glu-392 and Glu-537) can slow the rate of the \(E_2(2K)ATP \rightarrow E_3NaATP \) by interfering with the association of the N and P domains. In contrast, in the absence of ATP, the characteristic time of FXYD1 interaction with its binding site is significantly shorter compared with the rearrangement of the N, P, and A domains due to the slow dissociation of the Glu-216 to Arg-544 and Glu-231 to Arg-685 salt bridges, and thus FXYD1 no longer reduces the rate of \(E_2(2K) \rightarrow E_3Na \) (Table 5).

In a previous publication (24), we have presented a model of interaction of the Arg-65, Arg-66, and Arg-70 of the H4 helix with surface charges of the N domain (Glu-544, Glu-399), which may appear to differ from the current model that predicts a position between the N and P domains and includes both electrostatic and hydrophobic interactions. The model in Ref. 24 was obtained by a molecular dynamics simulation over 7 ns, which cannot, of course, predict a time-independent equilibrium position of the H4 helix, as in the present model in Figs. 7 and 8. Nor can a molecular dynamics simulation over 7 ns explain the effect of the FXYD1 on the \(E_2(2K)ATP \rightarrow E_3NaATP \) conformational transition over a 6-order of magnitude slower time scale (\(t_{\text{diss}} \sim 5–10 \) ms at 37 °C). A likely interpretation is that the molecular dynamics simulation has identified an initial encounter complex in a local energy minimum on the surface of the N domain, and, over time (milliseconds), the helix rearranges to the equilibrium position between the N and P domains, which is more specific. Thus, in reality, the two models are not contradictory but complement each other in pointing to (a) an initial encounter complex and (b) the equilibrium binding location in the \(E_2 \) conformation and the N domain as a main interaction site of the H4 helix and also mobility of the H4 helix.

The effects of phosphorylated wild-type FXYD1 or phosphomimetic mutants to abolish the kinetic effects of the wild-type FXYD1 on \(V_{\text{max}} \) and \(K_{\text{0.5Na}} \) are explained readily on the assumption that binding of the C terminus H4 helix carrying

\(^6\) M. Habeck, M. Sharon, and S. J. D. Karlish, unpublished work.
negatively charged side chains at Ser-63 or Ser-68 is weakened, as predicted by the modeling. Because the H4 helix is also mobile, it can dissociate from the groove between the N and P domains, so its effect on the conformational change is abolished. Thus, the findings with the phosphomimetic mutant strongly indicate that the positive charge present on the arginine residues (Arg-61, Arg-65, Arg-66, Arg-70, and possibly Arg-71 and Arg-72, which are not included in the docking model) of the H4 helix of FXYD1 cause the reduction of the activity of the Na,K-ATPase (Figs. 2 and 5).

This explanation also fits very well with our recent demonstration that electrostatic effects play a major role in this mechanism (24). When the predominantly positively charged and highly mobile C-terminal end of wild-type FXYD1 is attracted by and subsequently immobilized on the negatively charged surface of DOPS-rich vesicle membranes, the modifying effect of FXYD1 on \(K_{0.5} \) disappears. In the case of the phosphorylated wild-type FXYD1 and the phosphomimetic mutants that carry negatively charged side chains on the C terminus, the effect of the negative membrane charges is abolished. These findings with DOPS-rich vesicles, described here and in our recent paper (24), support the notion that the positively charged C-terminal domain is highly mobile. It may bind temporarily to a negatively charged patch of the cytoplasmic domain of the Na,K-ATPase, and either upon introduction of negative charges on FXYD1 by phosphorylation or in the presence of excess negative charge in the membrane surface, the helix dissociates, and its functional effect is lost.

Na\(^+\) Site III

FXYD1 selectively increases the binding affinity of Na\(^+\) ions, with no effect on K/Rb binding (43). This indicates that FXYD1 modulates Na\(^+\) binding only at the third Na\(^+\)-specific site III. This effect is not altered by phosphorylation of Ser-68. It is attributable to an interaction of the transmembrane domain of FXYD1. In Na,K-ATPase activity assays, it is detected as the lower \(K_{0.5} \) for Na,K-ATPase activity in the phosphomimetic mutants compared with the control. In initial studies using FXYD1 expressed in *P. pastoris*, we observed that FXYD1 raises the apparent \(V_{\text{max}} \) of the Na,K-ATPase activity and reduces \(K_{0.5} \) (i.e. the exact opposite of the present observations). With our current understanding, the apparent increase in \(V_{\text{max}} \) is explained easily by stabilization of the partially inactivated control (22, 23), and the reduced \(K_{0.5} \) is explained by the fact that FXYD1 expressed in the yeast is at least 50% phosphorylated at Ser-68 and phosphorylation at Ser-63 was also possible (but unknown) (41). Thus, it is now evident that the functional effects of the FXYD1 expressed in *P. pastoris* should be compared with those of the S68E (or S63E,S68E) mutants.

A likely mechanism of increased Na\(^+\) site III affinity can be proposed from the structure of the pump in the E3Na bound conformation (Fig. 9). The transmembrane segment of the FXYD protein is bound to TM9 of the \(\alpha \) subunit, and Glu-954 in TM9 points inward toward M8 (and may interact with Trp-824) and Na\(^+\) site III. It was shown previously that mutations of Glu-954 selectively reduce extracellular Na\(^+\) (but not K\(^+\)) binding affinity (51). Thus, one can propose that binding of the FXYD1 protein to TM9 affects the interaction of Glu-954 with M8 and thus indirectly affects (moderately raises) binding affinity of Na\(^+\) to site III. By comparison with the Na\(^+\) site III in E1, the two potassium sites in the E2 conformation do not interact directly with M8, and thus FXYD1 should not affect potassium binding, as found experimentally.

It is important to note that the kinetic effects of FXYD1 on the steady-state Na,K-ATPase activity (Tables 2 and 3) can be presumed to reflect the sum of the individual effects. Upon binding of unphosphorylated FXYD1, the \(V_{\text{max}} \) and turnover rate are reduced, and, in theory, the poise toward E2(2K) and away from E1 should also be secondarily associated with a raised \(K_{0.5} \). The increased \(K_{0.5} \) seen in Na,K-ATPase activity assays should then represent the balance of increased \(K_{0.5} \) associated with the slower turnover rate and the decreased \(K_{0.5} \) that reflects the increased affinity for Na\(^+\) site III. Upon phosphorylation at Ser-68 or with the phosphomimetic mutants, the inhibition of turnover is relieved, and now the increased Na\(^+\) site binding affinity of site III becomes apparent as a reduced \(K_{0.5} \) compared with control. As illustrated by the calculation under “Results,” the combination of the two effects should make for optimal efficiency of regulation in physiological conditions of limiting cytoplasmic Na\(^+\) concentrations.

Comparison with Effects of FXYD1 Observed in Whole Cells

The most comprehensive studies to date on effects of FXYD1 have been carried out using *Xenopus* oocytes transfected with FXYD1, cultured mammalian cells, or isolated cardiac myocytes of wild-type or FXYD1 knock-out mice (15–20, 52, 53) (reviewed recently in Ref. 21). The overall conclusion is that unphosphorylated FXYD1 inhibits the Na,K-pump in *vivo*, and activators of PKA or PKC induce phosphorylation of FXYD1 at Ser-68 or Ser-63, respectively, and relieve the inhibition. It is suggested that with unphosphorylated FXYD1, the \(V_{\text{max}} \) is depressed and \(K_{0.5} \) is elevated compared with phosphorylated FXYD1 or with FXYD1 knock-out mice, with an elevated \(V_{\text{max}} \) and reduced \(K_{0.5} \). All effects are assumed to be mediated by the H4 cytoplasmic helix of FXYD1 (see Fig. 2 in Ref. 21). Although studies in intact cells more closely reflect the real physiological situation, there are significant inconsistencies in reported effects of FXYD1 for different cell types or isoforms. As pointed out in Ref. 21, different studies show that FXYD1 raises \(K_{0.5} \) (15–17, 19, 20, 41) or decreases \(V_{\text{max}} \) (53–56) or affects both parameters (18, 57). Two sets of studies suffice as illustrations. Expression of wild-type FXYD1 in *Xenopus* oocytes, together with either \(\alpha_1 \beta_1 \) or \(\alpha_2 \beta_1 \) isoforms, significantly raises \(K_{0.5} \) (and slightly raises \(K_{0.5} \)) for activating the pump-mediated current of both isoforms but has no effect on the \(V_{\text{max}} \) (19). Subsequently it was found that PKA- or PKC-mediated phosphorylation of FXYD1 at either Ser-68 or Ser-63 reduces the \(K_{0.5} \) of Na of \(\alpha_1 \beta_1 \) with no effect on \(V_{\text{max}} \) whereas PKC-stimulated phosphorylation of FXYD1 raises the \(V_{\text{max}} \) and turnover number of \(\alpha_2 \beta_1 \) (but \(K_{0.5} \) of Na of \(\alpha_2 \beta_1 \) was not determined) (18). As a second example, experiments using cardiac myocytes from wild-type and FXYD1 knock-out mice have shown unequivocally that stimulation of PKA or PKC in wild-type cardiomyocytes leads to stimulation (or deinhibition) of the Na,K-pump associated with phosphorylation of FXYD1 at Ser-68 or Ser-63, respectively, and these effects are not seen in...
Mechanism of Kinetic Effects of FXYD1 on Na,K-ATPase

the FXYD1 knock-out animals (16). PKA-dependent phosphorylation was associated with a decreased \(K_{\text{a}} \) for both \(\alpha 1 \beta 1 \) and \(\alpha 2 \beta 1 \) with no effect on \(V_{\text{max}} \), whereas PKC-dependent phosphorylation was associated with a decreased \(K_{\text{a}} \) for both \(\alpha 1 \beta 1 \) and \(\alpha 2 \beta 1 \) and no effect on \(V_{\text{max}} \) of \(\alpha 1 \beta 1 \) but an increased \(V_{\text{max}} \) of \(\alpha 2 \beta 1 \) (15).

Considering the rather small but highly significant effects of the FXYD1 variants on purified human \(\alpha 1 \beta \) and \(\alpha 2 \beta \) isoforms, the discrepancies in reported effects on \(V_{\text{max}} \) and \(K_{\text{a}} \) in whole cell studies pointed out previously (21) may be attributable to lower accuracy in the measurement of pump-mediated currents, different degrees of endogenous phosphorylation of FXYD1, and lower than 1:1 stoichiometry of FXYD1/H9251 and FXYD1/H9252. For example, the reported experimental variation in measurement of Na-K-pump currents in most whole cell studies is \(\pm 20\% \), making it difficult to detect significant differences of \(V_{\text{max}} \) for either \(\alpha 1 \beta 1 \) (25%) or \(\alpha 2 \beta 1 \) (15%), as observed here.

Conclusion

The effects of FXYD1 and the phosphomimetic mutants on the steady-state Na,K-ATPase activities observed here using the purified proteins are largely consistent with the information from whole cell experiments. The limitation of the unphysiological conditions of work with the purified proteins is offset by the higher accuracy and reproducibility of the measurements and the possibility to define the detailed mechanism of action, using the RH421 dye. This has added to the physiological data and the possibility to define the detailed mechanism of action, for example, the reported experimental variation in measurement of Na,K-pump currents in most whole cell studies is \(\pm 20\% \), making it difficult to detect significant differences of \(V_{\text{max}} \) for either \(\alpha 1 \beta 1 \) (25%) or \(\alpha 2 \beta 1 \) (15%), as observed here.

Author Contributions—N. K. M., M. H., C. K., and H. H. performed the experiments. Y. P. produced the wild-type FXYD1 and mutants. M. E. performed the molecular modeling. H. J. A. and S. J. D. K. conceived and planned the experiments, coordinated the study, and wrote the paper.

References