A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities

Yanyan Geng, Juan J. Ferreira, Victor Dzikunu, Alice Butler, Pascale Lybaert, Peng Yuan, Karl L. Magleby, Lawrence Salkoff, and Celia M. Santi

From the Departments of Obstetrics and Gynecology, Neuroscience, Genetics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110 and the Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33136

To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K+) channels and resultant K+ efflux. Sperm-specific SLO3 K+ channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH\textsubscript{i}. However, in human sperm, the major K+ conductance is both Ca2+- and pH\textsubscript{i}-sensitive. It has been debated whether Ca2+-sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca2+ sensitivities. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca2+ and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca2+, the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca2+ sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established.

To fertilize an oocyte, sperm must first undergo capacitation within the female genital tract. During capacitation, the sperm plasma membrane becomes hyperpolarized as a result of activation of potassium channels and resultant K+ efflux. In mouse sperm, the main K+ current, known as IKSper, is activated by voltage and intracellular pH (pH\textsubscript{i}). However, in human sperm, the K+ current is sensitive to both Ca2+ and pH\textsubscript{i} leading them to conclude that SLO3 is indeed responsible for the hKSper current. This is an attractive possibility for evolutionary reasons. Whereas SLO1 channels are highly conserved across species and are expressed in numerous tissues (11–14), SLO3 channels are present only in mammals, are expressed only in spermatozoa (2, 3, 8, 15), and have low sequence conservation among mammalian species as we showed by comparing mouse and bovine SLO3 sequences (16). Likewise, numerous genes that mediate sexual reproduction (17–19), such as those involved in immune interactions affecting reproduction and other ion channels expressed in sperm (e.g. CatSper) (20), show similarly low sequence conservation between species. This low sequence conservation might
predict high variation in functional properties. For example, we cloned and heterologously expressed the bovine SLO3 channel in *Xenopus* oocytes and showed that it differed from mouse SLO3 channels in several aspects, including the voltage range of activation, kinetics, and pH sensitivity (16). Thus, it seems plausible that human SLO3 could functionally diverge from its murine orthologue.

To further explore whether SLO3 may be undergoing accelerated variation in humans, we examined its sequence conservation within the Exome Aggregation Consortium, a database currently consisting of more than 64,000 individuals, and compared it with that of the SLO1 gene. That analysis showed that SLO3 is evolving significantly more rapidly in humans than SLO1, suggesting the plausibility of rapidly evolving functional properties that are conceivably relevant to sperm physiology. Additionally, we identified a conspicuous non-synonymous single nucleotide polymorphism in human SLO3 (hSLO3)\(^3\) that maps to the site of interaction between the gating ring and the pore gate domain. Our biophysical characterization of this variant then showed that it confers heightened sensitivity to both Ca\(^{2+}\) and pH relative to the wild-type hSLO3 channel. Thus, this study illustrates not only how fast sperm-specific genes can evolve relative to genes that are expressed in somatic tissues but also how the natural structural variants produced in a sperm-specific protein can be relevant to functional properties salient to the fertilization process.

Results

Low conservation of SLO3 within the human species

We previously demonstrated that mouse and bovine SLO3 protein sequences are 62.1% identical. Here, we compared human and mouse SLO3 protein sequences and found that they are only 62.9% identical in striking contrast to the 98.2% identity between human and mouse SLO1 (Fig. 1). To examine conservation within humans, we compiled data from the single-nucleotide polymorphism (SNP) database of the National Center for Biotechnology Information and the Exome Aggregation Consortium. We found that the percentage of non-synonymous SNPs (which change the amino acid sequence) in the human SLO3 gene was much higher than in the SLO1 gene (66 \textit{versus} 43%, respectively). Similarly, two other sperm-specific genes that we analyzed (the ion channel \textit{CATSPER} and the Na\(^{+}/K^{+}\)-ATPase \textit{α4}) also had higher percentages of non-synonymous SNPs (67 and 69%, respectively) than the somatically expressed genes SLO2 and Na\(^{+}/K^{+}\)-ATPase \textit{α1} (44 and 40%, respectively) (Fig. 2). This natural structural variation in sperm-specific genes may provide a large library of possibilities to achieve a selective advantage in fertilization.

A SLO3 variant with an altered residue at a critical interface

Among the many SLO3 non-synonymous (missense) SNPs reported in the SNP database, our attention was drawn to C382R, which would be expected to radically alter the properties of the amino acid side chain at an important position within the channel’s structure. This SNP was validated by three independent criteria, and 125 chromosomes were found to carry the allele in the Exome Aggregation Consortium data, which contain the sequences of 60,706 people from diverse ethnic backgrounds. Indeed, the minor allele frequency of 0.00103 is actually surprisingly high for such a radical variation in structure. From the 420 missense SLO3 variants found, there were only three other instances (P576T, R768W, and L955F) where a missense SNP has a higher validated minor allele frequency, a result that hints at positive selection pressure. Of further interest is the fact that an alignment of SLO3 with its close Ca\(^{2+}\)-dependent paralogue SLO1 shows that the Cys \(\rightarrow\) Arg amino acid substitution places the Arg into SLO3 at a position where an Arg exists in SLO1. From the crystal structures of SLO1 and SLO3, we know that this position is at the interface between the intramembrane “core” of the channel and the cytoplasmic gating ring (Fig. 3). This interface (the α-B helix) may be important in transducing the effects of factors interacting with the gating ring, which may influence channel opening. Prior studies with SLO1 channels have shown that both Ca\(^{2+}\) and pH interact with the gating ring (14, 21–25) and have major effects on channel opening. These effects are most likely transduced, at least in part, through the α-B helix. The C382R variant substitutes a positively charged arginine residue in place of a cysteine, and the upward orientation of the charged side chain is likely to interact with residues of the voltage-gated pore of the channel. Thus, the position of the Cys \(\rightarrow\) Arg SNP led us to a plausible hypothesis that the properties of Ca\(^{2+}\)- and pH-dependent gating of SLO3 might be altered by this natural SLO3 structural variation.

The structural variant hSLO3-C382R is more responsive to a change in intracellular pH

To investigate whether this SNP confers differences in functional properties of the channel, we incorporated the C382R mutation into the hSLO3 cDNA (hSLO3-C382R), heterologously expressed it, and compared its properties with wild-type hSLO3 (hSLO3-WT) in *Xenopus* oocytes. Both hSLO3-WT and hSLO3-C382R were expressed with the auxiliary subunit LRRC52 (also referred to as the γ subunit) (26). The LRRC52 subunit has been shown to increase the level of hSLO3 expression in heterologous expression systems (9). We used the two-microelectrode voltage clamp technique to measure functional properties that may involve interaction between the gating ring and the intramembrane voltage sensor or pore gate domain (PGD). Fig. 4A shows that expression of both hSLO3-WT and hSLO3-C382R produced outward time-dependent non-inactivating K\(^{+}\) currents when the oocytes were subjected to depolarizing step pulses. To test for pH\(_i\) sensitivity, we added 20 mM NH\(_4\)Cl to the extracellular bath solution to produce an increase in pH\(_i\). It is known that the application of NH\(_4\)Cl produces a transient increase in pH\(_i\) in *Xenopus* oocytes that lasts 5–10 min and is followed by a decrease in intracellular pH (27). We measured the maximal current induced by the application of NH\(_4\)Cl (usually obtained in the first 2–3 min of our recordings) for both the hSLO3-C382R variant and hSLO3-WT. We found that NH\(_4\)Cl produced a larger incremental increase in the maximal current amplitudes in oocytes expressing hSLO3-C382R.
than in those expressing hSLO3-WT (Fig. 4, A and B). Although intracellular pH is not precisely controlled in these experiments, we have found that this technique is highly reproducible and effective in demonstrating a difference in reactivity to a pH change as indicated by the statistics presented in Fig. 4. To further demonstrate the effect of intracellular alkalinization on channel function, we constructed conductance-voltage curves from tail currents evoked by step pulses to depolarizing potentials measured at 0 mV. These experiments showed that, under control conditions in normal saline, the activation curve of hSLO3-C382R was shifted to the right with respect to the hSLO3-WT activation curve (Fig. 4C). This indicates that hSLO3-C382R required more positive voltages for activation than hSLO3-WT, suggesting that the basal level of hSLO3-C382R activity was lower than that of hSLO3-WT. However, NH4Cl caused a significantly larger leftward shift in hSLO3-C382R than in hSLO3-WT, indicating that hSLO3-C382R had a greater response to intracellular alkalinization. Nevertheless, the final $V_{0.5}$ values achieved by hSLO3-WT and the hSLO3-C382R variant after intracellular alkalinization were similar ($V_{0.5}$/H11005/H11001 33/3.0 mV (S.D.), n/H11005 7 and n/H11006 35, respectively) (Fig. 4C). Thus, after intra-

Figure 1. Interspecies (human-mouse) alignment of the amino acid sequences of SLO3 channel orthologues (left) compared with the interspecies (human-mouse) alignment of the amino acid sequences of SLO1 channel (right). Identical residues are shaded. SLO3 orthologues are highly divergent between human and mouse (62.1% identity) relative to SLO1 orthologues (98.2% identity) between the same two species, suggesting a more rapid rate of evolution. Hydrophobic segments surrounding the pore region are underlined with designations S0–S6. A red asterisk marks the position of the C382R variant residue.
cellular alkalinization, the hSLO3-C382R channels end up activating in the same voltage range as the WT channels. Hence, although the greater leftward shift of hSLO3-C382R showed that this variant was more responsive to a change in pH than hSLO3-WT, the channel variant had significantly lower activity under basal conditions.

To confirm and amplify these findings using additional techniques, we performed inside-out patch clamp recordings. Fig. 5B shows that hSLO3-C382R outward currents, evoked with a step pulse protocol, were enhanced to a greater extent than hSLO3-WT currents when the cytoplasmic pH changes from 6.0 to 8.0. A voltage ramp protocol produced a similar result (Fig. 5A). However, Fig. 5, A, B, and C, also show that hSLO3-C382R had a much lower level of basal activity at low pH than hSLO3-WT (values and statistical significance are shown in Table 1). This is consistent with the result shown in Fig. 4C in which the conductance-voltage relation for hSLO3-C382R was shifted to more positive voltages than that for hSLO3-WT. The greater responsiveness of the hSLO3-C382R to pH change was largest between pH 6.0 and 7.0. Given that this is the range in which sperm capacitation occurs (28, 29), this effect is likely to be physiologically relevant.

We next used inside-out membrane patches containing a small number of channels to examine the effects of alkalization at the single-channel level. We pulled patches from oocytes expressing hSLO3-WT or hSLO3-C382R and exposed the cytoplasmic side of the membrane to solutions with different pH values. These experiments clearly showed that, during cytoplasmic alkalinization, single-channel activity was increased to a greater degree in hSLO3-C382R than in hSLO3-WT channels (Fig. 5C).

From these experiments, we draw two conclusions about the effect of the variant amino acid on channel function. First, at slightly acid conditions, the activation curve of hSLO3-C382R was centered at more positive voltages than that of hSLO3-WT. This difference in the activation curves may indicate that, in the variant, the interface between the cytoplasmic gating ring and the PGD has a negative effect on intrinsic channel activity or is less effective in transducing a constitutive activating force that the gating ring applies to the gated pore. Second, hSLO3-C382R responded more sharply, with increased channel activity, than hSLO3-WT to a pH increase over the physiologically relevant intracellular pH range. Therefore it is possible that the effect of alkalinity is more efficiently transduced to the PGD at the variant interface than at the wild-type interface.

The hSLO3-C382R variant is not altered in single-channel conductance and mean open time

We next compared the single-channel properties of hSLO3-C382R and hSLO3-WT and found no differences in conductance or mean open probability. Fig. 6, B and C, show representative plots of currents, including the current-voltage (I-V) plot for the two channels. Mean single-channel conductances at +120 mV for hSLO3-WT and hSLO3-C382R were 71.3 ± 12.5 pS (S.D.) (n = 14) and 70.7 ± 7.85 pS (S.D.) (n = 25), respectively (symmetrical 160 mM KCl, pH 8). Single-hSLO3 channel conductances were slightly smaller than those reported for the mouse SLO3 channel (90 pS in asymmetrical 194 mM K+ and 108.5 pS in 140 mM symmetrical K+) (8, 30). However, the conductance value that we report here is very similar to previously reported values for hSLO3 (6). Mean open time values were similar for hSLO3-WT (1.57 ± 0.28 ms (S.D.), n = 10) and hSLO3-C382R (1.34 ± 0.38 ms (S.D.), n = 4) (p = 0.24) at pH 8.0 and 120 mV.

The hSLO3-C382R variant has increased Ca2+ sensitivity

Unlike mouse SLO3 channels, the activity of human SLO3 channels has been reported to be up-regulated by increases in the concentration of intracellular Ca2+ ([Ca2+]i) (6). To explore the effect of the C382R variant residue on this property, we exposed the intracellular surfaces of inside-out patches to different concentrations of Ca2+ and compared both macroscopic currents and single-channel currents with respect to their Ca2+ sensitivity. Our results confirmed the finding of Brenker et al. (6) that hSLO3-WT channels are calcium-sensitive (Fig. 7B). Also consistent with the previous report, we found that the hSLO3-WT Ca2+ sensitivity was orders of magnitude lower than that of SLO1 (14). However, hSLO3-C382R was sharply more responsive to increases in [Ca2+]i, than was hSLO3-WT. This can be seen in Fig. 7B, which shows macroscopic currents elicited by ramps of membrane potential from −90 to +150 mV. At +100 mV and pH 7.2, 100 μM Ca2+ increased the hSLO3-C382R current by ~9-fold and the hSLO3-WT current by ~4-fold (values and statistical significance are shown in Table 2). Consistent with Fig. 4, which shows that the variant channel had a positively shifted voltage range of activation, these experiments also showed that the initial level of activity before the application of Ca2+ was significantly lower in the variant than in the WT channel. As discussed for the experiments that examined pH sensitivity, this is likely because the hSLO3 variant had its activation curve shifted to a more positive voltage. This and the fact that hSLO3-C382R was more sensitive to Ca2+, might both be explained by altered properties of transduction at the interface between the cytoplasmic gating ring and the PGD. We also noted that hSLO3-C382R showed a greater increase in Ca2+-dependent current in
the physiological range between pH 6.0 and 7.2 relative to hSLO3-WT (Fig. 7D).

We next examined the effect of \([\text{Ca}^{2+}]_i\) at the single-channel level (Fig. 8B) and found that channel open probability \((nP_o)\) increased 2–3-fold more for hSLO3-C382R than for hSLO3-WT when \([\text{Ca}^{2+}]_i\) was increased from 0 to 100 \(\mu\text{M}\) at +60 mV at both pH 6 and 7 (Fig. 8C) (values and statistical significance for figure 8C are shown in Table 3). We observed insignificant differences in calcium activation at pH 8 ostensibly because the channel is closer to its maximum \(nP_o\) at pH 8 than at a lower pH (Fig. 8, C and D). Thus, both macroscopic and single-channel recordings showed that the hSLO3-C382R was more sharply responsive to intracellular \([\text{Ca}^{2+}]_i\) and pH than the hSLO3-WT channel.

Finally, we examined how the pH sensitivity of the channels was affected by \([\text{Ca}^{2+}]_i\) and found that it was 3-fold higher in the presence of 100 \(\mu\text{M}\) \([\text{Ca}^{2+}]_i\) than in 0 \([\text{Ca}^{2+}]_i\) for both hSLO3-WT and hSLO3-C382R (Fig. 8E). We conclude that higher levels of intracellular calcium increase the response to an increase in pH for both hSLO3-WT and hSLO3-C382R channels.

Discussion

Because the properties of Ca\(^{2+}\) - and pH-dependent gating of SLO3 channels may be central to sperm physiology and have

Altered pH and Ca\(^{2+}\) sensitivities in SLO3 K\(^{+}\) channel variant
Relative pH_i sensitivity of hSLO3-WT and hSLO3-C382R

Values were obtained from inside-out macro patches at $+100$ mV during ramp protocols from -90 to $+150$ mV with a V_{h} of -70 mV in asymmetrical K$^+$ solutions at different pH values (6–9). Current amplitudes were normalized to the amplitude at pH 5.6. Two-sided t-tests comparing hSLO3-WT and hSLO3-C382R were performed at each pH_i. The graph and representative currents are shown in Fig. 5A.

Table 1

<table>
<thead>
<tr>
<th>pH</th>
<th>hSLO3 Mean</th>
<th>S.D.</th>
<th>n</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>WT</td>
<td>1.24</td>
<td>0.26</td>
<td>21</td>
</tr>
<tr>
<td>6.0</td>
<td>C382R</td>
<td>1.51</td>
<td>0.33</td>
<td>9</td>
</tr>
<tr>
<td>7.0</td>
<td>WT</td>
<td>2.14</td>
<td>0.42</td>
<td>9</td>
</tr>
<tr>
<td>7.0</td>
<td>C382R</td>
<td>4.69</td>
<td>1.25</td>
<td>5</td>
</tr>
<tr>
<td>8.0</td>
<td>WT</td>
<td>2.94</td>
<td>1.29</td>
<td>13</td>
</tr>
<tr>
<td>8.0</td>
<td>C382R</td>
<td>7.59</td>
<td>2.25</td>
<td>4</td>
</tr>
<tr>
<td>9.0</td>
<td>WT</td>
<td>4.48</td>
<td>1.50</td>
<td>9</td>
</tr>
<tr>
<td>9.0</td>
<td>C382R</td>
<td>9.05</td>
<td>4.12</td>
<td>17</td>
</tr>
</tbody>
</table>

Recently been in dispute, our findings that the hSLO3-C382R variant confers alterations to both of these functional properties bears directly on the possibility of rapid evolution and further variation of these properties in human sperm. The observation that the hSLO3-C382R variant is present in the human population at a relatively high frequency compared with most non-synonymous SNPs further hints at the possibility of positive selection for these properties. Regarding channel structure, the results also support the hypothesis that pH and Ca$^{2+}$ are interacting with the gating ring of SLO3 and that the effects of those interactions are transduced to the PGD of the channel through the α-B helix.

Proteins specifically found in mammalian sperm are evolving very rapidly compared with most somatically expressed paral-
Altered pH and Ca\(^{2+}\) sensitivities in SLO3 K\(^+\) channel variant

Figure 6. The hSLO3-C328R variant has no effect on single-channel conductance. A, patch clamp (inside-out) diagram. B, plot of single-channel current amplitude versus membrane potential. Data were obtained in the following symmetrical K\(^+\) solutions: external (pipette), 160 mM KMeSO\(_3\), 2 mM MgCl\(_2\), 10 mM Hepes, 10 mM MES, pH 8.0; internal (bath), 140 mM KMeSO\(_3\), 10 mM Hepes, 10 mM MES, 1 mM EGTA (0 Ca\(^{2+}\)), pH 8.0. Data are mean ± S.D. of 14 and 25 different patches for hSLO3-WT and hSLO3-C328R variant, respectively. C, single-channel recordings of hSLO3-WT and hSLO3-C328R channels at the indicated voltages. The mean single-channel conductance values at +120 mV were 71.3 ± 12.5 pS (S.D.) and 70.7 ± 7.85 pS (S.D.) for hSLO3-WT and hSLO3-C328R, respectively. The difference in conductance was not significant for any of the examined voltages with p values from 0.30 to 0.92 (t test). At pH 6.0 and +120 mV, the single-channel conductance was −16% less than that at pH 8.0 for both hSLO3-WT and hSLO3-C328R, presumably due to proton block (not shown). Error bars represent S.D.

Figure 7. hSLO3-C382R is more sensitive to [Ca\(^{2+}\)]\(_i\), than hSLO3 WT. A, patch clamp (inside-out) diagram. B, inside-out macropatch currents from hSLO3-WT and hSLO3-C382R variant. Records were obtained with a ramp protocol from −90 to +150 mV with a V\(_{50}\), of −70 mV. C, ratios of current amplitudes between the amplitudes of the currents recorded at the indicated [Ca\(^{2+}\)]\(_i\), and 0 Ca\(^{2+}\). See Table 2 for values and statistics. *t tests comparing hSLO3-WT and hSLO3-C382R were performed at each [Ca\(^{2+}\)]\(_i\), p values at 10, 50, 100, and 200 μM Ca\(^{2+}\) are 0.021, 0.057, <0.001, and <0.001, respectively. D, effect of pH on Ca\(^{2+}\) sensitivity. Ratios of current amplitudes recorded at 100 μM/0 Ca\(^{2+}\) at the indicated pH. Values at pH 6.0 are 1.79 ± 0.46 (S.D.) (n = 6) and 3.54 ± 1.43 (S.D.) (n = 11) for hSLO3-WT and hSLO3-C382R, respectively. Values at pH 7.2 are 2.74 ± 1.07 (S.D.) (n = 16) and 8.44 ± 4.73 (S.D.) (n = 23) for hSLO3-WT and hSLO3-C328R, respectively. *t tests comparing hSLO3-WT and hSLO3-C382R were performed at each pH, p values at pH 6.0 and 7.2 are 0.012 and <0.001, respectively. Values for both graphs were obtained at +100 mV in the following asymmetrical K\(^+\) solutions: external (pipette) solution, 135 mM NaMeSO\(_3\), 5 mM KMeSO\(_3\), 2 mM MgCl\(_2\), 10 mM Hepes, 10 mM MES, pH 7.2; internal (bath), 140 mM KMeSO\(_3\), 10 mM Hepes, 10 mM MES, 1 mM EGTA (0 Ca\(^{2+}\)), *p ≤ 0.05; ***, p ≤ 0.001. Error bars represent S.D.

ogues from mouse and humans (16, 31). This has been hypothesized to be due to positive Darwinian selection acting on many sperm components. One possible explanation for the high rate of variation in sperm-specific genes is that, given sperm competition between males, the rapid divergence of sperm-specific proteins favors the probability of successful fertilization (18). The sperm-specific potassium channel SLO3 with its high percentage of non-synonymous genomic SNPs seems typical of this small and special class of proteins. The physiological role of SLO3 channels in the mouse was elucidated as a result of the use of the SLO3 knock-out mice (2, 3, 32, 33). Although the role of SLO3 in the mouse is relatively well established, the situation is less clear in human sperm. First, a Ca\(^{2+}\) - and pH\(_i\)-activated K\(^+\) current was recorded in human (7). Since the publication of this first study, heterologous expression of hSLO3 channels was used to show that hSLO3-WT channels have a sparing but measurable Ca\(^{2+}\) sensitivity (6). Here, we report that the naturally occurring variant hSLO3-C382R is significantly more sensitive than the hSLO3-WT channels to both pH\(_i\) and Ca\(^{2+}\). However, these results do not eliminate the possibility that the hSLO1 channel in some way also participates in the hKSp current either independently or as a heteromultimeric channel in combination with hSLO3 and the γ subunit.

SLO3 channels are highly homologous to SLO1 (big potassium (BK)) channels, especially in the transmembrane regions, with most of the differences located in the cytoplasmic N- and
C-terminal regions. The SLO family channels are composed of four transmembrane voltage sensor domains surrounding a central PGD and a large cytosolic domain known as the gating ring (10). The gating ring is assembled from the regulators of K⁺ conductance (RCK1 and RCK2) domains of each of the four subunits (9, 34), forming a ring with a central opening. The gating rings regulate SLO channels in response to intracellular signals. For example, removing the gating ring in SLO1 channels removes all Ca²⁺ and Mg²⁺ sensitivity, converting the SLO1 channel into a purely voltage-sensitive channel (25). In mouse SLO3, the gating ring seems to confer pH, sensitivity, but the precise site of pH modulation has not been determined. Swapping the gating rings between SLO1 and SLO3 alters the channels’ sensitivities to Ca²⁺ and pH (35). However, the gating ring structure is similar between SLO1 and SLO3 channels, especially in the critical RCK1 region (N-lobe layer), which determines the closed versus open conformational state of the gating ring (9) and transduces the effects of any factor interacting with the gating ring to the PGD.

The C382R variant that we identified is located in the α-B helix of the N-lobe in RCK1. Given its location and the orientation of the side chain at the interface between the gating ring and PGD, this variant likely affects the properties of the channel by affecting transduction of forces between the gating ring and the PGD rather than by altering the affinity of a calcium ion-binding site or pH-interacting site. This hypothesis is supported by our observation that hSLO3-C382R was more sensitive to changes in both pH and [Ca²⁺], than hSLO3-WT. Notably, in hSLO3-C382R, the biggest change in channel activity took place between pH 6 and 7, which corresponds to the intracellular pH values reported for human sperm of pH 6.8–7.0 (29). During capacitation, pH i increases by ~0.2 unit (28, 36); under these conditions, hSLO3-C382R will show a much larger increase in channel activity than hSLO3-WT. Additionally, we found that high intracellular calcium concentrations increased the pHi sensitivity (between pH 6 and 8) of both hSLO3-WT and hSLO3-C382R channels, raising the possibility that when intracellular calcium levels increase (for example during capacitation) the SLO3 channels will become more active. In conclusion, natural genetic variation appears to have created a channel form variant that differs in activation from wild type with respect to two key factors involved in sperm physiology: pHi and intracellular Ca²⁺ concentration. It remains to be determined whether such differences confer differences in fertility among males.

Experimental procedures

It is the policy of Washington University that all procedures using animals must be reviewed and approved by the Animals Studies Committee of Washington University (St. Louis, MO) and must be performed in accord with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. However, no animals were used in these studies. *Xenopus* oocytes were purchased from EccoYTE Biosciences, Austin, TX.

The hSLO3-WT channel cDNA (*KCNO1*, NCBI GeneID 157074213) was obtained from Dr. Roderick MacKinnon at The Rockefeller University (9). The human LLRC52 cDNA was obtained from Dr. Chris Lingle at Washington University (37). Channel protein sequences in Fig. 1 are human SLO3 (9), mouse SLO3 (8), human SLO1 (38), and mouse SLO1 (13). The hSLO3-C382R variant construct was synthesized by overlap extension PCR and standard cloning techniques.

For expression of channel proteins in *Xenopus* oocytes, we followed the protocol of Schreiber et al. (8). Briefly, the entire open reading frame with an added Kozak initiator sequence was subcloned into the pOocyte-Xpress vector, and cRNAs were produced with the mMessage mMachine (Ambion) as described previously (39).

To examine conservation within humans, we compiled data from the SNP database of the National Center for Biotechnology Information and the Exome Aggregation Consortium. The structural models presented in Fig. 3 of the gating rings for hSLO3-WT and hSLO3-C382R were based on the crystal structure published previously (9).

Table 2

<table>
<thead>
<tr>
<th>[Ca²⁺]</th>
<th>hSLO3</th>
<th>Mean</th>
<th>S.D.</th>
<th>n</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>WT</td>
<td>1.32</td>
<td>0.60</td>
<td>6</td>
<td>0.021</td>
</tr>
<tr>
<td>10</td>
<td>C382R</td>
<td>2.02</td>
<td>0.44</td>
<td>9</td>
<td>0.021</td>
</tr>
<tr>
<td>50</td>
<td>WT</td>
<td>4.05</td>
<td>3.91</td>
<td>8</td>
<td>0.057</td>
</tr>
<tr>
<td>50</td>
<td>C382R</td>
<td>8.76</td>
<td>5.29</td>
<td>9</td>
<td>0.057</td>
</tr>
<tr>
<td>100</td>
<td>WT</td>
<td>2.74</td>
<td>1.07</td>
<td>16</td>
<td><0.001</td>
</tr>
<tr>
<td>100</td>
<td>C382R</td>
<td>8.44</td>
<td>4.75</td>
<td>23</td>
<td><0.001</td>
</tr>
<tr>
<td>200</td>
<td>WT</td>
<td>4.02</td>
<td>3.03</td>
<td>8</td>
<td><0.001</td>
</tr>
<tr>
<td>200</td>
<td>C382R</td>
<td>14.57</td>
<td>6.14</td>
<td>8</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Experimental procedures It is the policy of Washington University that all procedures using animals must be reviewed and approved by the Animals Studies Committee of Washington University (St. Louis, MO) and must be performed in accord with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. However, no animals were used in these studies. *Xenopus* oocytes were purchased from EccoYTE Biosciences, Austin, TX.

The hSLO3-WT channel cDNA (*KCNO1*, NCBI GeneID 157074213) was obtained from Dr. Roderick MacKinnon at The Rockefeller University (9). The human LLRC52 cDNA was obtained from Dr. Chris Lingle at Washington University (37). Channel protein sequences in Fig. 1 are human SLO3 (9), mouse SLO3 (8), human SLO1 (38), and mouse SLO1 (13). The hSLO3-C382R variant construct was synthesized by overlap extension PCR and standard cloning techniques.

For expression of channel proteins in *Xenopus* oocytes, we followed the protocol of Schreiber et al. (8). Briefly, the entire open reading frame with an added Kozak initiator sequence was subcloned into the pOocyte-Xpress vector, and cRNAs were produced with the mMessage mMachine (Ambion) as described previously (39).

To examine conservation within humans, we compiled data from the SNP database of the National Center for Biotechnology Information and the Exome Aggregation Consortium. The structural models presented in Fig. 3 of the gating rings for hSLO3-WT and hSLO3-C382R were based on the crystal structure published previously (9).

Expression of hSLO3-WT and hSLO3-C382R channels in *Xenopus* oocytes

Oocytes were harvested from female *Xenopus laevis* as described in Yuan et al. (40). Defolliculated oocytes were injected with 46 ng of cRNAs from hSLO3-WT and hSLO3-C382R using a Drummond Scientific nanoinjector (Broomall, PA). These cRNAs were co-injected with cRNA encoding the human LLRC52 subunit at a 1:1 ratio by mass. Injected oocytes were kept at 18 °C in ND96 medium. ND96 medium contains 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, 5 Hepes, pH 7.5 (with NaOH). Channel expression was tested in oocytes 3–5 days after injection with the two-electrode voltage clamp recording technique as described previously (39).

Electrophysiology experiments in *Xenopus* oocytes

Whole-cell current recordings from *Xenopus* oocytes were performed while the oocytes were perfused with ND96 medium + 2 μM 4,4’-diisothiocyanatostilbene-2,2’-disulfonic acid to block endogenous chloride currents (catalogue number D3514, Sigma-Aldrich). All recordings were obtained using voltage protocols specified in each figure. For patch clamp experiments, the vitelline membrane of the oocytes was mechanically removed. For patch clamp pipettes, borosilicate glass capillaries with an inner diameter of 0.86 mm, outer diameter of 1.2 mm, and length of 152 mm were obtained from World Precision
Altered pH and Ca\(^{2+}\) sensitivities in SLO3 K\(^{+}\) channel variant

Figure 8. Single-channel currents from hSLO3 WT and hSLO3-C382R variant at different [Ca\(^{2+}\)]. A, patch clamp (inside-out) diagram. B, representative single-channel recordings of hSLO3-WT and hSLO3-C382R variant at 0 and 100 μM [Ca\(^{2+}\)], acquired at +60 mV. Traces are shown on different time scales. Single-channel recordings were made in asymmetrical K\(^{+}\) with 160 mM KCl in the bath solution and 16 mM KCl in the pipette. The increase in nP0 for the hSLO3-C382R variant was approximately 2–3-fold greater than that seen in WT for increases in [Ca\(^{2+}\)], from 0 to 100 μM at +60 mV. The following solutions were used in B and D: 160 mM KCl, 10 mM MES, 5 mM HEDTA in the bath solution for 0 Ca\(^{2+}\) solutions and 160 mM KCl, 2 mM MgCl\(_2\), 10 mM Hepes, pH 7.0, in the pipette. C, graph showing ratios between nP0 at 100 μM Ca\(^{2+}\) and 0 Ca\(^{2+}\) at different pH. See Table 3 for values and statistics. t tests comparing hSLO3-WT and hSLO3-C382R were performed at each pH, p values at pH 6, 7, and 8 are 0.002, 0.011, and 0.619, respectively. Values were obtained at +60 mV in the following asymmetrical K\(^{+}\) solutions: external (pipette) 135 mM NaMeSO\(_3\), 5 mM KMeSO\(_3\), 2 mM MgCl\(_2\), 10 mM Hepes, pH 7.2; internal (bath), 140 mM KMeSO\(_3\), 10 mM Hepes, 10 mM MES, 1 mM EGTA (0 Ca\(^{2+}\)). D, histograms of single-channel current recordings (amplitude versus number of samples at that amplitude) normalized to the closed channel current level (the first peak) recorded in 100 μM Ca\(^{2+}\) at pH 6 or 8. E, hSLO3-WT and hSLO3-C382R are both more sensitive to pH in the presence of 100 μM Ca\(^{2+}\). The response to pH 8.0 in 100 μM Ca\(^{2+}\) is ~3-fold larger compared with the data obtained in 0 Ca\(^{2+}\) for both WT and hSLO3-C382R channels. Data were obtained from single-channel recordings. The values for hSLO3-WT are 1.43 ± 0.52 (S.D.) (n = 11) and 4.25 ± 2.37 (S.D.) (n = 3) at 0 and 100 μM Ca\(^{2+}\), respectively, and for hSLO3-C382R are 7.04 ± 4.29 (S.D.) (n = 16) at 0 Ca\(^{2+}\) and 16.62 ± 7.62 (S.D.) (n = 3) at 100 μM Ca\(^{2+}\). t tests comparing the two [Ca\(^{2+}\)] were performed for each type of channel. p values for hSLO3-WT and hSLO3-C382R are 0.002 and 0.006, respectively. *, p < 0.05; **, p < 0.01. Error bars represent S.D.

Table 3

Relative Ca\(^{2+}\) sensitivity of hSLO3-WT and hSLO3-C382R single-channel recordings

Experiments were obtained from inside-out patches at +60 mV in asymmetrical K\(^{+}\) solutions at different pH values (6–8). Values indicate the ratios between channel mean activities between +0 and +60 mM Ca\(^{2+}\) at different pH values. t tests comparing hSLO3-WT and hSLO3-C382R were performed at each pH. The graph of data is shown in Fig. 8C.

<table>
<thead>
<tr>
<th>pH</th>
<th>hSLO3</th>
<th>Mean</th>
<th>S.D.</th>
<th>n</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>WT</td>
<td>1.98</td>
<td>0.89</td>
<td>14</td>
<td>0.002</td>
</tr>
<tr>
<td>6.0</td>
<td>C382R</td>
<td>3.47</td>
<td>1.24</td>
<td>10</td>
<td>0.002</td>
</tr>
<tr>
<td>7.0</td>
<td>WT</td>
<td>1.97</td>
<td>1.13</td>
<td>6</td>
<td>0.009</td>
</tr>
<tr>
<td>7.0</td>
<td>C382R</td>
<td>5.20</td>
<td>2.26</td>
<td>7</td>
<td>0.009</td>
</tr>
<tr>
<td>8.0</td>
<td>WT</td>
<td>1.50</td>
<td>0.38</td>
<td>10</td>
<td>0.619</td>
</tr>
<tr>
<td>8.0</td>
<td>C382R</td>
<td>1.64</td>
<td>0.80</td>
<td>8</td>
<td>0.619</td>
</tr>
</tbody>
</table>

Acknowledgment—We thank Deborah Frank for aid in the review and preparation of the manuscript.

Author contributions—C. M. S., L. L., and K. L. M. contributed to the design and supervision of experiments, analysis of data, and writing of the paper. J. J. F. carried out experiments and data analysis and helped with the writing of the manuscript. P. L., A. B., and V. D. carried out experiments. Y. G. and P. Y. carried out experiments, analyzed data, made figures, and made suggestions on the manuscript.

References

