Investigating the Sensitivity of NAD\(^{+}\)-dependent Sirtuin Deacetylation Activities to NADH\(^{+}\)

Received for publication, June 10, 2015, and in revised form, February 8, 2016. Published, JBC Papers in Press, February 9, 2016, DOI 10.1074/jbc.M115.668699

Andreas S. Madsen\(^{1,5} \)†, Christian Andersen\(^{5} \), Mohammad Daoud\(^{1} \), Kristin A. Anderson\(^{*} \), Jonas S. Laursen\(^{1} \), Saswati Chakladar\(^{5} \), Frank K. Huynh\(^{2,2} \), Ana R. Colaço\(^{3} \), Donald S. Backos\(^{1} \), Peter Fristrup\(^{1} \), Matthew D. Hirschey\(^{3} \), and Christian A. Olsen\(^{6} \)

From the \(^{1}\)Center for Biopharmaceuticals, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark, the \(^{2}\)Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark, the \(^{3}\)Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, and the \(^{4}\)Computational Chemistry and Biology Core Facility, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045

Protein lysine posttranslational modification by an increasing number of different acyl groups is becoming appreciated as a regulatory mechanism in cellular biology. Sirtuins are class III histone decays that use NAD\(^{+}\) as a co-substrate during amide bond hydrolysis. Several studies have described the sirtuins as sensors of the NAD\(^{+}\)/NAD ratio, but it has not been formally tested for all the mammalian sirtuins \textit{in vitro}. To address this problem, we first synthesized a wide variety of peptide-based probes, which were used to identify the range of hydrolytic activities of human sirtuins. These probes included aliphatic \(\varepsilon\)-N-acyllsine modifications with hydrocarbon lengths ranging from formyl (C\(_{1}\)) to palmitoyl (C\(_{16}\)) as well as negatively charged dicarboxyl-derived modifications. In addition to the well-established activities of the sirtuins, “long chain” acyllsine modifications were also shown to be prone to hydrolytic cleavage by SIRT1–3 and SIRT6, supporting recent findings. We then tested the ability of NADH, ADP-ribose, and nicotinamide to inhibit these NAD\(^{+}\)-dependent deacetylase activities of the sirtuins. In the commonly used 7-amino-4-methylcoumarin-coupled fluorescence-based assay, the fluorophore has significant spectral overlap with NADH and therefore cannot be used to measure inhibition by NADH. Therefore, we turned to an HPLC-MS-based assay to directly monitor the conversion of acetylated peptides to their deacetylated forms. All tested sirtuin deacetylation activities showed sensitivity to NADH in this assay. However, the inhibitory concentrations of NADH in these assays are far greater than the predicted concentrations of NADH in cells; therefore, our data indicate that NADH is unlikely to inhibit sirtuins \textit{in vivo}. These data suggest a re-evaluation of the sirtuins as direct sensors of the NAD\(^{+}\)/NADH ratio.

Acetylation of lysine residues in core histones (H2A, H2B, H3, and H4) in chromatin complexes plays important roles in gene regulation, and enzymes that modify the levels of \(\varepsilon\)-N-acyllsine (Kac)\(^{5}\) have become important drug targets (1–5). Protein acetylation has furthermore been recognized as a general posttranslational modification with biological implications in numerous pathways, especially in metabolism (6–11). In addition to lysine acetylation, examples of formylation (12), propionylation and butyration (13–15), and myristoylation (16–18) have been reported. More recently, the list of acyl groups has been extended considerably with malonyl (19, 20), succinyl (19–21), glutaryl (22), crotonyl (23, 24), \(\alpha\)-hydroxyisobutyryl (25), and 3-phosphoglyceryl (26), thus extending the scope of acyl-based posttranslational modifications considerably (10, 27–30).

The degree of acetylation in mammalian cells is regulated by opposing functions of acetyltransferases and hydrolases that catalyze removal of the acetyl groups from e-amino groups of lysine residues. In humans, enzymes from two different classes have been recognized to have the latter capability, namely the \(\varepsilon\)-N acetylhomologs of Sir2 (silent information regulator 2) enzymes (the sirtuins, SIRT1–7) (31–33) and the 11 \(Zn^{2+}\)-dependent histone deacetylases (HDAC1–11) (34). The sirtuins and HDACs act on a wide range of acyllsine substrates. For example, e-N-malonyllsine, e-N-succinyllsine, and e-N-glutaryllysine all appear to be selectively hydrolyzed by SIRT5

\(^{5}\) The abbreviations used are: Kac, \(\varepsilon\)-N-acyllsine; aa, amino acids; AMC, 7-amino-4-methylcoumarin; ADPR, adenosine diphosphate ribose; NAM, nicotinamide; HDAC, histone deacetylase.
(19, 20, 22, 35), whereas ε-N-crotonyllysine has been cleaved by HDAC3 (23, 36), SIRT1 (35, 37), and SIRT2 (37) in vitro. Furthermore, a recent study using cross-linking affinity-based probes and SILAC (stable isotope labeling with amino acids in cell culture) suggested that SIRT3 processes ε-N-crotonyllysine in cells (38). SIRT6-mediated ε-N-myristoyllysine hydrolisis of TNF-α was reported to regulate its secretion (18); SIRT1–3 were shown to have robust fatty acid deacylase activity as well (37, 39, 40); and very recently, ε-N-lipoxylysine and ε-N-bioti- nyllysine were also reported to be hydrolyzed by SIRT4 (41).

Unlike the Zn2+-dependent HDACs, the sirtuins uniquely use NAD+ as a co-substrate in their deacylation reactions (42). Because of this unique enzymatic requirement, sirtuin activity has been linked to the energetic status of the cell, and the mammalian sirtuins have been described as sensors of the NAD+/NADH ratio (43–47). However, the sensitivity of the latest list of reported mammalian sirtuin deacylation reactions to NADH has not been formally tested. To do this, we first had to establish the full array of sirtuin-mediated lysine deacylation reactions in our assays. Given that there is such a large variety of reported sirtuin activities and that in some cases these reports are conflicting, it was imperative that we perform a comprehensive analysis to confirm previously reported sirtuin activities in our assays. Thus, we first established a range of sirtuin-mediated lysine deacylation reactions using three different in vitro assays. We then tested the sensitivity of a selection of these reactions to NADH. The data presented here have important implications for the fundamental understanding of sirtuin activity as well as the wide scope of biology they regulate.

Chemical Synthesis

Fluorogenic substrate series 1–3 were synthesized using a combination of solution-phase and solid-phase peptide synthesis (see the supplemental information and Fig. 1A for details). Octamer and dodecamer substrate series 4 and 5 were prepared by standard Fmoc (N-(9-fluorenylmethoxycarbonyl) solid-phase peptide synthesis on Chem-Matrix® resin with a Rink amide linker using HATU as the coupling reagent. Compounds 4i and 4j were prepared by HATU-mediated acylation of the unprotected peptide (4n) with myristic acid and palmitic acid, respectively, to give the desired substrates as the major products. Compound 5i was prepared by HATU-mediated acylation of the resin-bound, appropriately protected peptide with myristic acid, and compounds 5p and 5q were synthesized by acylation of the resin-bound, appropriately protected peptide with the desired anhydride.

Fluorescence-based HDAC and Sirtuin Deacylase Assays

All reactions were performed in black low binding 96-well microtiter plates (Corning half-area wells), with duplicate series in each assay, and each assay was performed at least twice. Control wells without enzyme were included in each plate. All reactions were performed in assay buffer, with appropriate concentrations of substrates and inhibitors obtained by dilution from 10–250 mM stock solutions in either water or DMSO and an appropriate concentration of enzyme obtained by dilution of the stock provided by the supplier. All plates were analyzed using a PerkinElmer Life Sciences Enspire plate reader with excitation at 360 nm and detecting emission at 460 nm. Fluorescence measurements (relative fluorescence units) were converted to [AMC] concentrations based on an [AMC]-fluorescence standard curve, and all data analysis was performed using GraphPad Prism.

Fluorogenic Sirtuin Substrate Screening—The initial screening for substrate deacylation activity was performed with end point fluorophore cleavage by trypsin. For a final volume of 25 μl/well, acyl substrates (Ac-TARKacyl-AMC (1a–m) or Ac-QPKKacyl-AMC (2a–k) 50 μM) and NAD+ (500 μM) were added to each well, followed by a solution of sirtuin enzyme (SIRT1, 333 nM; SIRT2, 222 nM; SIRT3, 250 nM; SIRT4, 270 nM; SIRT5, 211 nM; SIRT6, 313 nM; SIRT7, 400 nM). The reaction was incubated at 37 °C for 60 min, and then 25 μl of a solution of trypsin and nicotinamide (5.0 mg/ml and 4 mM, respectively; final concentration 2.5 mg/ml and 2 mM, respectively) was added, and the assay development was allowed to proceed for
Sensitivity of Sirtuin Deacetylation to NADH

90 min at room temperature before fluorescence analysis. The data were analyzed to afford [AMC] relative to control wells.

Fluorogenic HDAC Substrate Screening—The screening for substrate deacetylation activity was performed with end point fluorophore cleavage by trypsin. For a final volume of 25 μl/well, acyl substrate (Ac-QPKKacyl-AMC (2a–k) (10 μM)) was added, followed by a solution of HDAC enzyme (10 nM). The reaction was incubated at 37 °C for 60 min, after which a solution of trypsin (25 μl, 5.0 mg/ml, final concentration 2.5 mg/ml) was added, and the assay development was allowed to proceed for 90 min at room temperature before fluorescence analysis. The data were analyzed to afford [AMC] relative to control wells.

Adenosine Diphosphate Ribose (ADPR) and Nicotinamide (NAM) Concentration-Response Experiments—Using the protocol described above with a 30-min reaction time, hydrolase activities of SIRT1–3 and SIRT6 against substrates 1f, 1l, and 3b and SIRT5 against 3p and 3q were evaluated under varying ADPR or NAM concentrations. The sirtuin enzyme (SIRT1, 100 nM; SIRT2, 400 μM; SIRT3, 300 nM; SIRT6, 600 μM; or SIRT5, 200 μM) was incubated with the relevant substrate (300 μM), NAD^+ (1000 μM), and ADPR or NAM (1–0.064 mM in a 5-fold dilution series, or 0.0 mM) in a total volume of 25 μl of assay buffer. The data were fitted to the concentration-response equation (Hill slope = −1) using GraphPad Prism.

HPLC-MS-based Assays

All reactions were performed in black low binding 96-well microtiter plates (Corning half-area wells), with each assay performed at least twice. After incubating sirtuin, substrates, and inhibitor (when applicable) for 30 min at 37 °C, a sample of the reaction mixture (10 μl) was taken out and quenched by the addition of buffer/MelOH/HCOOH (50:96:4, 30 μl). The samples were analyzed by HPLC-MS on a Waters Acquity ultra-HPLC-MS system equipped with a diode array detector. A gradient with eluent I (0.1% HCOOH in water (v/v)) and eluent II (0.1% HCOOH in acetonitrile (v/v)) rising linearly 0–10% during t = 0.00–2.10 min followed by 10–60% of eluent II during t = 2.10–4.30 min was applied at a flow rate of 0.6 ml/min. The obtained chromatograms at either 280 nm (where the indole chromophore of tryptophan of substrate series 5 has its absorption maximum) or 326 nm (where the coumarin moiety of the chromophore of tryptophan of substrate series 5b has its absorption maximum) were used to determine reaction progression, by determining area under the curve of the relevant peaks using Waters MassLynx.

Sirtuin Deacylase Activity—The hydrolase activities of SIRT1–3 against substrate 5b, SIRT1–3 and -6 against substrate 5i, and SIRT5 against substrates 5p and 5q were evaluated. Sirtuin enzyme (SIRT1, 50 nM for 5b and 100 nM for 5i; SIRT2, 200 nM for 5b and 5i; SIRT3, 400 nM for 5b and 600 nM for 5i; SIRT5, 400 nM for 5p and 5q; and SIRT6, 6.00 μM for 5i) was incubated with the relevant decapeptide substrate (100 μM), NAD^+ (500 μM), and NADH (0.0, 0.5, 5.0, or 50 mM) in a total volume of 25 μl of assay buffer.

NADH Concentration-Response Experiments—Using the protocol described above, hydrolase activities of SIRT1–3 against substrates 1f, 1l, and 3b and SIRT5 against 3p and 3q were evaluated under varying NADH concentrations. The sirtuin enzyme (SIRT1, 400 nM; SIRT2, 2.00 μM; SIRT3, 2.76 μM; SIRT6, 1.88 μM; or SIRT5, 200 nM) was incubated with the relevant substrate (300 μM (SIRT1–3 and SIRT6) or 100 μM (SIRT5)), NAD^+ (1000 μM (SIRT1–3 and SIRT6) or 500 μM (SIRT5)), and NADH (10–0.01 mM in a 3.16-fold dilution series, or 0.0 mM) in a total volume of 25 μl of assay buffer. The data were fitted to the concentration-response equation (Hill slope = −1) using GraphPad Prism.

Steady-state Rate Inhibition Experiments—Using the protocol described above, hydrolase activities of SIRT1 against substrate 3b and SIRT5 against substrate 3p were determined under varying substrate–NADH and NAD^+–NADH concentrations. Sirtuin enzyme (SIRT1, 400 nM; SIRT5, 650 nM) was incubated with substrate (3b (400–12.5 μM, 2-fold dilution or 300 μM) or 3p (400–12.5 μM, 2-fold dilution or 100 μM)), NAD^+ (500 μM or 5.0–0.156 mM, 2-fold dilution), and NADH (10–0.156 mM, 2-fold dilution or 0.0 mM). The data were fitted to the Michaelis-Menten equation using GraphPad Prism. Double-reciprocal (Lineweaver-Burk) plots were constructed by fitting the obtained data to a series of first order equations with shared intersection using GraphPad Prism.

[^2P]NAD^+-based Assays

Based on a method described previously (19), reactions were performed in a total volume of 10 μl in buffer (Tris/Cl (50 mM), NaCl (50 mM), MgCl2 (4 mM), DTT (0.5 mM), pH 9.0) with 0.5 μCi of [^2P]NAD^+ (PerkinElmer Life Sciences, NEG023X; 800 Ci/mmol) and 50 μM acylated peptide substrate (substrate series 4). The reactions were incubated with 1.5 μg of SIRT1–3 or SIRT6 (BPS Bioscience) for 1 h at 37 °C. At the end of the incubation, 2 μl of each reaction was spotted onto silica gel thin layer chromatography plates (Whatman Partisil LK6D) and eluted with EtOH-aqueous NH4HCO3 (1 M) (70:30 (v/v)). The plates were then air-dried and exposed to an Eastman Kodak Co. storage phosphorimaging screen SD230 (GE Healthcare), and the signal was detected using a STORM820 Phosphor-Imager (GE Healthcare).

Computational Peptide Substrate Docking

Molecular modeling studies of sirtuin active sites and docking of peptide substrates were conducted using Discovery Studio version 3.5 (Accelrys Software, Inc., San Diego, CA). The crystal structure coordinates for SIRT1 (Protein Data Bank code 4KXQ) (49), SIRT2 (3ZGV) (50), SIRT3 (3GLR) (51), and SIRT6 (3ZG6) (18) were downloaded from the Protein Data Bank. Structures were prepared and subjected to energy minimization utilizing the conjugate gradient minimization protocol with a CHARMM force field and the generalized Born implicit solvent model with simple switching (52) and converged to a root mean square gradient of <0.001 kcal/mol. The crystal structures of SIRT3 and SIRT6 contained co-crystallized peptides with Kac and ε-N-myristoyllysine residues, respectively. An additional myristoyl modification was built onto the co-crystallized Kac residue in the SIRT3 structure and likewise minimized as described above. Figures were generated in Discovery Studio with the proteins represented by a solvent-based molecular surface using a 1.2-Å probe and colored by surface.
hydrophobicity over a smooth gradient from hydrophilic (blue) to neutral (white) to hydrophobic (brown).

Molecular Dynamics Simulations

Molecular dynamics studies of NAD\(^+\) binding sites and docking of NAD\(^+\) and NADH were conducted in Desmond (Desmond Molecular Dynamics System version 4.4 (D.E. Shaw Research, New York) and Maestro-Desmond Interoperability Tools version 4.4 (Schrödinger, New York)). The crystal structure coordinates for SIRT1/EX527/NAD\(^+\) (4151) (54) and SIRT3/FZN/ADPR (3GLT) (51) were used to construct the models for molecular dynamics simulations. SIRT1 ternary complexes were built by replacing the inhibitor EX527 with the substrate AceCS2 (from 3GLR) and modifying NAD\(^+\) to NADH. SIRT3 complexes were obtained by replacing the ADPR ligand with NAD\(^+\) (from 3RYI) or NADH (modified from NAD\(^-\)) and the FZN ligand with an AceCS2 peptide (from 3GLR) (51), giving systems with the dinucleotide bound in the AC site or modified to accommodate the dinucleotide bound in the alternative AB site. Each system was neutralized by adding sodium ions and solvated with a cubic TIP3P water box having at least 12-Å thickness. Additional sodium and chloride ions were introduced to achieve a salt concentration of 0.15 M (physiological conditions). The resulting systems (51,000–77,000 atoms) were then treated using either the default presimulation protocol (SIRT1) or a modified presimulation protocol where the relaxation time was extended from 1 ps to 1 ns with gradual increase of the temperature from 100 to 300 K. A production run was then carried out for either 250 ns (AC structures) or 500 ns (AB structures) at 300 K using the newly released OPLS3 force field (55). We found that OPLS3 performed better than OPLS2005 in replicating pyramidalization of the pyridyl nitrogen of NADH found using DFT (density functional theory) calculations (56, 57). Periodic boundary conditions with the Nose-Hoover chain thermostat (58, 59) and the Martyna-Tobias-Klein barostat (60) were used, with sampling of coordinates and energies at 10-ps intervals. Three replicates were performed for each system.

Results

Design and Synthesis of Fluorogenic Substrate Series—To investigate the sensitivity of sirtuins to NADH, we first established the range of NAD\(^+\)-dependent deacylase activities. Three well established assays are consistently used to measure sirtuin deacylation: an AMC-based fluorogenic assay, an HPLC-MS-based assay, and an assay monitoring the conversion of ADPR to ADP-ribose (Fig. 2A). As \(\epsilon\)-N-acyl modifications, we included formyl, acetyl (Kac), propionyl, butyryl, hexanoyl, octanoyl, decanoyl, lauroyl, myristoyl, palmitoyl, and crotonoyl in each tetrapeptide series and lipoyl and biotinoyl in series 1. Substrates 1a–m, containing amino acids 6–9 of core histone H3, were chosen because H3 Lys-9 acetylation has been reported to affect modulation of telomeric chromatin under regulation by SIRT6 (62) and because SIRT6 was reported to deacetylate H3 Lys-9 substrates in vitro (18). Due to the reported regulation of TNF-\(\alpha\) trafficking by SIRT6-mediated demyristoylation of Lys-20 in this protein (18), we initially considered constructing a series based on amino acids 17–20 of TNF-\(\alpha\) (LPKK). However, based on preliminary synthetic efforts, we found that handling and purification of the long chain acylsine-containing targets were non-trivial due to their amphiphilic nature and low solubility in assay buffer. Previous reports have solved this challenge by extending the peptide to a hexamer (61), but we instead turned our attention to a sequence containing amino acids 317–320 of p53. This sequence offered improved solubility and allowed us to construct our second substrate series, 2a–k (Fig. 1B). Residue Lys-320 is a well known acetylation site (6), and p53-mediated apoptosis has been shown to be regulated by the acetylation state of this residue, which in turn is mediated, at least in part, by the histone acetyltransferase PCAF (KAT2B) (63–65) and sumoylated HDAC2 (66).

Testing the Range of Sirtuin Deacylase Activities—Initially, to ensure efficient and reliable development conditions, trypsin-mediated release of the fluorophore from non-acylated control compounds was investigated. Whereas non-acylated control substrate 3n is readily cleaved by trypsin to release the fluorophore (200 \(\mu\)M deacetylated substrate is fully converted by trypsin (200 ng/\mu) in less than 30 s (i.e. \(k_{cat} > 1 \text{s}^{-1}\) (data not shown))), the additional trypsin cleavage sites in series 1 and 2 (the vicinal arginine or lysine, respectively) resulted in slow fluorophore release by initial formation of H-K-AMC, which proved to be a poorer substrate for trypsin (\(k_{cat} = 2.2 \times 10^{-3} \pm 0.2 \times 10^{-3} \text{s}^{-1}\) (data not shown)). Full cleavage of deacetylated intermediates was therefore ensured by increased trypsin concentration (2500 ng/\mu) and prolonged development time (90 min) in the deacylation activity assays.

We then profiled the deacylation activity of the seven human sirtuins (Fig. 2A) using both substrate series and human Zn\(^{2+}\)-dependent HDACs belonging to class I and class IIa (HDAC1, -2, -3, and -8 and HDAC4, -5, -7, and -9, respectively; Fig. 2A) using substrate series 2 only.

Corroborating recent findings (18, 37, 39, 40, 61, 67, 68), we found that SIRT1–3 and SIRT6 all displayed deacylase activities against a wide range of substrates (Fig. 2A). In contrast to a previous report (37), on the other hand, we did not observe significant levels of deacylation against any substrates by SIRT4, SIRT5, or SIRT7. However, this may be due to our use of AMC-linked pseudopeptides instead of longer peptide sequences as well as the lower enzyme loadings applied in our experiments. In all experiments, enzyme concentrations were...
equal to those known to furnish robust deacetylation activity for SIRT1–3 in this assay. Thus, our fluorogenic assay revealed selective deacylation of modifications with longer hydrocarbon chains (hexanoyl to palmitoyl) by SIRT6. Interestingly, SIRT1 and SIRT2 appeared to be more potent demyristoylases than SIRT6 when compared using the same substrates and equimolar enzyme amounts. SIRT3 exhibited demyristoylase activity similar to that of SIRT6 based on initial screening results. SIRT2 even appeared more potent against longer chains than against acetyl in both fluorogenic substrate series, which is also in agreement with recently reported results (68).

None of the class Ila HDACs exhibited significant activity against the tested substrates, consistent with previous studies (69–72) where robust deacetylase activity has only been demonstrated for peptides functionalized with the non-physiological trifluoroacetyl group (e.g. using substrate 3a (72), Fig. 2A). Class I HDAC1–3, which have previously been demonstrated to exhibit robust deacetylase activity, also displayed deacetylation activity against modifications longer than Kac (Fig. 2A). All three isoforms were capable of deacetylating the closely related ε-N-formyllysine and ε-N-propionyllysine, but prominent deacetylation of ε-N-butyryllysine and ε-N-hexanoyllysine was also observed for HDAC3. Interestingly, HDAC1 showed measurable activity against the ε-N-hexanoyllysine- to ε-N-lauroyllysine derivatives, which warrant further investigation, in particular because the enzyme concentrations chosen for HDACs were based on typical values applied for inhibitor screening, which are ~20–40-fold lower than those used for sirtuin reactions.

Confirmation of Deacetylase Activities Using Non-fluorogenic Peptides—Next, we sought to confirm the enzymatic deacetylase activities using additional assays, which would eliminate possible false positives related to the fluorophore (73). Thus, we turned to an HPLC-MS-based assay used previously to monitor sirtuin deacetylation activity (18). We prepared octa- and decapeptide sequences based on histone H3 (4b.i,j,n and 5b.i,n, respectively; supplemental Fig. 1B) with Trp residues added C-terminally to enable UV detection and tested for deacetylase and demyristoylase activity of SIRT1–3 and SIRT6 using HPLC to monitor the conversion of an acylated peptide (Fig. 2B). Identities of acylated and deacylated peptides were confirmed using mass spectrometry (Fig. 3). We observed robust deacetylase as well as demyristoylase activity of SIRT1–3 and demyris-

toylase activity exclusively for SIRT6 as in the fluorogenic assays.

Finally, we confirmed these enzymatic activities using a $[^{32}P]$NAD$^+$ consumption assay (37), which monitors the conversion of $[^{32}P]$NAD$^+$ to O-$[^{32}P]$acyl-ADP-ribose by separation using thin layer chromatography and visualization by autoradiography. Again, we observed that long chain acyllysine modifications were hydrolyzed by a mechanism utilizing NAD$^+$ as a co-substrate, as expected for sirtuin-mediated amide bond hydrolysis (Fig. 2C). In addition, this assay further supported the findings that SIRT1–3 cleaved both acetyl and myristoyl modifications, whereas SIRT6 cleaved myristoyl only. Together, these series of assays provide very strong evidence for several different enzymatic activities of the sirtuin deacylases.

Effects of NAD$^+$/NADH Ratio on Deacylase Activity—Next, we investigated the potential regulation of deacetylation events by NADH. The NAD$^+$/NADH redox couple is intrinsically linked to cellular metabolism, and because sirtuins are NAD$^+$-dependent enzymes, changes in the NAD$^+$/NADH ratio could potentially affect sirtuin activity via altered NAD$^+$ concentrations or by putative NADH-mediated sirtuin inhibition. Thus, we found it relevant to compare effects of NADH levels on these
Sensitivity of Sirtuin Deacylation to NADH

![Graphs showing sensitivity of Sirtuin Deacylation to NADH](image)

FIGURE 3. HPLC-MS data of SIRT3-mediated deacylation. UV (A_{280}) and TIC (ES$^+$) chromatograms and mass spectra at relevant time points allowing identification of acylated peptide substrates (5b and 5i) and deacylated peptide product (5n). Kmyr, e-N-myristoyllysine.

novel sirtuin deacylase activities with the effects on deacylation. Because the Zn$^{2+}$-dependent HDACs do not use NAD$^+$ as a co-substrate, they were not included in this investigation; indeed, the activity of HDAC1 and 2 has been reported to be insensitive to NADH (74).

We first tested the effects of NADH in the AMC-based assay. However, we observed nearly complete spectral overlap of both UV absorbance and fluorescence of NADH and AMC (Fig. 4A). Thus, fluorogenic AMC-based assays are not suitable for measuring effects of NADH on sirtuin activity. Therefore, we used the HPLC-MS-based assay to test the influence of NADH against SIRT1–3 and SIRT6 (5b or 5i; Fig. 4B), as well as on SIRT5-mediated hydrolysis of succinylated and glutarylated peptide substrates (5n or 5o; Fig. 4B). All enzyme and substrate combinations investigated were inhibited at 50 mM NADH (Fig. 4C). At 0.5 and 5.0 mM NADH, deacylation by SIRT2 and SIRT3 and demyristoylation by SIRT2 and SIRT6 showed little or no inhibition (Fig. 4C). In contrast, deacylation by SIRT1 and SIRT5 was inhibited at these lower concentrations (Fig. 4C).

The differential effects of NADH prompted further investigation of its inhibitory activity on SIRT1–3, SIRT6, and SIRT5. To increase the sensitivity of the HPLC-MS-based assay, we used substrate series 1 and 3, because the chromatographic separation allows us to exploit the coumarin moiety as a chromophore without overlap of NADH absorbance. Using this system, we tested the inhibitory activity of NADH on the deacylase activity of SIRT1–3 and 6 using substrates 3b, 1f, and 1i and of SIRT5 using substrates 3p and 3q (Fig. 5). Under these conditions, all of the investigated deacylation reactions were inhibited by NADH with IC_{50} values between 1.3 ± 0.4 and 68 ± 9 mM (Fig. 5 and Table 1). We also tested the inhibitory activities of ADPR and NAM under the same substrate concentrations. Because neither ADPR nor NAM absorb or fluoresce at relevant wavelengths, the AMC-based fluorescence assay was used. ADPR was found to be a poor inhibitor, with IC_{50} values from 1.1 ± 0.1 mm to >10 mm, except for SIRT1–mediated deacylation ($IC_{50} = 0.22 ± 0.03$ mm) and SIRT6-mediated deoctanoylation and demyristoylation ($IC_{50} = 74 ± 15$ and 89 ± 29 mm, respectively), whereas nicotinamide, in agreement with the literature, was found to be more potent, with IC_{50} values ranging from 28 ± 5 to 180 ± 30 mm.

To determine the inhibitory mechanism of NADH, we measured initial velocities of SIRT1-mediated deacylation of substrate 3b and SIRT5-mediated desuccinylation of substrate 3p at constant NAD$^+$ concentrations and varying concentrations of substrate and NADH as well as at constant acyl substrate concentrations and varying concentrations of NAD$^+$ and NADH (Fig. 6, A and B). Lineweaver-Burk (1/rate versus 1/[NAD$^+$]) plots of all four enzyme-inhibitor experiments indicated a non-competitive inhibition mechanism for both substrates (peptide and NAD$^+$) for SIRT1 and SIRT5. Initial velocities were fitted to the Michaelis-Menten equation to obtain K_{m}, k_{cat}, K_{i}, and K_{ii} values (Table 2). The derived K_{ii} and K_{i} values are composites of multiple equilibria in the bisubstrate deacylation reaction, rendering it difficult to separate contributions to individual rate constants. However, the overall K_{i}, K_{ii} values were in the same range, which also suggests non-competitive mechanisms with respect to both peptide substrate and NAD$^+$. We therefore decided to perform molecular dynamics simulations to attempt to rationalize these results.

Molecular Modeling: Structural Basis for Deacylation and NADH Inhibition—The findings that SIRT1–3 and SIRT6 can remove long-chain acyl groups prompted us to investigate the molecular basis for accommodation of long acyl-amide substrates in the active sites of sirtuins 1–3 and 6. The active sites of SIRT2 and -6 have been recognized to contain a hydrophobic pocket that includes critical arginine and tyrosine residues forming hydrogen bonds with the terminal carboxylic acid moiety of succinylated substrates. We then modeled the predicted interaction of SIRT3 with both the e-N-acetylysine that was contained within the original crystal structure and that of an e-N-myristoyllysine and found that both acyl groups could be accommodated in the hydrophobic pocket of the enzyme (Fig. 7A). The x-ray crystal structures show high
similarity between the catalytic pockets of these sirtuins and provide a potential structural rationale for the observed enzymatic activities.

We then performed molecular dynamics simulations of SIRT1 and SIRT3 in complex with either NADH or NADH and a relevant acetylated peptide substrate (Fig. 7B). NADH can bind in two different sites, the AB and the AC pockets (51, 76). The ADP-ribose moiety is positioned in the A pocket, whereas the nicotinamide moiety may occupy either the B or the C pocket, with only AC pocket binding leading to deacetylation. In our systems, the absence of peptide substrate compromised protein stability and prevented stable NADH binding. This is in agreement with previous findings of an ordered binding (51, 77), where peptide substrate binding closes the binding cleft, stabilizes the complex, and allows NADH to bind in a productive conformation. On the other hand, although NADH was initially placed in the AC pocket, the dihydronicotinamide moiety almost immediately (after a 2-ns simulation time) started to move away from the C pocket, leading to an opening of the enzyme structure and an alternative binding of the dihydro-pyridyl moiety. No direct interactions with the pyridyl nitrogen could be observed for either dinucleotide, in agreement with previous reports showing delocalization of the charge in NADH to the full pyridinium system (78). The different binding affinities of SIRT1 and SIRT3 for NADH and NADH were also analyzed by the hydrogen bonds established between protein and dinucleotide. Positioning of the nicotinamide moiety in the C pocket and hydrogen bonding to two highly conserved residues (Ile-347/230 and Asp-348/231 in SIRT1/3, through backbone amide carbonyl and side chain carboxylate, respectively) is essential for deacetylation, and both hydrogen bonds form frequently between both enzymes and NADH but not NADH during simulations (Fig. 7B). To further evaluate the stability of potential AB pocket binding, we also performed molecular dynamics simulations starting from structures with the nicotinamide part of the dinucleotides positioned in the B pocket with extended simulation time (500 ns). For both SIRT1 and SIRT3, the dihydronicotinamide moiety of NADH moved even further away from the complex.
Conversions are based on relative areas under the relevant peaks in the UV chromatograms.

The nicotinamide moiety tended to move closer to the C pocket,

including critical arginine and tyrosine residues forming

which demonstrates a less hydrophobic binding pocket,

agreement with the reported SIRT5 crystal structure (19),

that, in addition to SIRT6 (18), SIRT1–3 may also accommo-

dicate that these enzymes may play even more versatile roles in

We have prepared and evaluated chemical tool compounds

containing e-N-acylated lysine residues containing acyl groups

ranging from formyl (C1) to palmitoyl (C16) in length as well as
dicarboxyl-derived substrates. Using three different assay for-
mats, we established substrate specificities of the human sirtuins (SIRT1–7)

in vitro. Based on these enzymatic activities, we then investigated the ability of NADH to inhibit selected sirtuin-mediated deacylation reactions to address the hypoth-

esis that sirtuins may be directly sensing fluctuations in the

NAD+/NADH ratio in cells.

TABLE 1

<table>
<thead>
<tr>
<th>Inhibition constants of SIRT1–3-, SIRT6-, and SIRT5-mediated hydrolysis of relevant substrates (300 μM peptide substrate (3b, 1f, and 11), 1000 μM NAD^+), or 100 μM peptide substrate (3p and 3q), 500 μM NAD^+), calculated from concentration-response experiments shown in Fig. 5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
</tr>
<tr>
<td>SIRT1</td>
</tr>
<tr>
<td>3b</td>
</tr>
<tr>
<td>1f</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>SIRT2</td>
</tr>
<tr>
<td>3b</td>
</tr>
<tr>
<td>1f</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>SIRT3</td>
</tr>
<tr>
<td>3b</td>
</tr>
<tr>
<td>1f</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>SIRT6</td>
</tr>
<tr>
<td>3b</td>
</tr>
<tr>
<td>1f</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>SIRT5</td>
</tr>
<tr>
<td>3p</td>
</tr>
<tr>
<td>3q</td>
</tr>
</tbody>
</table>

¢ ND, not determined due to the prohibitively high concentration of enzyme needed.

¢ The IC50 value could not be determined from the concentration-response curve (84% residual activity at 1 mM, the highest concentration tested).

Discussion

We have prepared and evaluated chemical tool compounds

away from the B and C pockets. However, in the case of NAD^+, the nicotinamide moiety tended to move closer to the C pocket, i.e. toward the productive binding conformation.
Sensitivity of Sirtuin Deacylation to NADH

hydrogen bonds with the terminal carboxylic acid moiety of the succinylated substrate.

The requirement of \(\text{NAD}^+ \) for sirtuin activity connects this enzyme class to the metabolic state of the cell because the \(\text{NAD}^+ / \text{NADH} \) redox pair is coupled to energy consumption. A shift from cytosolic fermentation to aerobic mitochondrial metabolism leads to decreasing intracellular levels of \(\text{NADH} \) and an increased \(\text{NAD}^+ / \text{NADH} \) ratio (44). Thus, the \(\text{NAD}^+ / \text{NADH} \) ratio can be affected \emph{in vitro} by hypoxia (79) or by substrate metabolism, where low glucose leads to an increased \(\text{NAD}^+ / \text{NADH} \) ratio, and high glucose, lactate, or ethanol leads to a decrease in the \(\text{NAD}^+ / \text{NADH} \) ratio (43, 44, 80–82). Similarly, changes in the dinucleotide ratio can be accomplished \emph{in vivo} by exercise (82), by calorie restriction, or by allowing high fat or high ethanol intake (82–84). Because changing the \(\text{NAD}^+ / \text{NADH} \) ratio has been shown to impact protein acetylation levels (44, 45), sirtuins could be affected by this ratio.

The potential direct regulation of sirtuin deacetylation activity by \(\text{NADH} \) was initially investigated more than a decade ago. Guarente and co-workers (44) demonstrated inhibition of \(\text{ySir2} \) and \(\text{hSIRT1} \) (no IC\(_{50} \) values reported) via an \(\text{NAD}^+ \)-competitive mechanism. Similarly, Denu and co-workers (85) reported inhibition of \(\text{ySir2}, \text{yHST2}, \) and \(\text{hSIRT2} \) (IC\(_{50} = 15, 28, \) and 11 mM, respectively) and also included a very thorough evaluation of the potential effects of \emph{in vivo} \(\text{NADH} \) concentrations, concluding that direct \(\text{NADH} \) inhibition of \(\text{SIRT2} \)-mediated deacetylation does not contribute significantly to the observed changes in acetylation patterns when changing the \(\text{NAD}^+ / \text{NADH} \) ratio (85). Elaborating on these results, we here show that \(\text{NADH} \) also inhibits the more recently discovered long chain deacylase activities of human \(\text{SIRT1–3} \) and \(\text{SIRT6} \) as well as the dicarboxyl-derived deacetylase activities of \(\text{SIRT5} \). Using short pseudopeptide substrates, we determined the various IC\(_{50} \) values to be in the low millimolar range, and data obtained using a dodecamer sequence also indicated that millimolar concentrations of \(\text{NADH} \) are necessary to inhibit any of the tested deacetylase activities of human sirtuins. Furthermore, our results suggest that both \(\text{SIRT1} \)-mediated deacetylase and \(\text{SIRT5} \)-mediated desuccinylase activities are inhibited via a non-competitive mechanism for both peptide substrate and \(\text{NAD}^+ \). Deacetylation by \(\text{SIRT1}–3 \) has been reported to follow an ordered bireactant mechanism with initial binding of the acetylated peptide followed by \(\text{NAD}^+ \) binding (51, 77). If \(\text{NADH} \) binds in the AC pockets after peptide binding, an uncompetitive inhibition mechanism would be expected for peptide substrate and \(\text{NAD}^+ \). A potential random order binding of peptide and \(\text{NAD}^+ \) has been suggested for \(\text{SIRT6} \) (86). Under these conditions, a non-competitive inhibition would be expected when varying the peptide substrate concentration, whereas competitive inhibition would be expected when varying the \(\text{NAD}^+ \) concentration. As a result, the observed non-competitive inhibition mechanism with
respect to both substrates indicates a more complex binding mode of NADH. An alternative binding mode is also supported by our modeling results, where the dihydropyridine ring is poorly accommodated in the C pocket and instead breaks critical hydrogen bonding, leading to a conformational change of the protein. These findings provide a potential molecular basis for differentiation between the two dinucleotides and could justify the non-competitive inhibition observed in the activity assays.

In cells, the two dinucleotides may be either “free” or bound to protein with two major pools compartmentalized in the cytosol and the mitochondria, respectively. The total (i.e. free + bound) intracellular concentrations of NAD⁺ and NADH have been reported to be 1–3 mM (44), with an [NAD⁺]total/[NADH]total ratio of 1.5–10:1 (depending on species, cell type, and metabolic state) (44, 87–89). Studies have estimated that 40–90% of the total NADH may be bound to proteins (79, 90–92). However, the redox state depends on the unbound concentrations of dinucleotides in the different organelles, concentrations that are inherently difficult to measure. Based on indirect measurements of coupled reactions, under assumption of chemical equilibrium, different [NAD⁺]free/[NADH]free ratios in the cytosol (~700–200:1) versus the mitochondria (~10:1) were estimated already in the 1960s (93, 94). Furthermore, different methods have been applied to investigate aspects of the redox state, including [NAD(P)H]free by fluorescence (79, 90), cytosolic [NAD⁺]free/[NADH]free by NMR (95), and mitochondrial and cytosolic [NADH]free/ [NAD⁺]free or [NAD⁺]free/[NADH]free by genetically encoded biosensors (80, 81, 96). Collectively, these studies estimate cytosolic and mitochondrial [NADH]free to be ~110 nM and ~30 μM, respectively (79, 81) and a cytosolic ratio of [NAD⁺]free/[NADH]free 70–2500:1 (depending on cell type and medium) (80, 95). Thus, the current knowledge of physiological levels of free NAD⁺ and NADH in the different organelles combined with the observed IC₅₀ values strongly suggests constructive binding of the NAD⁺ cofactor to the sirtuins and an insignificant direct inhibitory effect of NADH, thereby corroborating the previous conclusions for SIRT2-mediated deacetylation (85) and extending them to include all known sirtuin-mediated deacylation reactions. Alternatively, nicotinamide, formed during the sirtuin deacylation reaction cascade, has been implicated in the regulation of sirtuin activity (43, 97, 98), and its function as a non-competitive inhibitor has been described in detail even in the novel deacylation reactions (75, 77, 99–101), where the inhibitory activity was found to vary with both sirtuin and acyl substrate. Whereas the changes in IC₅₀ values for nicotinamide were more pronounced under the conditions used in the recent report (75), we also observed var-

FIGURE 7. Molecular modeling structures. A, the SIRT1 and SIRT3 active sites were analyzed for their hydrophobicity to determine the potential for binding long-chain fatty acyl groups. Structures shown are crystal structures of SIRT1 (Protein Data Bank entry 4KXQ) and model structures for active site complexes of SIRT3-Kac and SIRT3-e-N-myristoyllysine (Kmyr) (modified from 3GLR). Conformations shown are the most energetically favorable. Gray areas indicate the position of a slice through the vertical z-plane. B, Conformations obtained after the production run of SIRT1 and SIRT3 in complex with e-N-acetylated peptide substrate and NAD⁺ or NADH. Substrates are shown with carbon atoms in beige, and non-polar hydrogen atoms have been omitted from the peptide substrate. Isoleucine and aspartate residues forming hydrogen bonds with NAD⁺ and A, B, and C pockets for NAD⁺ binding have been labeled.
Mutation in inhibitory potency of both nicotinamide and ADP-ribose for the different sirtuin-substrate pairs, thereby highlighting potential conformational changes of the active site upon binding of the differently acylated peptides. Interestingly, the highest IC₅₀ values for nicotinamide were found for SIRT1-mediated deacetylation and SIRT6-mediated deacetylation, the enzyme-substrate pairs that were the most sensitive to ADPR inhibition. SIRT6-mediated deacetylation reactions were especially affected by ADPR. This is a noteworthy observation and inhibition. SIRT6-mediated deacylation reactions were especially affected by ADPR. This is a noteworthy observation and inhibition. SIRT6-mediated deacylation reactions were especially affected by ADPR. This is a noteworthy observation and inhibition.

Sensitivities of Sirtuin Deacylation to NAD⁺/NADH. Despite our data showing that the sirtuins are unlikely to sense levels indirectly, these proteins require NAD⁺ as a co-substrate and are therefore still considered metabolic sensors. Accordingly, circadian fluctuations in NAD⁺ concentrations do indeed regulate sirtuin activity (48, 53, 102), but as one of the most important redox couples in the cell, the result of changes in NAD⁺ and NADH levels (e.g. as a result of calorie restriction) is highly complex and will affect multiple cellular processes, which may in turn affect sirtuin activity and protein acetylation levels indirectly.

Author Contributions—A. S. M. devised experiments; performed synthesis, fluorescence-based, and HPLC-MS assays; analyzed data; and wrote the manuscript. C. A., M. D., J. S. L., and S. C. performed synthesis. K. A. A. devised experiments and performed [³²P]NAD⁺ consumption assays. F. K. H. devised experiments, analyzed results, and wrote the manuscript. A. R. C., D. S. B., and P. F. performed molecular modeling. M. D. H. devised experiments, analyzed data, and wrote the manuscript. C. A. O. devised experiments, performed synthesis, analyzed data, and wrote the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgments—We thank Tina Gustafsson (DTU Chemistry) for technical assistance. The University of Colorado Computational Chemistry and Biology Core Facility is supported partly by National Institutes of Health/National Center for Advancing Translational Sciences Colorado Clinical and Translational Science Award Grant UL1TR001082.

References

Sensitivity of Sirtuin Deacylation to NADH

Sensitivity of Sirtuin Deacylation to NADH

