Introduction
- Denkberg G.
- Stronge V.S.
- Zahavi E.
- Pittoni P.
- Oren R.
- Shepherd D.
- Salio M.
- McCarthy C.
- Illarionov P.A.
- van der Merwe A.
- Besra G.S.
- Dellabona P.
- Casorati G.
- Cerundolo V.
- Reiter Y.
- Uldrich A.P.
- Patel O.
- Cameron G.
- Pellicci D.G.
- Day E.B.
- Sullivan L.C.
- Kyparissoudis K.
- Kjer-Nielsen L.
- Vivian J.P.
- Cao B.
- Brooks A.G.
- Williams S.J.
- Illarionov P.
- Besra G.S.
- et al.
Results
Generation of 1B1 Fab and mCD1d for structural studies
1B1 Fab-mCD1d crystal structure
mCD1d/1B1 complex | |
---|---|
Data collection statistics | |
PDB ID | |
Space group | C2221 |
Cell dimension | |
a, b, c, (Å) | 84.1, 161.0, 165.4 |
α = β = γ (°) | 90.00 |
Resolution range (Å) | 40.0–2.45 |
(outer shell) | (2.54–2.45) |
No. of unique reflections | 41,732 (4,082) |
Rmeas (%) | 8.1 (62.0) |
Rpim (%) | 3.1 (25.0) |
Multiplicity | 6.6 (5.9) |
Average I/σ | 19.1 (1.8) |
Completeness (%) | 99.7 (98.5) |
Refinement statistics | |
No. atoms | 6,530 |
Protein | 6,337 |
Water | 141 |
Sodium | 4 |
Ligand | 48 |
Ramachandran plot (%) | |
Favored | 95.2 |
Allowed | 99.7 |
Outliers | 0.3 |
Root mean square deviations | |
Bonds (Å) | 0.005 |
Angles (°) | 1.37 |
B-factors (Å2) | |
Protein | 59.6 |
Water | 49.1 |
Sodium | 50.6 |
Ligand | 52.8 |
R factor (%) | 20.9 |
Rfree (%) | 24.4 |


Individual buried surface areas within the ternary complexes (BSA in Å2) | 1B1-endogenous lipid/mCD1d | L363-C20:2-αGalCer/mCD1d, | Vα14Vβ8.2TCR- C20:2-αGalCer-mCD1d, |
---|---|---|---|
mCD1d | 610 | 710 | 680 |
Glycolipid | 110 | 160 | 150 |
Fab VL/TCR Vα | 50 | 410 | 660 |
Fab VH/TCR Vβ | 580 | 470 | 170 |
Fab/TCR-CD1d | 1,430 | 1,610 | 1,600 |
CDR | 1B1 | Endogenous lipid | Bonds |
---|---|---|---|
H3 | Leu-106 | UNK1 C8 | VDW |
Gly-105 | UNK1 C12 | VDW | |
Tyr-104 | UNK1 C16 | VDW | |
CDR | 1B1 | mCD1d | Bonds |
L1 | Tyr-31 | Glu-83 | VDW |
H2 | Asp-55 | Lys-148 | Salt bridge |
Lys-148 | H bond | ||
Ile-56 | Lys-148 | VDW | |
Val-149 | VDW | ||
Leu-145 | VDW | ||
H3 | Tyr-103 | Ala-152 | VDW |
Asp-153 | VDW | ||
Tyr-104 | Asp-153 | VDW | |
Gly-105 | Asp-153 | H bond | |
Leu-150 | VDW | ||
Asp-80 | VDW | ||
Val-149 | VDW | ||
Leu-106 | Asp-80 | H bond | |
Leu-84 | VDW | ||
Leu-150 | VDW | ||
Pro-146 | VDW | ||
Val-149 | VDW | ||
Leu-107 | Val-149 | VDW | |
Asp-80 | VDW | ||
Glu-83 | VDW | ||
Leu-108 | Val-149 | VDW | |
Arg-109 | Asp-80 | Salt bridge |
1B1 Fab binding kinetics

Comparison between 1B1 and the TCR of iNKT cells

1B1 blocking of Type I and Type II NKT cell activation
Discussion
- Wun K.S.
- Cameron G.
- Patel O.
- Pang S.S.
- Pellicci D.G.
- Sullivan L.C.
- Keshipeddy S.
- Young M.H.
- Uldrich A.P.
- Thakur M.S.
- Richardson S.K.
- Howell A.R.
- Illarionov P.A.
- Brooks A.G.
- Besra G.S.
- et al.
Experimental procedures
Glycolipid Ags
Cell line and cell culture
Antibody production and purification
Cloning and sequencing of 1B1 VH and VL genes
Fab digestion and purification
Mouse CD1d/β2m expression in insect cells
Gene cloning and site-directed mutagenesis
Mouse CD1d refolding and purification
CD1d/1B1-Fab complex formation and crystallization
Crystallization and structure determination
Glycolipid loading and native isoelectric focusing (IEF) gel electrophoresis
Surface plasmon resonance (SPR) studies
Cell-free antigen-presenting assay
Author contributions
Acknowledgments
References
- T cell antigen receptor recognition of antigen-presenting molecules.Annu. Rev. Immunol. 2015; 33 (25493333): 169-200
- Recombinant antibodies with T-cell receptor-like specificity: novel tools to study MHC class I presentation.Autoimmun. Rev. 2006; 5 (16697965): 252-257
- Recombinant antibodies with MHC-restricted, peptide-specific, T-cell receptor-like specificity: new tools to study antigen presentation and TCR-peptide-MHC interactions.J. Mol. Recognit. 2003; 16 (14523945): 324-332
- Rational development of high-affinity T-cell receptor-like antibodies.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19307587): 5784-5788
- How a T cell receptor-like antibody recognizes major histocompatibility complex-bound peptide.J. Biol. Chem. 2008; 283 (18703505): 29053-29059
- TCR-like antibodies distinguish conformational and functional differences in two- versus four-domain auto reactive MHC class II-peptide complexes.Eur. J. Immunol. 2011; 41 (21469129): 1465-1479
- Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand α-galactosylceramide bound to mouse CD1d.J. Immunol. Methods. 2007; 323 (17442335): 11-23
- Phage display-derived recombinant antibodies with TCR-like specificity against α-galactosylceramide and its analogues in complex with human CD1d molecules.Eur. J. Immunol. 2008; 38 (18253930): 829-840
- Mouse CD1 is mainly expressed on hemopoietic-derived cells.J. Immunol. 1997; 159 (9233616): 1216-1224
- The biology of NKT cells.Annu. Rev. Immunol. 2007; 25 (17150027): 297-336
- NKT cells: what's in a name?.Nat. Rev. Immunol. 2004; 4 (15039760): 231-237
- The fidelity, occasional promiscuity, and versatility of T cell receptor recognition.Immunity. 2008; 28 (18342005): 304-314
- CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides.Science. 1997; 278 (9374463): 1626-1629
- Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells.Eur. J. Immunol. 2009; 39 (19582739): 1726-1735
- Murine CD1d-restricted T cell recognition of cellular lipids.Immunity. 2000; 12 (10714687): 211-221
- Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide.J. Exp. Med. 2004; 199 (15051763): 947-957
- Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23307809): 1827-1832
- Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens.Nat. Commun. 2016; 7 (26875526): 10570
- A semi-invariant Valpha10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties.Nat. Immunol. 2011; 12 (21666690): 616-623
- Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity.J. Exp. Med. 2005; 202 (16314439): 1517-1526
- Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor.Nat. Immunol. 2005; 6 (16007091): 810-818
- The crystal structure of human CD1d with and without α-galactosylceramide.Nat. Immunol. 2005; 6 (16007090): 819-826
- The CD1 family: serving lipid antigens to T cells since the Mesozoic era.Immunogenetics. 2016; 68 (27368414): 561-576
- Recognition of microbial glycolipids by natural Killer T cells.Front. Immunol. 2015; 6 (26300885): 400
- Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria.Nat. Immunol. 2011; 12 (21892173): 966-974
- Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells.PLos Biol. 2011; 9 (22069376): e1001189
- Cardiolipin binds to CD1d and stimulates CD1d-restricted γΔ T cells in the normal murine repertoire.J. Immunol. 2011; 186 (21389252): 4771-4781
- Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20080535): 1535-1540
- CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor.Nature. 2007; 448 (17581592): 44-49
- Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens.Nat. Immunol. 2012; 13 (22820602): 851-856
- The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode.J. Exp. Med. 2010; 207 (20921281): 2383-2393
- Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor.Nat. Immunol. 2012; 13 (22820603): 857-863
- Differential recognition of CD1d-α-galactosyl ceramide by the Vβ 8.2 and Vβ 7 semi-invariant NKT T cell receptors.Immunity. 2009; 31 (19592275): 47-59
- Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis.EMBO J. 2011; 30 (21552205): 2294-2305
- Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands.EMBO J. 2009; 28 (19953109): 3781
- A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells.Immunity. 2011; 34 (21376639): 327-339
- Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells.Immunol. Rev. 2012; 250 (23046129): 167-179
- Structure of an α-helical peptide and lipopeptide bound to the nonclassical major histocompatibility complex (MHC) class I molecule CD1d.J. Biol. Chem. 2016; 291 (27006394): 10677-10683
- Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells.PLoS ONE. 2013; 8 (24312443): e78191
- Galactosylsphingamides: new α-GalCer analogues to probe the F′-pocket of CD1d.Sci. Rep. 2017; 7 (28655912): 4276
- Crystal structures of bovine CD1d reveal altered αGalCer presentation and a restricted A′ pocket unable to bind long-chain glycolipids.PLoS ONE. 2012; 7 (23110152): e47989
- Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (15665086): 1351-1356
- Structural basis for the recognition of C20:2-αGalCer by the invariant natural killer T cell receptor-like antibody L363.J. Biol. Chem. 2012; 287 (22110136): 1269-1278
- Rapid and reliable cloning of antibody variable regions and generation of recombinant single chain antibody fragments.Tissue Antigens. 1996; 47 (8929708): 1-20
- Rapid specific amplification of rat antibody cDNA from nine hybridomas in the presence of myeloma light chains.J. Immunol. Methods. 2006; 315 (16901500): 61-67
- IMGT, the international ImMunoGeneTics database.Nucleic Acids Res. 1999; 27 (9847182): 209-212
- CD1 assembly and the formation of CD1-antigen complexes.Curr. Opin. Immunol. 2005; 17 (15653316): 88-94
- Crystal structure of Qa-1a with bound Qa-1 determinant modifier peptide.PLoS ONE. 2017; 12 (28767728): e0182296
- Processing of X-ray diffraction data collected in oscillation mode.Methods Enzymol. 1997; 276 (27799103): 307-326
- Likelihood-enhanced fast translation functions.Acta Crystallogr. D Biol. Crystallogr. 2005; 61 (15805601): 458-464
- The CCP4 suite: programs for protein crystallography.Acta Crystallogr. D Biol. Crystallogr. 1994; 50 (15299374): 760-763
- Crystal structures of mouse CD1d-iGb3 complex and its cognate Vα14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids.J. Mol. Biol. 2008; 377 (18295796): 1104-1116
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- Refinement of macromolecular structures by the maximum likelihood method.Acta Crystallogr. D Biol. Crystallogr. 1997; 53 (15299926): 240-255
- Structure validation by Cα geometry: ϕ,Φ and Cβ deviation.Proteins. 2003; 50 (12557186): 437-450
- Recognition of bacterial glycosphingolipids by natural killer T cells.Nature. 2005; 434 (15791257): 520-525
- Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria.Nat. Immunol. 2006; 7 (16921381): 978-986
- Inference of macromolecular assemblies from crystalline state.J. Mol. Biol. 2007; 372 (17681537): 774-797
Article info
Publication history
Footnotes
This work was supported in part by the National Institute of Health Grant AI137230 (to D. M. Z.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The atomic coordinates and structure factors (code 6OOR) have been deposited in the Protein Data Bank (http://wwpdb.org/).
The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EBI Data Bank with accession number(s) and .
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy