Introduction
- Lehman D.M.
- Fu D.J.
- Freeman A.B.
- Hunt K.J.
- Leach R.J.
- Johnson-Pais T.
- Hamlington J.
- Dyer T.D.
- Arya R.
- Abboud H.
- Göring H.H.
- Duggirala R.
- Blangero J.
- Konrad R.J.
- Stern M.P.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
Results
Hyperproinsulinemia in βOGTKO mice is associated with reduced CPE protein in β-cells


CPE is not O-GlcNAc-modified nor a binding partner of OGT in β-cells
CPE loss is independent of ER stress-mediated Chop in OGT-deficient β-cells

eIF4G1 is O-GlcNAc-modified in β-cells and is reduced in OGT-deficient β-cells
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.

O-GlcNAc modification of eIF4G1 at serine 61 supports its protein stability

Re-expression of eIF4G1 in islets of βOGTKO elevates CPE and rescues hyperproinsulinemia
Discussion
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
- Liew C.W.
- Assmann A.
- Templin A.T.
- Raum J.C.
- Lipson K.L.
- Rajan S.
- Qiang G.
- Hu J.
- Kawamori D.
- Lindberg I.
- Philipson L.H.
- Sonenberg N.
- Goldfine A.B.
- Stoffers D.A.
- Mirmira R.G.
- Urano F.
- Kulkarni R.N.
Experimental procedures
Animal models and in vivo mouse procedures
Islet isolation
Insulin and proinsulin ELISA
Cell culture
Plasmid construct/site-directed mutagenesis/transfection
Western blotting
Immunoprecipitation and sWGA precipitation
Click-IT OGlcNAc labeling experiment
Immunofluorescence and EM imaging and analysis
Statistical analysis
Author contributions
Acknowledgments
Supplementary Material
References
- Intact proinsulin and beta-cell function in lean and obese subjects with and without type 2 diabetes.Diabetes Care. 1999; 22 (10189540): 609-614
- Increased secretion of 32,33 split proinsulin after intravenous glucose in glucose-tolerant first-degree relatives of patients with non-insulin dependent diabetes of European, but not Asian, origin.Clin. Endocrinol. 1995; 42: 255-264
- Fasting intact proinsulin is a highly specific predictor of insulin resistance in type 2 diabetes.Diabetes Care. 2004; 27 (14988285): 682-687
- The relation of proinsulin and insulin to insulin sensitivity and acute insulin response in subjects with newly diagnosed type II diabetes: the insulin resistance atherosclerosis study.Diabetologia. 1999; 42 (10447516): 1060-1066
- Proinsulin and acute insulin response independently predict Type 2 diabetes mellitus in men: report from 27 years of follow-up study.Diabetologia. 2003; 46 (12637978): 20-26
- Direct effects of glucose on proinsulin synthesis and processing during desensitization.Endocrinology. 1987; 120 (3549254): 1225-1231
- Disruption of O-linked N-acetylglucosamine signaling induces ER stress and beta cell failure.Cell Rep. 2015; 13 (26673325): 2527-2538
- Protein O-GlcNAcylation: emerging mechanisms and functions.Nat. Rev. Mol. Cell Biol. 2017; 18 (28488703): 452-465
- Three decades of research on O-GlcNAcylation: a major nutrient sensor that regulates signaling, transcription and cellular metabolism.Front. Endocrinol. (Lausanne). 2014; 5 (25386167): 183
- The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine.Biochim. Biophys. Acta. 2010; 1800 (19647043): 80-95
- O-GlcNAc cycling: a link between metabolism and chronic disease.Annu. Rev. Nutr. 2013; 33 (23642195): 205-229
- Protein O-GlcNAcylation in diabetes and diabetic complications.Expert Rev. Proteomics. 2013; 10 (23992419): 365-380
- O-GlcNAc modification, insulin signaling and diabetic complications.Diabetes Metab. 2010; 36 (21074472): 423-435
- A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-β-d-glucosaminidase is associated with type 2 diabetes in Mexican Americans.Diabetes. 2005; 54 (15793264): 1214-1221
- Glucose mediates the translocation of NeuroD1 by O-linked glycosylation.J. Biol. Chem. 2007; 282 (17403669): 15589-15596
- The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells.Arch. Biochem. Biophys. 2003; 415 (12831837): 155-163
- Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells.Vitam. Horm. 2014; 95 (24559913): 35-62
- Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity.Nat. Genet. 1995; 10 (7663508): 135-142
- Beta-cell lines derived from transgenic Cpe(fat)/Cpe(fat) mice are defective in carboxypeptidase E and proinsulin processing.Endocrinology. 1997; 138 (9348219): 4883-4892
- Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic beta cells.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24843127): E2319-E2328
- Loss of mTORC1 signalling impairs beta-cell homeostasis and insulin processing.Nat. Commun. 2017; 8 (28699639): 16014
- Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors.Development. 2002; 129 (11973276): 2447-2457
- Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10).J. Biol. Chem. 1990; 265 (2303412): 2476-2482
- Differential regulation and localization of carboxypeptidase D and carboxypeptidase E in human and mouse beta-cells.Islets. 2011; 3 (21628999): 155-165
- Prediction of glycosylation across the human proteome and the correlation to protein function.Pac. Symp. Biocomput. 2002; 2002 (11928486): 310-322
- Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion.Biochemistry. 2002; 41 (11772002): 52-60
- Dynamic glycosylation of nuclear and cytosolic proteins: cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats.J. Biol. Chem. 1997; 272 (9083067): 9308-9315
- Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration.Int. Rev. Cell Mol. Biol. 2013; 301 (23317820): 215-290
- Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2.J. Biol. Chem. 1998; 273 (9452465): 3431-3437
- Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics.Nat. Chem. Biol. 2007; 3 (17496889): 339-348
- Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (28154133): E1536-E1543
- The “go or grow” potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress.Acta Neuropathol. 2012; 124 (22249620): 83-97
- Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18550819): 8452-8457
- O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response.Nat. Chem. Biol. 2018; 14 (30127386): 909-916
- Changes in O-linked N-acetylglucosamine (O-GlcNAc) homeostasis activate the p53 pathway in ovarian cancer cells.J. Biol. Chem. 2016; 291 (27402830): 18897-18914
- O-GlcNAcylation regulates EZH2 protein stability and function.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24474760): 1355-1360
- O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability.Cell Metab. 2012; 16 (22883232): 226-237
- Glucose-stimulated protein synthesis in pancreatic beta-cells parallels an increase in the availability of the translational ternary complex (eIF2-GTP. Met-tRNAi) and the dephosphorylation of eIF2α.J. Biol. Chem. 2004; 279 (15475356): 53937-53946
- Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.Islets. 2016; 8 (27880078): 195-206
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health, NIDDK Grants K01 DK103823, R21 DK112144, R03 DK114465, and R01 DK115720 (to E. U. A.), and F31 DK113694, 5T32DK083250 (to A. L). E. U.A. is the guarantor of this work. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Table S1 and Figs. S1–S2.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy