Introduction
- Work V.H.
- Radakovits R.
- Jinkerson R.E.
- Meuser J.E.
- Elliott L.G.
- Vinyard D.J.
- Laurens L.M.
- Dismukes G.C.
- Posewitz M.C.
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.
- Siaut M.
- Cuiné S.
- Cagnon C.
- Fessler B.
- Nguyen M.
- Carrier P.
- Beyly A.
- Beisson F.
- Triantaphylidès C.
- Li-Beisson Y.
- Peltier G.
- Merchant S.S.
- Prochnik S.E.
- Vallon O.
- Harris E.H.
- Karpowicz S.J.
- Witman G.B.
- Terry A.
- Salamov A.
- Fritz-Laylin L.K.
- Maréchal-Drouard L.
- Marshall W.F.
- Qu L.H.
- Nelson D.R.
- Sanderfoot A.A.
- Spalding M.H.
- Kapitonov V.V.
- Ren Q.
- Ferris P.
- Lindquist E.
- Shapiro H.
- Lucas S.M.
- Grimwood J.
- Schmutz J.
- Cardol P.
- Cerutti H.
- Chanfreau G.
- Chen C.L.
- Cognat V.
- Croft M.T.
- Dent R.
- Dutcher S.
- Fernández E.
- Fukuzawa H.
- González-Ballester D.
- González-Halphen D.
- Hallmann A.
- Hanikenne M.
- Hippler M.
- Inwood W.
- Jabbari K.
- Kalanon M.
- Kuras R.
- Lefebvre P.A.
- Lemaire S.D.
- Lobanov A.V.
- Lohr M.
- Manuell A.
- Meier I.
- Mets L.
- Mittag M.
- Mittelmeier T.
- Moroney J.V.
- Moseley J.
- Napoli C.
- Nedelcu A.M.
- Niyogi K.
- Novoselov S.V.
- Paulsen I.T.
- Pazour G.
- Purton S.
- Ral J.P.
- Riaño-Pachon D.M.
- Riekhof W.
- Rymarquis L.
- Schroda M.
- Stern D.
- Umen J.
- Willows R.
- Wilson N.
- Zimmer S.L.
- Allmer J.
- Balk J.
- Bisova K.
- Chen C.J.
- Elias M.
- Gendler K.
- Hauser C.
- Lamb M.R.
- Ledford H.
- Long J.C.
- Minagawa J.
- Page M.D.
- Pan J.
- Pootakham W.
- Roje S.
- Rose A.
- Stahlberg E.
- Terauchi A.M.
- Yang P.
- Ball S.
- Bowler C.
- Dieckmann C.L.
- Gladyshev V.N.
- Green P.
- Jorgensen R.
- Mayfield S.
- Mueller-Roeber B.
- Rajamani S.
- Sayre R.T.
- Brokstein P.
- Dubchak I.
- Goodstein D.
- Hornick L.
- Huang Y.W.
- Jhaveri J.
- Luo Y.
- Martinez D.
- Ngau W.C.
- Otillar B.
- Poliakov A.
- Porter A.
- Szajkowski L.
- Werner G.
- Zhou K.
- Grigoriev I.V.
- Rokhsar D.S.
- Grossman A.R.
- Cases S.
- Smith S.J.
- Zheng Y.W.
- Myers H.M.
- Lear S.R.
- Sande E.
- Novak S.
- Collins C.
- Welch C.B.
- Lusis A.J.
- Erickson S.K.
- Farese R.V.
- Lardizabal K.D.
- Mai J.T.
- Wagner N.W.
- Wyrick A.
- Voelker T.
- Hawkins D.J.
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.
- Nguyen H.M.
- Baudet M.
- Cuiné S.
- Adriano J.M.
- Barthe D.
- Billon E.
- Bruley C.
- Beisson F.
- Peltier G.
- Ferro M.
- Li-Beisson Y.
EXPERIMENTAL PROCEDURES
Chlamydomonas Culture Conditions
Nitrogen Starvation Time Course Experiments
Nitrogen Limitation and Cell Density Experiments
Other Nutrient-deficient Experiments
Saccharomyces Culture Conditions
RNA Preparation and Analysis
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.
DNA Gel Blot Hybridization
Estimation of Relative mRNA Abundance
Sequencing of the DGAT1-containing BAC on the Illumina Platform
Gap-filling DGAT1 Sequence
Lipid and Fatty Acid Analysis
Gene Model Verification
Microscopy
Generation and Screening of Chlamydomonas Mutants
PCR Analysis of AphVIII Cassette Insertion Structures in Mutant Lines
Plasmid Construction
RESULTS
Time Course of TAG Accumulation
- Work V.H.
- Radakovits R.
- Jinkerson R.E.
- Meuser J.E.
- Elliott L.G.
- Vinyard D.J.
- Laurens L.M.
- Dismukes G.C.
- Posewitz M.C.
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.

Impact on Fatty Acid and Lipid Synthesis
Au10.2 | Au5 | Gene name | Description | RPKM | ||||
---|---|---|---|---|---|---|---|---|
0 h | 2 h | 12 h | 24 h | 48 h | ||||
Cre12.g519100 | 513248 | ACX1 | α-Carboxyltransferase | 140.5 | 68.2 | 81.3 | 71.6 | 70.2 |
Cre12.g484000 | 512497 | BCX1 | β-Carboxyltransferase | 103.5 | 53.4 | 35.1 | 35.4 | 31.4 |
Cre17.g715250 | 517403 | BCC1 | Acetyl-CoA biotin carboxyl carrier | 293.9 | 129.6 | 54.7 | 74.7 | 68.9 |
Cre01.g037850 | 511392 | BCC2 | Acetyl-CoA biotin carboxyl carrier | 271.5 | 89.8 | 43.9 | 55.9 | 58.1 |
Cre01.g063200 | 511929 | ACP1 | Acyl carrier protein | 211.0 | 220.6 | 171.6 | 157.3 | 113.7 |
Cre13.g577100 | 514476 | ACP2 | Acyl carrier protein | 3513.1 | 1740.6 | 1110.7 | 1777.4 | 1399.1 |
Cre16.g656400 | 516156 | SQD1 | UDP-sulfoquinovose synthase | 119.4 | 88.4 | 36.7 | 49.8 | 61.7 |
Cre01.g038550 | 511409 | SQD2 | Sulfoquinovosyldiacylglycerol synthase | 10.3 | 7.6 | 3.4 | 6.7 | 2.1 |
Cre16.g689150 | 516856 | SQD3 | Sulfoquinovosyldiacylglycerol synthase | 0.3 | 0.4 | 0.0 | 0.0 | 0.0 |
Cre13.g585300 | 514645 | MGD1 | Monogalactosyldiacylglycerol synthase | 16.1 | 1.4 | 6.3 | 5.3 | 3.4 |
Cre13.g583600 | 514612 | DGD1 | Digalactosyldiacylglycerol synthase | 29.0 | 31.2 | 52.4 | 42.5 | 36.4 |
Cre06.g250200 | 522823 | SAS1 | S-Adenosylmethionine synthetase | 2334.8 | 1167.6 | 283.0 | 401.4 | 578.3 |
Cre07.g324200 | 524437 | BTA1 | Diacylglyceryl-N,N,N-trimethylhomoserine synthesis protein | 120.1 | 129.7 | 82.5 | 79.1 | 68.6 |
Cre12.g539000 | 513669 | ECT1 | CDP-ethanolamine synthase | 17.4 | 20.7 | 25.2 | 17.1 | 16.9 |
Cre03.g162600 | 520698 | PGP3 | Phosphatidylglycerolphosphate synthase | 7.3 | 6.6 | 1.4 | 2.8 | 4.8 |
Cre03.g180250 | 521070 | INO1 | Myoinositol-1-phosphate synthase | 194.9 | 158.7 | 305.3 | 282.2 | 188.5 |
Cre10.g419800 | 509612 | PIS1 | Phosphatidylinositol synthase | 29.5 | 22.6 | 27.0 | 29.2 | 26.9 |
Cre14.g621650 | 515418 | MCT1 | Malonyl-CoA:acyl carrier protein transacylase | 159.9 | 137.8 | 35.2 | 10.8 | 19.7 |
Cre01.g045900 | 511566 | DGAT1 | Diacylglycerol acyltransferase, DAGAT type-1 | 3.3 | 11.7 | 15.0 | 9.1 | 20.8 |
Cre12.g557750 | 514063 | DGTT1 | Diacylglycerol acyltransferase, DAGAT type-2 | 0.8 | 7.9 | 11.1 | 17.5 | 24.6 |
Cre02.g121200 | 519435 | DGTT2 | Diacylglycerol acyltransferase, DAGAT type-2 | 22.2 | 21.1 | 24.5 | 26.2 | 26.8 |
Cre06.g299050 | 523869 | DGTT3 | Diacylglycerol acyltransferase, DAGAT type-2 | 35.5 | 33.4 | 31.5 | 40.7 | 32.5 |
Cre03.g205050 | 521604 | DGTT4 | Diacylglycerol acyltransferase, DAGAT type-2 | 4.6 | 7.5 | 7.5 | 2.9 | 3.3 |
Cre02.g079050 | 518531 | DGTT5 | Diacylglycerol acyltransferase, DAGAT type-2 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Cre02.g106400 | 519119 | PDAT1 | Phospholipid diacylglycerol acyltransferase | 3.4 | 9.4 | 8.5 | 9.7 | 8.0 |
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.
- Nguyen H.M.
- Baudet M.
- Cuiné S.
- Adriano J.M.
- Barthe D.
- Billon E.
- Bruley C.
- Beisson F.
- Peltier G.
- Ferro M.
- Li-Beisson Y.
Three Acyltransferases with Increased Expression
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.


- Work V.H.
- Radakovits R.
- Jinkerson R.E.
- Meuser J.E.
- Elliott L.G.
- Vinyard D.J.
- Laurens L.M.
- Dismukes G.C.
- Posewitz M.C.
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.

Nitrogen Response Regulator


Functional Validation

Reverse Genetic Validation

DISCUSSION
DGAT
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.
- Miller R.
- Wu G.
- Deshpande R.R.
- Vieler A.
- Gaertner K.
- Li X.
- Moellering E.R.
- Zauner S.
- Cornish A.
- Liu B.
- Bullard B.
- Sears B.B.
- Kuo M.H.
- Hegg E.L.
- Shachar-Hill Y.
- Shiu S.H.
- Benning C.
- Nguyen H.M.
- Baudet M.
- Cuiné S.
- Adriano J.M.
- Barthe D.
- Billon E.
- Bruley C.
- Beisson F.
- Peltier G.
- Ferro M.
- Li-Beisson Y.
PDAT
Regulators
Acknowledgments
Supplementary Material
REFERENCES
- TAG, You're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.Curr. Opin. Biotechnol. 2012; 23: 1-12
- Biodiesel from microalgae beats bioethanol.Trends Biotechnol. 2008; 26: 126-131
- Biodiesel from microalgae.Biotechnol. Adv. 2007; 25: 294-306
- Biodiesel from algae. Challenges and prospects.Curr. Opin. Biotechnol. 2010; 21: 277-286
- Second generation biofuels. High efficiency microalgae for biodiesel production.BioEnergy Res. 2008; 1: 20-43
- Microalgae for biodiesel production and other applications. A review.Renewable Sustainable Energy Rev. 2010; 14: 217-232
- Lipid productivity as a key characteristic for choosing algal species for biodiesel production.J. Appl. Phycol. 2009; 21: 493-507
- Microbial production of fatty acid-derived fuels and chemicals from plant biomass.Nature. 2010; 463: 559-562
- Biotech's green gold?.Nat. Biotechnol. 2009; 27: 15-18
- A green light for engineered algae. Redirecting metabolism to fuel a biotechnology revolution.Curr. Opin. Biotechnol. 2008; 19: 430-436
- The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion.J. Biol. Chem. 2009; 284: 23415-23425
- Algal lipid bodies. Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii.Eukaryot. Cell. 2009; 8: 1856-1868
- Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol.Metab. Eng. 2010; 12: 387-391
- Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii.Biotechnol. Bioeng. 2010; 107: 258-268
- Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in Chlamydomonas reinhardtii.Limnol. Oceanogr. 1997; 42: 1584-1589
- Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances.Plant J. 2008; 54: 621-639
- Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains.Eukaryot. Cell. 2010; 9: 1251-1261
- Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism.Plant Physiol. 2010; (110.165159)
- RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii.Eukaryot. Cell. 2010; 9: 97-106
- Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. (2011).Eukaryot. Cell. 2011; 10: 1592-1606
- A revised mineral supplement increase biomass and growth rate in Chlamydomonas reinhardtii.Plant J. 2011; 66: 770-780
- Oil accumulation in the model green alga Chlamydomonas reinhardtii. Characterization, variability between common laboratory strains, and relationship with starch reserves.BMC Biotechnol. 2011; 11: 7
- Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters.J. Phycol. 2002; 38: 325-331
- The Chlamydomonas genome reveals the evolution of key animal and plant functions.Science. 2007; 318: 245-250
- An outlook on microalgal biofuels.Science. 2010; 329: 796-799
- Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular sites(s) of biosynthesis.Plant Cell Physiol. 1988; 29: 587-595
- Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii. Discovery of the betaine lipid synthase BTA1Cr.Eukaryot. Cell. 2005; 4: 242-252
- Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis.Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 13018-13023
- DGAT2 is a new diacylglycerol acyltransferase gene family. Purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity.J. Biol. Chem. 2001; 276: 38862-38869
- Stumpf P.K. The Biochemistry of Plants. Academic Press, New York1987: 175-214
- Heterogeneity of the endoplasmic reticulum with respect to lipid synthesis in developing seeds of the Brassica napus L.Planta. 1996; 199: 545-551
- Safflower microsomes catalyze oil accumulation in vitro. A model system.Planta. 1986; 169: 33-37
- Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum.Plant Cell. 2006; 18: 2294-2313
- DGAT1, DGAT2, and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants.Lipids. 2010; 45: 145-157
- The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1.J. Exp. Bot. 2011; 62: 521-532
- Lipopenia and skin barrier abnormalities in DGAT2-deficient mice.J. Biol. Chem. 2004; 279: 11767-11776
- Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase.Plant Physiol. 2006; 141: 1533-1543
- Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis.BMC Genomics. 2011; 12: 286
- Storage lipid synthesis is nonessential in yeast.J. Biol. Chem. 2002; 277: 6478-6482
- The DGA1 gene determines a second triglyceride synthetic pathway in yeast.J. Biol. Chem. 2002; 277: 8877-8881
Benning, C., Miller, R., Moellering, E. R., (2010) Enzyme-directed oil biosynthesis in microalgae, Michigan State University Board of Trustees
- Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii, with focus on proteins involved in lipid metabolism.Proteomics. 2011; 11: 4266-4273
- Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low CO2 atmosphere.Plant Physiol. 2003; 133: 1854-1861
- Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging.Genetics. 1993; 134: 737-747
- The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, Inc., San Diego1989
- Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii.Plant Physiol. 1996; 111: 839-848
- The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii.EMBO J. 2000; 19: 2139-2151
- RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival.Plant Cell. 2010; 22: 2058-2084
- Adaptation to Fe deficiency requires remodeling of the photosynthetic apparatus.EMBO J. 2002; 21: 6709-6720
- FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii.Eukaryot. Cell. 2007; 6: 1841-1852
- Isolation and structural characterization of the Chlamydomonas reinhardtii gene for cytochrome c6. Analysis of the kinetics and metal specificity of its copper-responsive expression.J. Biol. Chem. 1991; 266: 15060-15067
- Lee M. Methods in Enzymology. Academic Press, New York1998: 263-279
- Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Genome Biol. 2009; 10: R25
- Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nat. Meth. 2008; 5: 621-628
- The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes.J. Biol. Chem. 1996; 271: 4632-4639
- Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas.Science. 2003; 299: 1572-1575
- A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 1983; 132: 6-13
- Assumption-free analysis of quantitative real time polymerase chain reaction (PCR) data.Neurosci. Lett. 2003; 339: 62-66
- Amplification efficiency. Linking base line and bias in the analysis of quantitative PCR data.Nucleic Acids Res. 2009; 37: e45
- The MIQE guidelines: minimum information for publication of quantitative real time PCR experiments.Clin. Chem. 2009; 55: 611-622
- ABySS. A parallel assembler for short read sequence data.Genome Res. 2009; 19: 1117-1123
- GMAP. A genomic mapping and alignment program for mRNA and EST sequences.Bioinformatics. 2005; 21: 1859-1875
- The human genome browser at UCSC.Genome Res. 2002; 12: 996-1006
- Integrative genomics viewer.Nat. Biotechnol. 2011; 29: 24-26
- Accumulation of sulfoquinovosyl-1-O-dihydroxyacetone in a sulfolipid-deficient mutant of Rhodobacter sphaeroides inactivated in sqdC.Arch. Biochem. Biophys. 1997; 340: 219-230
- A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii.Gene. 2001; 277: 221-229
- Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas.Plant Physiol. 2010; 153: 1653-1668
- Reverse genetics in Chlamydomonas. A platform for isolating insertional mutants.Plant Methods. 2011; 7: 24
- Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY1989
- Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation.Bioresour. Technol. 2011; 102: 3343-3351
- Wada H. Murata N. Lipids in Photosynthesis: Essential and Regulatory Functions. Spring Science + Business, Berlin2009: 139-155
- Harris E.H. The Chlamydomonas Sourcebook. Elsevier Science Publishers B.V., Amsterdam2009: 41-68
- A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii.FEBS Lett. 2011; 585: 1985-1991
Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., Cerutti, H., (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. 75, 50–59
- Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast.J. Biol. Chem. 2009; 284: 30981-30993
- The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function.Genetics. 2007; 175: 77-91
- DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development.Plant Cell. 2009; 21: 3885-3901
- The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants.Plant Physiol. 2012; 158: 299-312
- A tomato lipase homologous to DAD1 (LeLID1) is induced in post-germinative growing stage and encodes a triacylglycerol lipase.FEBS Lett. 2004; 569: 195-200
- Purification and characterization of triacylglycerol lipase from Aspergillus oryzae.Biosci. Biotechnol. Biochem. 1998; 62: 759-763
- The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC.Chem. Phys. Lipids. 2007; 150: 143-155
- The Chlamydomonas Sourcebook. Elsevier, Amsterdam2009
Yohn, C., Mendez, M., Behnke, C., Brand, A., (November 8, 2011) Stress-induced Lipid Trigger Organization, Sapphire Energy, U.S. Patent no. US 2011 023406.
Article info
Publication history
Footnotes
The nucleotide sequence(s) reported in this paper has been submitted to the GenBankTM/EBI Data Bank with accession number(s) JN815265 and JN815266.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy