Introduction
- di Barletta M.R.
- Viatchenko-Karpinski S.
- Nori A.
- Memmi M.
- Terentyev D.
- Turcato F.
- Valle G.
- Rizzi N.
- Napolitano C.
- Gyorke S.
- Volpe P.
- Priori S.G.
- Lahat H.
- Pras E.
- Olender T.
- Avidan N.
- Ben-Asher E.
- Man O.
- Levy-Nissenbaum E.
- Khoury A.
- Lorber A.
- Goldman B.
- Lancet D.
- Eldar M.
- Terentyev D.
- Nori A.
- Santoro M.
- Viatchenko-Karpinski S.
- Kubalova Z.
- Gyorke I.
- Terentyeva R.
- Vedamoorthyrao S.
- Blom N.A.
- Valle G.
- Napolitano C.
- Williams S.C.
- Volpe P.
- Priori S.G.
- Gyorke S.
EXPERIMENTAL PROCEDURES
Cell Culture and Transfection
Plasmids and Lentiviral Infection
Immunoprecipitation and Immunoblotting
Imaging
Recombinant CSQ2 and JNT Protein Purification
Atomic Force Microscopy (AFM)
Electron Microscopy (EM)
RESULTS
SR Ca2+ Depletion Induces Decondensation of CSQ2 Speckles



CSQ2 Interacts with JNT

Macromolecular Structure of Polymerized CSQ2 in Vitro



DISCUSSION
- Terentyev D.
- Kubalova Z.
- Valle G.
- Nori A.
- Vedamoorthyrao S.
- Terentyeva R.
- Viatchenko-Karpinski S.
- Bers D.M.
- Williams S.C.
- Volpe P.
- Gyorke S.
- Terentyev D.
- Kubalova Z.
- Valle G.
- Nori A.
- Vedamoorthyrao S.
- Terentyeva R.
- Viatchenko-Karpinski S.
- Bers D.M.
- Williams S.C.
- Volpe P.
- Gyorke S.
Canato, M., Scorzeto, M., Giacomello, M., Protasi, F., Reggiani, C., Stienen, G. J., (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proceedings of the National Academy of Sciences of the United States of America 107, 22326–22331.
- Yuan Q.
- Fan G.C.
- Dong M.
- Altschafl B.
- Diwan A.
- Ren X.
- Hahn H.H.
- Zhao W.
- Waggoner J.R.
- Jones L.R.
- Jones W.K.
- Bers D.M.
- Dorn 2nd, G.W.
- Wang H.S.
- Valdivia H.H.
- Chu G.
- Kranias E.G.
- Knollmann B.C.
- Chopra N.
- Hlaing T.
- Akin B.
- Yang T.
- Ettensohn K.
- Knollmann B.E.
- Horton K.D.
- Weissman N.J.
- Holinstat I.
- Zhang W.
- Roden D.M.
- Jones L.R.
- Franzini-Armstrong C.
- Pfeifer K.

Acknowledgments
Supplementary Material
REFERENCES
- Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin.Eur. Biophys. J. 2009; 39: 27-36
- Isolation of a calcium-sequestering protein from sarcoplasmic reticulum.Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 1231-1235
- Calsequestrin and the calcium release channel of skeletal and cardiac muscle.Prog Biophys Mol. Biol. 2004; 85: 33-69
- Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum.J. Biol. Chem. 1995; 270: 9027-9030
- Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane.J. Biol. Chem. 1997; 272: 23389-23397
- Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.Biochim. Biophys. Acta. 2001; 1515: 120-132
- The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.Biophys. J. 2004; 86: 2121-2128
- Clinical phenotype and functional characterization of CASQ2 mutations associated with catecholaminergic polymorphic ventricular tachycardia.Circulation. 2006; 114: 1012-1019
- A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel.Am. J. Hum. Genet. 2001; 69: 1378-1384
- Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia.Circ. Res. 2002; 91: e21-e26
- Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death.Circ. Res. 2006; 98: 1151-1158
- Stress and high heart rate provoke ventricular tachycardia in mice expressing triadin.J. Mol. Cell Cardiol. 2007; 42: 962-971
- Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning.J. Biol. Chem. 1988; 263: 8958-8964
- Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum.Nat. Struct. Biol. 1998; 5: 476-483
- Polymerization of calsequestrin. Implications for Ca2+ regulation.J. Biol. Chem. 2003; 278: 16176-16182
- Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization.J. Biol. Chem. 2004; 279: 18026-18033
- Knocking down type 2 but not type 1 calsequestrin reduces calcium sequestration and release in C2C12 skeletal muscle myotubes.J. Biol. Chem. 2006; 281: 15572-15581
- The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study.J. Cell Biol. 1987; 105: 49-56
- Oligomerization is an intrinsic property of calsequestrin in normal and transformed skeletal muscle.Biochem. Biophys. Res. Commun. 1997; 240: 721-727
- Overexpression of calsequestrin in L6 myoblasts: formation of endoplasmic reticulum subdomains and their evolution into discrete vacuoles where aggregates of the protein are specifically accumulated.Mol. Biol. Cell. 1997; 8: 1789-1803
- Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase.Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 2466-2470
- Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum.J. Biol. Chem. 1989; 264: 17816-17823
- 2,5-Di(tert-butyl)-1,4-benzohydroquinone: a novel inhibitor of liver microsomal Ca2+ sequestration.FEBS Lett. 1987; 224: 331-336
- Characterization of skeletal muscle calsequestrin by 1H NMR spectroscopy.J. Biol. Chem. 1984; 259: 11876-11881
- Ca2+-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.J. Biol. Chem. 1993; 268: 24635-24641
- Studies on a metal-binding protein of the sarcoplasmic reticulum.J. Biol. Chem. 1974; 249: 2357-2365
- Apparent cooperativity of Ca2+ binding associated with crystallization of Ca2+-binding protein from sarcoplasmic reticulum.Arch. Biochem. Biophys. 1986; 251: 369-378
- Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin.J. Biol. Chem. 1988; 263: 1376-1381
- Size and shape of rabbit skeletal muscle calsequestrin.J. Biol. Chem. 1984; 259: 6248-6252
- Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region.Biochemistry. 1987; 26: 7458-7465
- Depletion “skraps” and dynamic buffering inside the cellular calcium store.Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 2982-2987
- Modulation of SR calcium release by luminal calcium and calsequestrin in cardiac myocytes: effects of CASQ2 mutations linked to sudden cardiac death.Biophys. J. 2008; 95: 2037-2048
- The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors.Biophys. J. 2006; 91: 1288-1301
- Defective glycosylation of calsequestrin in heart failure.Cardiovasc Res. 2004; 63: 264-272
- Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle.J. Biol. Chem. 2010; 285: 25645-25653
Canato, M., Scorzeto, M., Giacomello, M., Protasi, F., Reggiani, C., Stienen, G. J., (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proceedings of the National Academy of Sciences of the United States of America 107, 22326–22331.
- Sarcoplasmic reticulum calcium overloading in junctin deficiency enhances cardiac contractility but increases ventricular automaticity.Circulation. 2007; 115: 300-309
- Junctin is a prominent regulator of contractility in cardiomyocytes.Biochem. Biophys. Res. Commun. 2007; 352: 617-622
- On the role of junctin in cardiac Ca2+ handling, contractility, and heart failure.Am. J. Physiol. Heart Circ Physiol. 2007; 293: H728-H734
- Cardiac remodeling and atrial fibrillation in transgenic mice overexpressing junctin.FASEB J. 2002; 16: 1310-1312
- Impaired relaxation in transgenic mice overexpressing junctin.Cardiovasc Res. 2003; 59: 369-379
- Junctin and the histidine-rich Ca2+-binding protein: potential roles in heart failure and arrhythmogenesis.J Physiol. 2009; 587: 3125-3133
- Identification of calmodulin-, Ca2+-, and ruthenium red-binding domains in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum.J. Biol. Chem. 1994; 269: 22698-22704
- N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor.J. Biol. Chem. 2004; 279: 26481-26488
- Selective binding of FKBP12.6 by the cardiac ryanodine receptor.J. Biol. Chem. 1996; 271: 20385-20391
- Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin.J. Clin. Invest. 1998; 101: 1385-1393
- Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia.J. Clin. Invest. 2006; 116: 2510-2520
- New roles of calsequestrin and triadin in cardiac muscle.J Physiol. 2009; 587: 3081-3087
- Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin).J. Biol. Chem. 1993; 268: 12646-12654
- Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum.J. Biol. Chem. 1995; 270: 30787-30796
- Structural alterations in cardiac calcium release units resulting from overexpression of junctin.J Mol Cell Cardiol. 2001; 33: 233-247
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy