Redefinition of the Carbohydrate Binding Specificity of Helicobacter pylori BabA Adhesin

Received for publication, June 3, 2012, and in revised form, July 6, 2012 Published, JBC Papers in Press, July 20, 2012, DOI 10.1074/jbc.M112.387654

John Benktander‡, Jonas Ångström†, Michael E. Breimer§, and Susann Teneberg‡†
From the ‡Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, P. O. Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden and †Department of Surgery, Sahlgrenska University Hospital, S-41 345 Göteborg, Sweden

Background: The BabA adhesin mediates binding of Helicobacter pylori to the gastric epithelium.

Results: Binding of BabA to blood group O and A determinants on type 4 core chains was demonstrated.

Conclusion: The BabA binds to blood group determinants on both type 1 and type 4 core chains.

Significance: Characterization of the binding specificities of BabA is important for understanding the interactions between H. pylori and target cells.

Certain Helicobacter pylori strains adhere to the human gastric epithelium using the blood group antigen-binding adhesin (BabA). All BabA-expressing H. pylori strains bind to the blood group O determinants on type 1 core chains, i.e. the Lewis b antigen (Fucα2Galβ3(Fucα4)GlcNAc; Leβ) and the H type 1 determinant (Fucα2Galβ3GlcNAc). Recently, BabA strains have been categorized into those recognizing only Leβ and H type 1 determinants (designated generalist strains) and those that also bind to A and B type 1 determinants (designated specialist strains). Here, the structural requirements for carbohydrate recognition by generalist and specialist BabA were further explored by binding of these types of strains to a panel of different glycosphingolipids. Three glycosphingolipids recognized by both specialist and generalist BabA were isolated from the small intestine of a blood group O pig and characterized by mass spectrometry and proton NMR as H type 1 pentaglycosylceramide (Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer), Globo H hexaglycosylceramide (Fucα2Galβ3GlcNAcβ3Galα4Galβ4Glcβ1Cer), and a mixture of three complex glycosphingolipids (Fucα2Galβ4GlcNAcβ6(Fucα2Galβ3GlcNAcβ3Galβ3GlcNAcβ3Galβ4Glcβ1Cer), Fucα2Galβ3GlcNAcβ6(Fucα2Galβ3GlcNAcβ3Galβ3GlcNAcβ3Galβ4Glcβ1Cer), and Fucα2Galβ4(Fucα3)GlcNAcβ6(Fucα2Galβ3GlcNAcβ3Galβ3GlcNAcβ3Galβ4Glcβ1Cer). In addition to the binding of both strains to the Globo H hexaglycosylceramide, i.e. a blood group O determinant on a type 4 core chain, the generalist strain bound to the Globo A heptaglycosylceramide (GalNAcα3(Fucα2)Galβ3GlcNAcβ3Galα4Galβ4Glcβ1Cer), i.e. a blood group A determinant on a type 4 core chain. The binding of BabA to the two sets of iso-receptors is due to conformational similarities of the terminal disaccharides of H type 1 and Globo H and of the terminal trisaccharides of A type 1 and Globo A.

Attachment of microbes to cell surface receptors on the target tissue is considered an essential step in the initiation, establishment, and maintenance of infection. In recent years, a large number of studies have aimed at the identification of potential microbial host receptors, the majority of which appear to be glycoconjugates (1–3). Glycoconjugates exhibit a characteristic and specific pattern of expression, which is dependent on the animal species, age, individual, and cell type (4). Thus, the recognition of a specific carbohydrate receptor on the host cell surface determines at least in part the host, tissue, and age specificities of microbial infections.

Adherence of the gastric pathogen Helicobacter pylori to human gastric epithelial cells is required for prolonged persistence in the stomach. Initial studies of potential target cell receptors for H. pylori demonstrated the binding of certain strains of this bacterium to the Lewis b blood group antigen (Fucα2Galβ3(Fucα4)GlcNAc; Leβ) (5), and subsequently the H. pylori Leβ-binding adhesin, blood group antigen-binding adhesin (BabA) was identified (6). H. pylori strains expressing BabA together with the vacuolating cytotoxin VacA and the cytotoxin-associated antigen CagA (triple positive strains) are associated with severe gastric diseases such as peptic ulcer and gastric adenocarcinoma (7, 8).

Subsequent studies demonstrated that the BabA adhesin has adapted to the fucosylated blood group antigens most prevalent in the local population (9). In Europe and the United States where blood group A, B, and O phenotypes all are common, the H. pylori strains (designated generalist strains) bind to blood group A, B, and O type 1 determinants. However, in populations such as the indigenous South American native population, which only has the blood group O phenotype, the H. pylori

2 The glycosphingolipid nomenclature follows the recommendations by the IUPAC-IUB Commission on Biochemical Nomenclature (Chester, M. A. (1998) IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids—recommendations 1997. Eur. J. Biochem. 257, 293–298). It is assumed that Gal, Glc, GlcNAc, GalNAc, NeuAc, and NeuGc are of the α configuration; Fuc is of the L configuration; and all sugars are present in the pyranose form.

The abbreviations used are: Leβ, Lewis b antigen; BabA, blood group antigen-binding adhesin; ESI, electrospray ionization; Hex, hexose; HexNAc, N-acetylgalactosamine; Cer, ceramide; Leα, Lewis y antigen; Leβ, Lewis a antigen; NeuGc, N-glycolyneramic acid.

* This study was supported by Swedish Research Council Grant 12628, the Swedish Cancer Foundation, and governmental grants (to the Sahlgrenska University Hospital).

‡† Author’s Choice—Final version full access.

This article contains supplemental Figs. S1 and S2.

To whom correspondence should be addressed. Tel.: 46-31-786-34-92; Fax: 46-31-413-190; E-mail: Susann.Teneberg@medkem.gu.se.

This is an Open Access article under the CC BY license.
strains (designated specialist strains) bind only to the blood group O type 1 determinants (Leb and the H type 1). Thus, the carbohydrate binding site of BabA of generalist strains can accommodate an extension of the blood group O determinant with an α3-linked GalNAc or Gal (creating the blood group A and B determinants, respectively), whereas this extension is not tolerated by the BabA of specialist strains. Consequently, the BabA adhesins from these strains have differences in the architecture of their carbohydrate binding sites.

In the present study, the structural requirements for carbohydrate recognition by BabA of generalist and specialist H. pylori strains were further explored. Radiolabeled H. pylori strains were examined for binding to a panel of different glycosphingolipids from various sources separated on thin-layer plates, and glycosphingolipids recognized by wild type specialist and/or generalist H. pylori, but not by a deletion mutant strain lacking the BabA adhesin, were isolated and characterized by mass spectrometry and proton NMR. Comparative binding studies demonstrated that the BabA adhesin in addition to blood group determinants on type 1 core chains recognizes blood group O and A determinants on type 4 core chains with binding to Globo H (i.e. H type 4) by both strains and Globo A (i.e. A type 4) by the generalist strain. Inspection of minimum energy models revealed topographical similarities in the spatial orientation of the terminal disaccharide (Fucose2Gal(3)) of the Globo H and H5 type 1 glycosphingolipids, accounting for the BabA cross-reactivity.

EXPERIMENTAL PROCEDURES

H. pylori Strains, Culture Conditions, and Labeling—The generalist H. pylori strain J99 and the construction of the J99/babA::cam were described by Mahdavi et al. (10). The specialist H. pylori strain S831 was described (9).

For chromatogram binding experiments, the bacteria were grown in a microaerophilic atmosphere at 37°C for 48 h on Brucella medium (Difco) containing 10% fetal calf serum (Harlan Sera-Lab, Loughborough, UK) inactivated at 56 °C and BBL IsoVitaleX Enrichment (BD Biosciences). The mutant strain J99/babA– was cultured on the same medium supplemented with chloramphenicol (20 μg/ml). Bacteria were radiolabeled by the addition of 50 μCi [35S]methionine (Amersham Biosciences) diluted in 0.5 ml of phosphate-buffered saline (PBS), pH 7.3 to the culture plates. After incubation for 12–72 h at 37°C under microaerophilic conditions, the bacteria were harvested, centrifuged three times, and thereafter suspended to 1 × 10⁸ cfu/ml in PBS. The specific activities of the suspensions were ~1 cpm/100 H. pylori organisms.

Chromatogram Binding Assays—Reference glycosphingolipids were isolated and characterized by mass spectrometry and proton NMR as described (11).

Thin-layer chromatography was performed on glass- or aluminum-backed silica gel 60 HPTLC plates (Merck). Mixtures of glycosphingolipids (40 μg) or pure compounds (40 ng–4 μg) were separated using chloroform/methanol/water (60:35:8 by volume) as the solvent system. Chemical detection was accomplished by anisaldehyde (12).

Binding of [35S]labeled H. pylori to glycosphingolipids on thin-layer chromatograms was done as reported previously (13). Dried chromatograms were dipped for 1 min in diethyl ether/n-hexane (1:5 by volume) containing 0.5% (w/v) polyisobutylmethacrylate (Aldrich). After drying, the chromatograms were soaked in PBS containing 2% bovine serum albumin (w/v), 0.1% NaN₃ (w/v), and 0.1% Tween 20 (by volume) for 2 h at room temperature. The chromatograms were subsequently covered with radiolabeled bacteria diluted in PBS (2–5 × 10⁶ cfu/ml). Incubation was done for 2 h at room temperature followed by repeated washings with PBS. The chromatograms were thereafter exposed to XAR-5 x-ray films (Eastman Kodak Co.) for 12 h.

Chromatogram binding assays with mouse monoclonal antibodies directed against the Globo H determinant (MBr1, Enzo Life Sciences), the Leb determinant (BG-6/T218, Signet/Covance), the H type 1 determinant (17–206, Abcam), and the H type 2 determinant (A583, DakoCytomation Norden A/S) were done as described (13) using [125I]-labeled monoclonal anti-mouse antibodies (Z0259, DakoCytomation Norden A/S) for detection.

Isolation of H. pylori-binding Glycosphingolipids—Total acid and non-acid glycosphingolipid fractions were isolated by standard methods (11). Briefly, the material was lyophilized and then extracted in two steps in a Soxhlet apparatus with chloroform and methanol (2:1 and 1:9 by volume, respectively). The material obtained was subjected to mild alkaline hydrolysis and dialysis followed by separation on a silicic acid column. Acid and non-acid glycosphingolipid fractions were obtained by chromatography on a DEAE-cellulose column. To separate the non-acid glycolipids from alkali-stable phospholipids, this fraction was acetylated and separated on a second silicic acid column followed by deacetylation and dialysis. Final purifications were done by chromatographies on DEAE-cellulose and silicic acid columns.

The non-acid glycosphingolipid fractions were separated by repeated silicic acid chromatography, and final separation was achieved by HPLC or by chromatography on Iatrobead (Iatrobeads 6RS-8060, Iatron Laboratories, Tokyo, Japan) columns and elution with chloroform/methanol/water (65:25:4 by volume) followed by chloroform/methanol/water (60:35:8 by volume) and finally chloroform/methanol/water (40:40:12 by volume). Throughout the separation procedures, aliquots of the fractions obtained were analyzed by thin-layer chromatography, and fractions that were colored green by anisaldehyde were tested for binding of H. pylori using the chromatogram binding assay. The fractions were pooled according to the mobility on thin-layer chromatograms and their H. pylori binding activity.

Endoglycoceramidase Digestion and LC-ESI/MS—Endoglycoceramidase II from *Rhodococcus* spp. (14) (Takara Bio Europe S.A., Gennevilliers, France) was used for hydrolysis of glycosphingolipids. Briefly, 50 mg of glycosphingolipids were suspended in 100 ml of 0.05 M sodium acetate buffer, pH 5.0 containing 120 mg of sodium cholate and sonicated briefly. Thereafter, 1 milliunit of endoglycoceramidase II was added, and the mixture was incubated at 37°C for 48 h. The reaction was stopped by addition of chloroform/methanol/water to the final proportions 8:4:3 (by volume). The oligosaccharide-containing upper phase thus obtained was separated from deter-
H. pylori BabA-binding Glycosphingolipids
gent on a Sep-Pak QMA cartridge (Waters, Milford, MA). The eluant containing the oligosaccharides was dried under nitrogen and under vacuum.

The glycosphingolipid-derived oligosaccharides were analyzed by LC/MS and MS/MS as described (15). In brief, the oligosaccharides were separated on a column (200 × 0.180 mm) packed in house with 5-mm porous graphite particles (Hypercarb, Thermo Scientific) and eluted with an acetonitrile gradient (A, 10 mM ammonium bicarbonate; B, 10 mM ammonium bicarbonate in 80% acetonitrile). The saccharides were analyzed in the negative ion mode on an LTQ linear quadrupole ion trap mass spectrometer (Thermo Electron, San José, CA).

LC-ESI/MS and ESI/MS/MS of Native Glycosphingolipids—The glycosphingolipids (dissolved in methanol/acetonitrile, 75:25 by volume) were separated on a 200 × 0.150-mm column packed in house with 5-mm polyamine II particles (YMC Europe GmbH, Dinslaken, Germany) and eluted with a water gradient (A, 100% acetonitrile; B, 10 mM ammonium bicarbonate). Samples were analyzed on an LTQ linear quadrupole ion trap mass spectrometer by LC-ESI/MS at 30 °C. Samples were analyzed on an LTQ linear quadrupole ion trap mass spectrometer (Thermo Electron, San Jose, CA). LC-ESI/MS and ESI/MS/MS of Native Glycosphingolipids—The glycosphingolipids (dissolved in methanol/acetonitrile, 75:25 by volume) were separated on a 200 × 0.150-mm column packed in house with 5-mm polyamine II particles (YMC Europe GmbH, Dinslaken, Germany) and eluted with a water gradient (A, 100% acetonitrile; B, 10 mM ammonium bicarbonate). Samples were analyzed on an LTQ linear quadrupole ion trap mass spectrometer by LC-ESI/MS at 30 °C. Samples were analyzed on an LTQ linear quadrupole ion trap mass spectrometer (Thermo Electron, San José, CA).

Proton NMR Spectroscopy—1H NMR spectra were acquired on a Varian 600-MHz spectrometer at 30 °C. Samples were dissolved in dimethyl sulfoxide/D2O (98:2 by volume) after deuterium exchange. Two-dimensional double quantum-filtered correlated spectroscopy (COSY) spectra were recorded using the standard pulse sequence (16).

Molecular Modeling—Minimum energy models of different glycosphingolipids were constructed using the CHARMM force field within the Discovery Studio molecular modeling package (Accelrys, Inc., San Diego, CA) and literature values as starting points for the glycosidic torsion angles (17, 18).

RESULTS

Binding of H. pylori to Glycosphingolipid Mixtures—Screening for BabA-mediated binding of H. pylori was done by binding of the generalist H. pylori strain J99, the specialist strain S831, and the deletion mutant strain J99/BabA — to non-acid glycosphingolipid fractions from various sources to expose the bacteria to a large number of potentially binding-active carbohydrate structures. Thus, the binding of the bacteria to non-acid glycosphingolipid mixtures isolated from the small intestine of different species (human, rat, cat, and pig (19–23)), erythrocytes of different species (human, cat, rabbit, dog, horse, chicken, and sheep (24)), human cancers (lung, kidney, colon, liver, and gastric cancers (25)), and human stomach (26) was tested. Thereby, three glycosphingolipids recognized by both the generalist and specialist H. pylori strain were detected in the non-acid glycosphingolipid fraction from the small intestinal epithelium of a blood group O pig (Fig. 1, B and C, lane 1). The binding-active compounds migrated in the penta-, hexa-, and octa- nonaglycosylceramide regions, respectively. No binding of the deletion mutant strain J99/BabA — to the porcine intestinal glycosphingolipids was obtained (data not shown), indicating that the binding of the wild type bacteria to these compounds was mediated by BabA.

Isolation of the H. pylori-binding Glycosphingolipids from Porcine Intestine—A total non-acid fraction from blood group O porcine small intestinal epithelium (160 mg) was separated by repeated silica gel chromatography and Iatrobead column chromatography, and the subfractions obtained were tested for H. pylori binding activity. After pooling of binding-active fractions, three subfractions containing H. pylori-binding glycosphingolipids were obtained. One of these fraction (designated fraction P-I (0.2 mg)) migrated in the pentaglycosylceramide region, whereas the fraction designated fraction P-II (0.2 mg) demonstrated the Globo H hexaglycosylceramide region, and the fraction designated fraction P-III (0.2 mg) migrated in the hexaglycosylceramide region (Fig. 2, lanes 1 and 2). LC-ESI/MS of the third fraction containing the slowest migrating H. pylori-binding compounds showed that this was a mixture of several glycosphingolipids. This fraction was therefore further separated on an Iatrobead column, and after pooling of the H. pylori-binding fractions, 0.3 mg of the slowest migrating H. pylori-binding compound (designated fraction P-III) was obtained (Fig. 2, lane 3).

Characterization of the H. pylori-binding Fraction P-I from Porcine Intestine—LC-ESI/MS, proton NMR, and antibody binding demonstrated that fraction P-I was a mixture of the H type 1 pentaglycosylceramide (Fucα2Galβ3GlcnAcβ3Galβ4Glcβ1Cer) and the B5 pentaglycosylceramide (Galoα3Galβ4GlcNAcβ3Galβ4Glcβ1Cer) (data not shown).

Characterization of the H. pylori-binding Fraction P-II from Porcine Intestine—Characterization of the BabA binding fraction P-II demonstrated the GlobO H hexaglycosylceramide (Fucα2Galβ3GlcNAcβ3Galaβ4Glcβ1Cer) as the major compound. This conclusion was based on the following properties. (i) ESI/MS of the native fraction P-II gave a major [M – 2H]+ ion at m/z 784, corresponding to a molecular ion at m/z 1568, demonstrating a glycosphingolipid with one Fuc, one HexNAc, and four Hex residues and phytosphingosine with hydroxy 16:0 fatty acid (data not shown). The series of C, Y, and Z ions obtained by MS2 of the [M – 2H]+ ion at m/z 784...
H. pylori BabA-binding Glycosphingolipids

MS2 of the molecular ion at m/z 1014 (Fig. 3E) also gave a series of C type fragment ions with C_2 at m/z 325, C_3 at m/z 528, and C_4 at m/z 690 along with a C_5 ion at m/z 852, identifying a Fuc-Hex-HexNAc-Hex-Hex sequence. The $0.2A_1$ fragment ion at m/z 792 and the $0.2A_2$ fragment ion at m/z 954 indicated that the two hexoses at the reducing end were substituted at C-4, i.e. a Fuc-Hex-HexNAc-Hex-4Hex-4Hex sequence.

(iii) The anomeric region of the proton NMR spectrum of fraction P-II (Fig. 3F) revealed a single dominating species with six carbohydrate residues that is identical to the previously published Globo H glycosphingolipid (29) as evidenced by signals at 4.949 (Fuc\textsubscript{2}), 4.802 (Galo\textsubscript{4}), 4.468 (GalNAc\textsubscript{3}), 4.456 (Gal\textsubscript{3}), 4.247 (Gal\textsubscript{4}), and 4.208 ppm (Glc\textsubscript{1}β), thus yielding the sequence Fuca\textsubscript{2}Gal\textsubscript{2}Gal\textsubscript{2}Gal\textsubscript{3}Gal\textsubscript{3}Gal\textsubscript{4}Glc\textsubscript{1}Cer in accordance with the mass spectrometry data above.

Thus, by mass spectrometry and proton NMR, the BabA-binding hexaglycosylceramide of blood group O pig intestine was identified as the Globo H glycosphingolipid. In the base peak chromatogram from LC-ESI/MS of the oligosaccharides obtained by hydrolysis of fraction P-II with Rhodococcus endoglycoceramidase (Fig. 3A), the major molecular ion was found at m/z 852, corresponding to the H type 1 pentaglycosylceramide. Still, proton NMR demonstrated that fraction P-II was a relatively pure Globo H glycosphingolipid. This discrepancy is due to the restricted hydrolytic capacity of the Rhodococcus endoglycoceramidase II, which has a relative resistance of hydrolysis for globo series glycosphingolipids (14, 30). The ideal enzyme would have been the ceramide glycanase from Macrobodella decorata that has a more universal hydrolytic activity toward glycosphingolipids (31). However, the M. decora enzyme is no longer available commercially.

Characterization of the Slow Migrating H. pylori-binding Fraction P-III from Porcine Intestine—Antibody binding, mass spectrometry, and proton NMR demonstrated that fraction P-III was a mixture of two branched decaglycosylceramides with terminal H type 1 epitopes (Fuca\textsubscript{2}Gal\textsubscript{2}Gal\textsubscript{3}Gal\textsubscript{3}Gal\textsubscript{4}Glc\textsubscript{1}Cer) (Fuca\textsubscript{2}Gal\textsubscript{2}Gal\textsubscript{3}Gal\textsubscript{3}Gal\textsubscript{4}Glc\textsubscript{1}Cer) and a related undecaglycosylceramide with a Fuca\textsubscript{3} substitution of the GlcNAc of the 6-branch, yielding an Le1 determinant (Fuca\textsubscript{2}Gal\textsubscript{2}Gal\textsubscript{3}Glc\textsubscript{1}Cer). This conclusion is based on the following observations. (i) The glycosphingolipid fraction P-III was stained by both the anti-H type 1 antibody and the anti-H type 2 antibody (Fig. 2, D and E, lane 3).

(ii) ESI/MS of the native fraction P-III gave a major [M – 2H+]2− ion at m/z 1132, corresponding to a molecular ion at m/z 2264, indicating a decasaccharide with two Fuc, three HexNAc, and five Hex residues combined with sphinogine and non-hydroxy 16:0 fatty acid (data not shown). In addition, there was an [M – 2H+]2− ion at m/z 1205, corresponding to a molecular ion at m/z 2410, suggesting an undecasaccharide with three Fuc, three HexNAc, and five Hex residues combined with sphinogine and non-hydroxy 16:0 fatty acid.

(iii) LC-ESI/MS of the oligosaccharides obtained by hydrolysis of fraction P-III with Rhodococcus endoglycoceramidase II had two [M – 2H+]2− ions at m/z 864, corresponding to molec-
ular ions at \(m/z \) 1728, demonstrating two decasaccharides, both with two Fuc, three HexNAc, and five Hex residues (supplementary Fig. S2). The minor \([M - 2H]^+\) ion eluted at 23.4–24.5 min, and the major \([M - 2H]^+\) ion eluted at 25.8–26.1 min. The MS\(^2\) spectra of the minor and major \([M - 2H]^+\) ions both had weak lower mass regions, but in both cases, a terminal Fuc-Hex-HexNAc sequence was indicated by C\(_2\) ions at \(m/z \) 325 and/or C\(_3\) ions at \(m/z \) 528 or B\(_3\) ions at \(m/z \) 510 (Fig. 4, A and B). In addition, there were intense C type ions at \(m/z \) 1201, 1404, and 1566.

MS\(^3\) of the ion at \(m/z \) 1201 at retention time 23.4 min gave a C\(_3\) ion at \(m/z \) 528, again demonstrating a terminal Fuc-Hex-HexNAc sequence (Fig. 4C). In contrast, the MS\(^3\) spectrum of the ion at \(m/z \) 1201 at retention time 26.3 min was dominated

![Figure 3](image-url)
by an intense $^{0,2}\text{A}_3$ ion at m/z 427 and an $^{0,2}\text{A}_3$ - H$_2$O ion at m/z 409, which together with the C_3 ion at m/z 528 identified a terminal Fuc-Hex-HexNAc sequence with 4-substitution of the HexNAc, i.e. a type 2 core chain (Fig. 4D) (15, 27, 28).

Both MS3 spectra (Fig. 4, C and D) had C_4/Z_4 ions at m/z 672. These ions are obtained by double glycosidic cleavage at the 3-linked bond of the branched Hex residue and thus comprise the 6-linked carbohydrate chain and the core branching Hex residue (32). The $^{0,3}\text{A}_4$ ions at m/z 600 obtained by cross-ring cleavages present in both MS3 spectra further confirm the Fuc-Hex-HexNAc sequence on the 6-branch (32).

Thus, these MS2 and MS3 spectral features suggested that fraction P-III contained two branched decasaccharides, i.e. two Fuc-Hex-HexNAc-(Fuc-Hex-HexNAc)-Hex-HexNAc-Hex saccharides. The terminal Fuc-Hex-HexNAc sequences of the minor compound had type 1 core chains, whereas the terminal Fuc-Hex-HexNAc sequences of the major compound had type 2 core chain on at least one branch.

The LC-ESI/MS base peak chromatogram of the oligosaccharides from fraction P-III (supplemental Fig. S2) also had an $[M-2\text{H}^+]^{2-}$ ion at m/z 937, corresponding to a molecular ion at m/z 1874, indicating an undecasaccharide with three Fuc, three HexNAc, and five Hex residues. In addition, the MS3 and MS3 spectra obtained had weak lower mass regions (Fig. 5). There was a C_2 ion at m/z 325 and a B_3 ion at m/z 510, indicating a terminal Fuc-Hex-HexNAc sequence. In addition, the B_3 ion at m/z 656 demonstrated a terminal Fuc-Hex-(Fuc-)HexNAc sequence. This was confirmed by the C_4/Z_4 ion at m/z 818, comprising the 6-linked carbohydrate chain and the core branching Hex residue, and the $^{0,3}\text{A}_4$ cross-ring cleavage ion at m/z 746. Furthermore, both the C_4/Z_4 ion and the $^{0,3}\text{A}_4$ ion demonstrated that the Fuc-Hex-(Fuc-)HexNAc sequence was carried by the 6-branch (32).

The spectra also had a series of prominent C type fragment ions (C_4 at m/z 1347, C_5 at m/z 1500, and C_6 at m/z 1712). Taken all together, MS3 and MS3 indicated a branched undecasaccharide (Fuc-Hex-(Fuc-)HexNAc-(Fuc-Hex-HexNAc)-Hex-HexNAc-Hex-Hex with a Fuc-Hex-(Fuc-)HexNAc sequence on the 6-branch and an H type 1 epitope on the 3-branch.
H. pylori BabA-binding Glycosphingolipids

(iv) The anomeric region of the proton NMR of fraction P-III is shown in Fig. 6. Fraction P-III contains two decaglycosylceramides (Fucα2Galβ4GlcNAcβ6(Fucα2-Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer and Fucα2Galβ3GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer) that have been isolated previously from rat (33) and pig intestine (23) and characterized in detail by NMR (using DMSO/D2O (98:2) as solvent). In fraction P-III, NMR (using DMSO/D2O (98:2) as solvent). In fraction P-III,

(v) The anomeric region of the proton NMR spectrum of the glycosphingolipid with mixed type 1/type 2 branches (Fucα2Galβ4GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer) is the major compound as evidenced by the relative intensities of the Fucα2 signals. The chemical shift data are summarized in Table 1. In addition, a novel glycosphingolipid structure with an Leα determinant on the 6-branch and an H type 1 determinant on the 3-branch (Fucα2-Galβ4(Fucα3)GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3-GlcNAcβ3Galβ4Glcβ1Cer) could be characterized as shown in Fig. 6 and Table 1.

Comparative Glycosphingolipid Binding Assays—Thereafter, the binding of the specialist H. pylori strain S831 and the generalist strain J99 to a number of reference glycosphingolipids was evaluated. The results are summarized in Table 2. When using this set of reference glycosphingolipids, only the Leβ hexaglycosylceramide was recognized by the specialist strain S831 (Fig. 7, lane 1), whereas the generalist H. pylori strain J99 in addition to the Leα hexaglycosylceramide bound to the A type 1 hexaglycosylceramide (GalNAcα3(Fucα2)Galβ3GlcNAcβ3Galβ4Glcβ1Cer; Fig. 7B, lane 4), the B type 1 hexaglycosylceramide (Galα3(Fucα2)Galβ3GlcNAcβ3Galβ4Glcβ1Cer; Table 2, Number 9), the A type 1 heptaglycosylceramide (GalNAcα3(Fucα2)Galβ3GlcNAcβ3Galβ4Glcβ1Cer; Fig. 7B, lane 3), the B type 1 heptaglycosylceramide (Galα3(Fucα2)Galβ3GlcNAcβ3Galβ4Glcβ1Cer; Fig. 7B, lane 2), the A type 1 octaglycosylceramide (GalNAcα3-(Fucα2)Galβ3GlcNAcβ3Galβ3GlcNAcβ3Galβ4Glcβ1Cer; Table 2, Number 17), and the repetitive A type 1 nonaglycosylceramide (GalNAcα3(Fucα2)Galβ3GlcNAcβ3(Fucα2)Galβ3GlcNAcβ3Galβ4Glcβ1Cer; Fig. 7B, lane 6). Furthermore, the chromatogram binding assay revealed that the A type 4 heptaglycosylceramide (Globo A; GalNAcα3(Fucα2)Galβ3GlcNAcβ3Galβ4Glcβ1Cer; Fig. 7B, lane 5) was also recognized by the generalist strain.

However, no type 2 core counterparts of these compounds were recognized such as e.g. the H type 2 pentaglycosylceramide (Fig. 1, lane 2; Table 2, Number 5), the Leβ hexaglycosylceramide (Number 8), the A type 2 hexaglycosylceramide (Number 12), the B type 2 hexaglycosylceramide (Number 10), the A
type 2 heptaglycosylceramide (Fig. 8B, lane 7; Number 15), and the A type 2 nonaglycosylceramide (Number 19). Furthermore, the A tetraglycosylceramide (Number 1) and the A type 3 nonaglycosylceramide (Number 20) were also non-binding. When the generalist and specialist H. pylori strains were compared with respect to their ability to bind to dilutions of the binding-active glycosphingolipids on thin-layer chromatograms, the Leb hexaglycosylceramide was the preferred ligand of both strains, and two strains bound to this compound with similar detection limits (Fig. 8, lanes 1–3). In addition, the generalist strain J99 bound to the GalNAcα3-substituted Leb (i.e. the A type 1 heptaglycosylceramide), the Globo A heptaglycosylceramide, and the nonaglycosylceramide with repetitive type 1 blood group A determinants in all cases with detection limits at ~40 ng (Fig. 8A).

Molecular Modeling—Inspection of the minimum energy models of the H type 1 pentaglycosylceramide and the Globo H heptaglycosylceramide revealed a substantial topographical similarity, which makes it reasonable that these two compounds may be accommodated within the same carbohydrate binding site of BabA (Fig. 9). In contrast, the terminal disaccharide of the non-binding H type 2 pentaglycosylceramide (right) is rotated relative to the same disaccharide in the H type 1 pentaglycosylceramide (left) and the Globo H heptaglycosylceramide (center) by ~90°, explaining why this compound is non-binding.

Binding of Anti-Globo H to Glycosphingolipids from Human Stomach—Having established that H. pylori recognizes the Globo H glycosphingolipid, we next examined whether this glycosphingolipid is present in the target tissue of H. pylori by binding of monoclonal antibodies directed against the Globo H determinant to non-acid glycosphingolipid fractions from human stomach. Thereby, binding in the hexaglycosylceramide region was observed in the non-acid fractions from the stomach of the two individuals tested (Fig. 10B, lanes 1 and 2). Both human stomach
Table 2
Comparison of glycosphingolipid binding preferences of a generalist H. pylori strain (J99), a specialist H. pylori strain (S831), and a BabA deletion mutant H. pylori strain (J99/BabA−)

<table>
<thead>
<tr>
<th>No.</th>
<th>Abbreviation</th>
<th>Structure</th>
<th>H. pylori J99</th>
<th>H. pylori S831</th>
<th>H. pylori J99/BabA−</th>
<th>Source (Ref.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-4</td>
<td>GalNAc3(Fucα2Galβ4Glcβ1Cer</td>
<td>− †</td>
<td>−</td>
<td>−</td>
<td>Rat intestine (20)</td>
</tr>
<tr>
<td>2</td>
<td>Leα-5</td>
<td>Galβ3(Fucα4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Human intestine (42)</td>
</tr>
<tr>
<td>3</td>
<td>Leβ-5</td>
<td>Galβ4(Fucα3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Dog intestine (42)</td>
</tr>
<tr>
<td>4</td>
<td>H5 type 1</td>
<td>Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Porcine intestine (22)</td>
</tr>
<tr>
<td>5</td>
<td>H5 type 2</td>
<td>Fucα2Galβ4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>Human erythrocytes (43)</td>
</tr>
<tr>
<td>6</td>
<td>H6 type 4 (Globo H)</td>
<td>Fucα2Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Porcine intestine (4)</td>
</tr>
<tr>
<td>7</td>
<td>Leα-6</td>
<td>Fucα2Galβ3(Fucα6GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>Human intestine (42)</td>
</tr>
<tr>
<td>8</td>
<td>Leα-6</td>
<td>Fucα2Galβ4(Fucα6GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>Human intestine (19)</td>
</tr>
<tr>
<td>9</td>
<td>B6 type 1</td>
<td>Galα3(Fucα2Galβ3Galβ4Glcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Human erythrocytes (44)</td>
</tr>
<tr>
<td>10</td>
<td>B6 type 2</td>
<td>Galα3(Fucα2Galβ4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Human intestine (19)</td>
</tr>
<tr>
<td>11</td>
<td>A6 type 1</td>
<td>GalNAc3(Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>Human erythrocytes (45)</td>
</tr>
<tr>
<td>12</td>
<td>A6 type 2</td>
<td>GalNAc3(Fucα2Galβ4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Human erythrocytes (45)</td>
</tr>
<tr>
<td>13</td>
<td>B7 type 1</td>
<td>Galα3(Fucα2Galβ3(Fucα4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Human intestine (19)</td>
</tr>
<tr>
<td>14</td>
<td>A7 type 1</td>
<td>GalNAc3(Fucα2Galβ3(Fucα4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>Human intestine (19)</td>
</tr>
<tr>
<td>15</td>
<td>A7 type 2</td>
<td>GalNAc3(Fucα2Galβ4(Fucα3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Pig intestine (6)</td>
</tr>
<tr>
<td>16</td>
<td>A7 type 4 (Globo A)</td>
<td>GalNAc3(Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Pig intestine (6)</td>
</tr>
<tr>
<td>17</td>
<td>A8 type 1</td>
<td>GalNAc3(Fucα2Galβ3GlcNAcβ3Galβ3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Pig intestine (6)</td>
</tr>
<tr>
<td>18</td>
<td>A9 type 1</td>
<td>GalNAc3(Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Pig intestine (6)</td>
</tr>
<tr>
<td>19</td>
<td>A9 type 2</td>
<td>GalNAc3(Fucα2Galβ4(Fucα3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>Pig intestine (6)</td>
</tr>
<tr>
<td>20</td>
<td>A9 type 3</td>
<td>GalNAc3(Fucα2Galβ3GlcNAcβ3(Fucα2Galβ4Glcβ1Cer</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>Pig intestine (6)</td>
</tr>
<tr>
<td>21</td>
<td>Dimeric Leα*</td>
<td>Galβ3(Fucα4GlcNAcβ3(Fucα4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Human intestine (46)</td>
</tr>
<tr>
<td>22</td>
<td>Dimeric Leβ*</td>
<td>Galβ4(Fucα3GlcNAcβ3Galβ4(Fucα3GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Human intestine (46)</td>
</tr>
<tr>
<td>23</td>
<td>22 NeuGc-nL6</td>
<td>NeuGcα3Galβ4GlcNAcβ3Galβ4Glcβ1Cer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Rabbit thymus (47)</td>
</tr>
</tbody>
</table>

* Binding is defined as follows: + denotes a binding when 1 µg of the glycosphingolipid was applied on the thin-layer chromatogram, whereas − denotes no binding even at 4 µg.

† Present study.

* Glycosphingolipid Number 22 was prepared from sialyl-dimeric Leα* (10) by mild acid hydrolysis.

* H. pylori binding to glycosphingolipids Numbers 23–25 was determined using a mixture of the three compounds.
samples also contained the Le⁶b hexaglycosyceramide as indicated by the binding of the anti-Le⁶b antibody (Fig. 10C). The anti-H type 1 antibody cross-reacted with the Globo H glycosphingolipid to some extent. However, no binding of the anti-H type 1 antibody to the non-acid glycosphingolipid fractions from human stomach was obtained, although it bound intensely to the pentaglycosylceramide and to the slow migrating glycosphingolipid of blood group O pig intestine (Fig. 10D).

DISCUSSION

The binding of microbes to host target cells is crucial to the delivery of virulence factors, and in the case of H. pylori, it was recently shown that BabA-mediated binding of the bacteria to Le⁶ on the epithelium leads to an increased type IV secretion system activity, resulting in the production of proinflammatory cytokines and precancer-related factors (34). The initial observation that the fucosylated blood group antigens H type 1 and Le⁶ are mediators of H. pylori adhesion to human gastric epithelial cells (5) was followed by a division of BabA-producing H. pylori strains into specialist and generalist strains, depending on their mode of binding to Le⁶b and related
carbohydrate sequences (9). The BabA of specialist strains binds only to glycoconjugates with an unsubstituted terminal Fucα2Gal sequence as in the H type 1 and Leb determinants, whereas the generalist BabA tolerates a substitution at 3-position of the Gal with an αGal or αGalNAc as in the A or B type 1 and ALeb or BLeb determinants.

Here, we further explored the structural requirements for carbohydrate recognition by BabA of generalist and specialist H. pylori by isolating and characterizing glycosphingolipids recognized by wild type specialist and/or generalist H. pylori but not by the deletion mutant strain lacking the BabA adhesin. The Leb epitope has only been found in humans, but we initially thought that we had found a porcine Leb glycosphingolipid when an H. pylori BabA-binding glycosphingolipid co-migrating with the Leb hexaglycosylceramide was detected in the non-acid fraction of blood group O pig intestine. However, after isolation, this BabA-binding glycosphingolipid was characterized as the Globo H hexaglycosylceramide. Further comparative binding studies using our glycosphingolipid collection confirmed that the BabA adhesin in addition to blood group determinants on type 1 core chains recognizes blood group O and A determinants on type 4 core chains with binding to Globo H by both strains and Globo A by the generalist strain. The terminal disaccharides (Fucα2Galβ3) of the H type 1 pentaglycosylceramide and the Globo H hexaglycosylceramide adopt conformations very similar to each other, and this is also the case for the terminal trisaccharides (GalNAca3(Fucα2)Galβ3) of the A type 1 and the Globo A heptaglycosylceramides (18). These conformational similarities thus explain the binding of BabA to the two sets of isoreceptors.

The enzymatic machinery involved in the biosynthesis of Globo H has not yet been fully elucidated. In humans, there are two functional fucosyltransferases, designated FUT1 and FUT2, that catalyze addition of an α2-linked fucose to a terminal galactose to form the blood group H epitope (for a review, see Ref. 35). These two fucosyltransferases are encoded by two distinct genes, FUT1 and FUT2. FUT1 acts preferentially on two functional fucosyltransferases, designated FUT1 and FUT2, that catalyze addition of an α2-linked fucose to a terminal galactose to form the blood group H epitope (for a review, see Ref. 35). These two fucosyltransferases are encoded by two distinct genes, FUT1 and FUT2. FUT1 acts preferentially on type 2 chains, whereas type 1 and type 3 chains and to some extent type 2 chains are acceptors for FUT2. Using siRNAs targeting FUT1 and FUT2 in breast cancer stem cells, Chang et al. (36) showed that Globo H may be synthesized by both FUT1 and FUT2.

Non-secretor individuals have an increased risk of peptic ulcer disease (37). In these individuals, the precursor of the Leb sequence, i.e. the H type 1 sequence, is not formed due to lack of a functional FUT2 enzyme. Consequently, non-secretors have low amounts of or no Leb antigens on their epithelial surfaces. However, the Globo H sequence can still be formed by FUT1 and might thus function as an adhesion factor for BabA-expressing H. pylori in non-secretor individuals.

The slow migrating BabA-binding fraction P-III was characterized as a mixture of three complex glycosphingolipids (Fucα2Galβ3GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, Fucα2Galβ3GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, and Fucα2Galβ4(Fucα3)GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer). The undecaglycosylceramide with an Leb epitope on the 6-branch and an H type 1 epitope on the 3-branch are to our knowledge novel glycosphingolipid structures. The three compounds in fraction P-III all had an H type 1 determinant on at least one branch, and thus, all three could be recognized by both specialist and generalist BabA.

The binding of the generalist H. pylori strain to the nonaglycosylceramide with a repetitive blood group A determinant and an internal type 1 core chain (GalNAca3(Fucα2)Galβ3-GalNAca3(Fucα2)Galβ3GlcNAcβ3Galβ4Glcβ1Cer) is a wild card. We have previously found that generalist H. pylori strains bind to the ganglio-Leb hexaglycosylceramide (Fucα2Galβ3(Fucα4)GalNAcβ4Galβ4Glcβ1Cer) (13). Thus, the binding to this nonaglycosylceramide is most likely due to recognition of the terminal A determinant on the ganglio core by the generalist BabA.

Characterization of the binding specificities of the BabA variants is important for understanding the molecular interactions between H. pylori and the target host cells. The presence of the BabA-binding Globo H glycosphingolipid in the human stomach was here indicated by the binding of monoclonal antibodies directed against the Globo H determinant to human gastric glycosphingolipids. Thus, Globo H may have a role in the BabA-mediated target tissue adherence of H. pylori.

Expression of BabA by H. pylori is associated with severe gastric inflammation and an increased risk of developing peptic ulcer or gastric cancer (38, 39). H. pylori infects more than half of the world’s population, and although the prevalence of infection is decreasing in developed countries, the infection rate is still high in developing countries (40). Furthermore, the treatment options in developing countries are currently inadequate. Targeting BabA might be important for the development of novel treatment strategies against H. pylori.

Acknowledgment—The use of the LTQ linear quadrupole ion trap mass spectrometer (obtained by Swedish Research Council Grant 342-2004-4434 to Gunnar Hansson) and the Varian 600-MHz machine at the Swedish NMR Centre, Hasselblad Laboratory, University of Gothenburg, is gratefully acknowledged.

REFERENCES

H. pylori BabA-binding Glycosphingolipids

Breimer, M. E. (2008) Glycolipid studies in small intestine and pancreas of α1,3-galactosyltransferase knockout miniature swine: α1,3GALT-KO animals lack αGAL antigens and contain novel blood group H compounds. Transplant. Proc. 40, 543–546

Clausen, H., Levery, S. B., McKibbin, J. M., and Hakomori, S. (1985) Blood group A determinants with mono- and difucosyl type 1 chain in human...
erythrocyte membranes. Biochemistry 24, 3578–3586