Crystal Structure of S-ovalbumin as a Non-loop-inserted Thermostabilized Serpin Form*

Masayuki Yamasaki, Nobuyuki Takahashi, and Masaaki Hirose‡

From the Division of Applied Life Sciences, The Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan

Received for publication, June 5, 2003
Published, JBC Papers in Press, July 1, 2003, DOI 10.1074/jbc.M305926200

Ovalbumin, a non-inhibitory member of serine proteinase inhibitors (serpin), is transformed into a heat-stabilized form, S-ovalbumin, under elevated pH conditions. The structural mechanism for the S-ovalbumin formation has long been a puzzling question in food science and serpin structural biology. On the basis of the commonly observed serpin thermostabilization by insertion of the reactive center loop into the proximal β-sheet, the most widely accepted hypothetical model has included partial loop insertion. Here we demonstrate, for the first time, the crystal structure of S-ovalbumin at 1.9-Å resolution. This structure unequivocally excludes the partial loop insertion mechanism; the overall structure, including the reactive center loop structure, is almost the same as that of native ovalbumin, except for the significant motion of the preceding loop of strand 1A away from strand 2A. The most striking finding is that Ser-164, Ser-236, and Ser-320 take the D-amino acid residue configuration. These chemical inversions can be directly related to the irreversible and stepwise nature of the transformation from native ovalbumin to S-ovalbumin. As conformational changes of the side chains, significant alternations are found in the values of the χ₁ of Phe-99 and the χ₃ of Met-241. The former conformational change leads to the decreased solvent accessibility of the hydrophobic core around Phe-99, which includes Phe-180 and Phe-378, the highly conserved residues in serpin. This may give a thermodynamic advantage to the structural stability of S-ovalbumin.

Ovalbumin is a major protein component of avian egg white with a molecular mass of ~45 kDa. During the storage of non-fertilized eggs, native ovalbumin is transformed via an intermediate state into a thermostabilized form, S-ovalbumin (∆T_m, about 8 °C) (1, 2). This transformation is a serious problem for food processing, because egg white that includes S-ovalbumin forms a heat-induced gel with poor strength (3). The acquisition of the loop insertion mechanism, its mutant, in which a hinge residue (Arg-339) for the motion of loop insertion is replaced by a less bulky one, is transformed into a significantly thermostabilized form following the proteolytic cleavage at the P1-P1′ site, the reactive center loop is inserted into the proximal β-sheet, and this insertion accompanies large thermostabilization of the protein (14). Although ovalbumin is a non-inhibitory serpin that lacks a loop insertion mechanism, its mutant, in which a hinge residue (Arg-339) for the motion of loop insertion is replaced by a less bulky one, is transformed into a significantly thermostabilized form following the canonical P1-P1′ cleavage (17, 18). Furthermore, our crystallographic study has shown that the P1-P1′-cleaved and thermostabilized ovalbumin mutant assumes the fully loop-inserted conformation (18). The acquisition of the loop insertion ability by the single residue substitution implies that ovalbumin also has the serpin metastable nature in the native form.

The metastable nature of ovalbumin has appeared to support the partial loop-inserted model for the S-ovalbumin formation (9, 11). Some spectroscopic and biochemical studies have, however, strongly suggested the participation in S-ovalbumin formation of a structural mechanism other than the partial loop insertion. First, the results from 31P-NMR have revealed the absence of large conformational change on the reactive center loop; the distances between the phosphate group of Ser-344 and an artificially associated Mn²⁺ differ by only 0.4 Å for native ovalbumin and S-ovalbumin (19). Second, the fully loop-inserted, P1-P1′-cleaved ovalbumin mutant R339T is further thermostabilized by the alkaline treatment (20). The aim of the current study is to reach a crucial conclusion concerning S-ovalbumin structure by the use of crystallographic evidence.

* This work was supported in part by Grant-in-Aid 04614 for Encouragement of Young Scientists from Japan Society for the Promotion of Science (to M. Y.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The atomic coordinates and structure factors (code 1UHG) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).

‡ To whom correspondence should be addressed. Tel.: 81-774-38-3734; Fax: 81-774-38-3735; E-mail: hirose@kais.kyoto-u.ac.jp.

This is an Open Access article under the CC BY license.
EXPERIMENTAL PROCEDURES

Materials—Native ovalbumin was isolated from fresh eggs by crystallization in an ammonium sulfate solution (21). Egg white ovalbumin comprises the three components of A1-, A2-, and A3-ovalbumin, which contain two, one, and no phosphorus atoms, respectively (22). The major component, A1-ovalbumin, was isolated by ion-exchange chromatography as described (22). S-ovalbumin was prepared by incubation of A1-ovalbumin in 0.1 M glycine-NaOH buffer, pH 10, at 30 °C for 7 days. The sample was passed through a Sephadex column (NAP-10, Amersham Biosciences) equilibrated with sodium phosphate buffer, pH 6.0, and subjected to analysis by differential scanning calorimetry and X-ray crystallography for structural determination.

S-ovalbumin was also produced in eggs that had been stored at 30 °C for one month (1). S-ovalbumin was isolated from the stored eggs by crystallization in an ammonium sulfate solution in the same way. The isolation of an ovalbumin component by ion-exchange chromatography, however, did not work for S-ovalbumin. For thermostat stability analysis, therefore, the non-fractionated S-ovalbumin sample was used. Attempts to produce a fine crystal from the S-ovalbumin preparation were unsuccessful.

Differential Scanning Calorimetry—Native ovalbumin and S-ovalbumin samples were analyzed for their thermostability with a calorimeter (MACS-DSC, Micro Cal, Massachusetts). Ovalbumin samples were equilibrated with 10 mM sodium phosphate buffer, pH 6.0, and then degassed for 10 min under reduced pressure prior to calorimetric analysis.

Crystallography—The crystal structure of S-ovalbumin was solved with the crystallographic molecular replacement method. The crystal structure of native ovalbumin (24, 25) was used as a starting model. The crystal structure of S-ovalbumin was determined with an R-factor value of 0.196 (Rfree = 0.247) for 99,562 reflections with F > 2σ(F) between 20–1.9 Å resolution. Solvent accessible area was calculated using the NACCESS program (28).

RESULTS

Thermostability of S-ovalbumin Utilized for Crystallization—A1-ovalbumin (native ovalbumin) prepared from fresh hen egg white displayed the denaturation temperature of 77.7 °C (Fig. 1, profile a). The ovalbumin sample from the egg white after storage in shell eggs at 30 °C for one month displayed a thermostability peak of S-ovalbumin with increased Tm value of 85.8 °C (Fig. 1, profile b). The isolation of A1-S-ovalbumin from this sample by conventional chromatography did not work. To prepare A1-S-ovalbumin, therefore, we incubated in vitro native A1-ovalbumin in an alkaline condition. The alkaline-treated ovalbumin sample also showed the increased Tm values of 85.5 °C (Fig. 1, profile c), which indicates total transformation of native ovalbumin into S-ovalbumin without the inclusion of the intermediate. It was confirmed that the crystal obtained from this protein sample is indeed that of S-ovalbumin; the solubilized protein crystal displayed essentially the same increased thermostability with a Tm value of 85.1 °C (Fig. 1, profile d).

Structural Determinations—The crystal structure of S-ovalbumin was determined at 1.9 Å resolution. The relevant refinement statistics and the final model data are shown in Table I and Table II, respectively. The mode of the crystal packing of the four molecules was very similar for S-ovalbumin and native ovalbumin (24, 25). The four molecules of S-ovalbumin were, therefore, assigned according to the native ovalbumin molecules; the root mean square deviation values estimated by TURBO/rigid2 were 0.326 Å for 374 Cα atoms of molecule A, 0.332 Å for 362 Cα atoms of molecule B, 0.295 Å for 360 Cα atoms of molecule C, and 0.288 Å for 377 Cα atoms of molecule D.

FIG. 1. Thermostability of native ovalbumin and S-ovalbumin. The protein thermostability for native ovalbumin (profile a), S-ovalbumin from stored egg (profile b), S-ovalbumin produced by alkaline treatment in vitro (profile c), and the solubilized S-ovalbumin crystal (profile d) was analyzed with a differential scanning calorimeter. The temperature was scanned at 1 °C/min, and the protein concentration was 0.5 mg/ml in sodium phosphate buffer at pH 6. Endothermic transition profiles are arbitrarily shifted on the ordinate scale for clarity.
Crystal Structure of S-ovalbumin

Table I

<table>
<thead>
<tr>
<th>Data collection and refinement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution limit (Å)</td>
<td>1.8</td>
</tr>
<tr>
<td>Unit cell</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>62.6</td>
</tr>
<tr>
<td>b</td>
<td>70.9</td>
</tr>
<tr>
<td>c</td>
<td>83.4</td>
</tr>
<tr>
<td>α</td>
<td>87.2</td>
</tr>
<tr>
<td>β</td>
<td>71.7</td>
</tr>
<tr>
<td>γ</td>
<td>75.9</td>
</tr>
<tr>
<td>Space group</td>
<td>P1</td>
</tr>
<tr>
<td>Total measurements</td>
<td>253,412</td>
</tr>
<tr>
<td>Unique measurements</td>
<td>122,497</td>
</tr>
<tr>
<td>Averaged redundancy (%)</td>
<td>2.2</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>95.5</td>
</tr>
<tr>
<td>R_{sym} (%)</td>
<td>4.7</td>
</tr>
<tr>
<td>Refinement statistics</td>
<td></td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>20–1.9</td>
</tr>
<tr>
<td>Used reflections</td>
<td>99,562</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>96.1</td>
</tr>
<tr>
<td>R-factor (%)</td>
<td>19.6</td>
</tr>
<tr>
<td>R_{free} (%)</td>
<td>24.7</td>
</tr>
<tr>
<td>Root mean square deviation</td>
<td>0.01</td>
</tr>
<tr>
<td>Bond length (Å)</td>
<td>1.5</td>
</tr>
<tr>
<td>Bond angles (degrees)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 displays the structure of molecule D that has the lowest B-factor value among the four molecules. One of the most important findings was that the reactive center loop of S-ovalbumin assumes almost exactly the same conformation as that of native ovalbumin (24, 25) without any insertion into the proximal β-sheet (Sheet A, Fig. 2a). This clearly excludes the previously hypothesized partial loop insertion mechanism for the S-ovalbumin formation (9, 11).

Comparison with the Native Ovalbumin Structure—When the overall structure is compared by the Ca traces, S-ovalbumin displays a very similar conformation to native ovalbumin except for the marked motion of preceding loop of strand 1A away from strand 2A (residues 125–128, Fig. 2b).

To our great surprise, Ser-236 was clearly detected as the amino acid residue with the D-configuration by both the 2Fo – Fc and omit maps; the residues exist on the turn from strand 2B to strand 3B, which is exposed to the solvent without making interactions with surrounding residues (Fig. 3a). In addition, Ser-164 and Ser-320 were detected as the D-amino acid residues; the Fo – Fc map of the residues, though less clear than that of Ser-236, allowed the D-configuration only (Fig. 3, b and c).

Significant transitions of side-chain conformation were found in Phe-99 on strand 2A and in Met-241 on strand 3B (Fig. 2b). The χ1 value of Phe-99 and the χ1 value of Met-241 were decreased by 111° and 167.9°, respectively, in S-ovalbumin. In addition, slight changes of the side-chain conformation are observed in the residues that surround the side chain of Phe-99, as shown in Fig. 4. The surrounding residues include Ile-32 on helix B, Leu-87 and Ile-90 on helix D, Ile-178 on strand 3A, Met-239 on strand 3B, and Leu-377 on strand 5B. The sum of solvent accessibility of the residues (Ile-90, Thr-91, Tyr-97, Leu-101, Ile-178, Val-179, Phe-180, Met-239, and Phe-378) that make van der Waals contacts with Phe-99 is decreased by 29 Å² according to the conversion from native ovalbumin to S-ovalbumin. In contrast, there are no significant changes in the surrounding residue conformations around Met-241.

DISCUSSION

The crystal structure, solved here, provides crucial information about the structural mechanism of the S-ovalbumin formation, which has been one of the major unsolved questions in the serpin structural biology and the food science of the egg white protein.
ulations in native ovalbumin are released by the configurational inversion, thereby increasing the overall stability of ovalbumin.

Mode of Ovalbumin Denaturation and Implications for Thermostabilization—Previous studies of ovalbumin denaturation may provide important insights into the thermostabilization problem in S-ovalbumin. In the presence of a high concentration of urea, ovalbumin is transformed into a randomly coiled, fully denatured state (34); from this fully denatured state,

Table II

<table>
<thead>
<tr>
<th>Segment Identification</th>
<th>Modeled protein residues</th>
<th>Waters</th>
<th>Sulfates</th>
<th>Carbohydrates</th>
<th>Averaged B-factor (Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1–201, 204–385</td>
<td>252</td>
<td>2</td>
<td>2</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td>1–385</td>
<td>220</td>
<td>2</td>
<td>2</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>1–342, 354–385</td>
<td>214</td>
<td>1</td>
<td>2</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>1–385</td>
<td>185</td>
<td>2</td>
<td>1</td>
<td>27.4</td>
</tr>
</tbody>
</table>

Fig. 2. Structural characteristics of S-ovalbumin. a, the overall main-chain structure of S-ovalbumin. The α-helices and β-strands are shown in rose and pink, respectively. b, overall structural differences between native ovalbumin and S-ovalbumin. S-ovalbumin structure (pink) is superimposed on native ovalbumin structure (white, Protein Data Bank accession number 1OVA) in a Cα trace. The reactive center loop assumes almost the same conformation as that of native ovalbumin. Marked motion of the preceding loop of strand 1A away from strand 2A (125–128) is displayed with a red arrow. Three observed configurational inversions (Ser-164, Ser-236, and Ser-320) and two conformational transitions (Phe-99 and Met-241) of S-ovalbumin are shown in ball-and-stick form. The figures were produced with molecule D using MOLSCRIPT (48) and Raster3D (49).
ovalbumin correctly refolds into the native form under native folding conditions (35–38). The conversion between the native and fully denatured states is, therefore, completely reversible in ovalbumin. Another important point is that, during this reversible interconversion, an intermediate state with partially folded molten globule-like conformation is produced (37, 38). The reversible interconversion is also confirmed for the thermal denaturation system (39). Unlike the urea-induced denaturation system, however, ovalbumin denatured at a high temperature assumes molten globule conformation, but the fully denatured one does not (40). These results highlight the importance of the free energy difference between the native and molten globule states as the determinant for ovalbumin thermal stability.

The free energy of a protein state depends on its entropy and enthalpy. Possible thermodynamic factors that work singly or in combination for thermal stabilization are the decreased enthalpy and increased entropy for the native state and the increased enthalpy and decreased entropy for the molten globule state. Some of the characteristics of the crystal structure may be related to the decreased enthalpy of the native form of S-ovalbumin.

With respect to conformational transition, the motion of the preceding loop of strand 1A away from strand 2A and the changes in the side-chain conformation of Phe-99 and Met-241 are detected (Fig. 2b). The conformational change in the Phe-99 side chain induces a decrease in the solvent accessibility of the surrounding residues (Ile-90, Thr-91, Tyr-97, Leu-101, Ile-178, Val-179, Phe-180, Met-239, and Phe-378) by 29 Å². The surrounding residues include Phe-180 and Phe-378, which are two of the 51 conserved residues in the serpin superfamily that are considered important for serpin structural stability (41). These strongly suggest that the rearrangement of the hydrophobic core around Phe-99 strengthens the packing of helix B, helix D, sheet A, and sheet B, which makes a prominent contribution to the structural stability of ovalbumin as a serpin (Fig. 4).

The conformational change that comprises the motion of the preceding loop of strand 1A away from strand 2A has also been observed for serpin 1K upon the formation of the Michaelis complex with trypsin (42). Although the thermostabilization by
the complex formation has not been experimentally confirmed for serpin 1K, α₂-antiplasmin is considered to exert the inhibitory activity by the structural stabilization upon the formation of the noncovalent Michaelis-like complex with a serine proteinase (16, 43). The motion of strand 1A might, therefore, correspond to a structural transition that is related to the structural relaxation in serpin.

In regard to the configurational inversions of the three serine residues, the present crystal structure cannot be directly related to the decreased enthalpy for the native form; all the Ser-164, Ser-236, and Ser-320 residues reside on the protein surface in either native ovalbumin or S-ovalbumin and do not have any direct interactions with surrounding residues. The molten globule state of ovalbumin is the protein state that has about half of the native secondary structure, some fluctuating nature, and a native-like compact conformation (38). The structural situation in which the ϕ-amino acid residues reside on the polypeptide sequence in a non-localized way might result in a modulated non-native conformational state, which works as a thermostabilization factor by increasing the enthalpy and/or decreasing entropy in the molten globule state. The modulated molten globule state might be also related to the poor strength of the thermally induced S-ovalbumin gel (3).

Related Spectroscopic and Biochemical Observations—Since the discovery of the thermostabilized S-ovalbumin formation in stored eggs, the underlying structural mechanism has been extensively investigated by spectroscopic and biochemical analyses. The conclusions reached about the participation of a conformational alteration have been controversial.

As spectroscopic observations that support the conformational transition, a 2–5% loss of α-helix (9) and a 3–4% increased β-sheet content (8) have been detected by far UV CD and Raman spectroscopy analyses, respectively. An earlier study by the same Raman spectroscopy has, however, been consistent with the absence of a secondary structure change upon the formation of S-ovalbumin (10). The results from 31P-NMR have also been consistent with the absence of large conformational change, at least on the reactive center loop; the distances between the phosphate group of Ser-344 and an artificially associated Mn$^{2+}$ differ by only 0.4 Å for native ovalbumin and S-ovalbumin (19).

The conformational changes found in the crystal structure of S-ovalbumin are very limited and do not include any secondary structure segment. The small conformational change detected by the spectroscopic analyses (8, 9) cannot, therefore, be related to the conformational changes found in the crystal structure. Instead, we speculate that the spectroscopic changes are related to the inherent ovalbumin nature that tends to be transformed into the molten globule state under some non-physiological conditions. Most of the egg white ovalbumin molecules are transformed into S-ovalbumin under the commonly employed alkaline conditions (e.g. pH10, 55 °C, 16–24 h). Under the equivalent alkaline conditions for recombinant ovalbumin, however, a much decreased recovery of the S-ovalbumin production has been found (44), and a better recovery can be attained at a less drastic temperature of 50 °C (20). These results are probably due to the slightly destabilized nature of the recombinant protein because of the absence of post-translational modification such as phosphorylation, glycosylation, and N-terminal acetylation (44). Furthermore, the disulfide-reduced form of egg white ovalbumin, which assumes the native conformation with a slightly less stability (45), is almost totally transformed into the molten globule state by the alkaline treatment (46). The commonly employed alkaline condition may be therefore a marginal one for maintaining the conformational stability of native egg white ovalbumin. The non-native conformational state seriously loses the CD signal of α-helix in the far UV region (38) and tends to make intermolecular interactions through β-sheet formation (10). It seems reasonable to hypothesize that the spectroscopic observations of the 2–5% loss of α-helix (9) and 3–4% increase in the β-sheet content (8) come from a partial denaturation of native ovalbumin during the alkaline treatment. An alternative observation that S-ovalbumin displays a slightly higher binding capacity against a hydrophobic fluorescent dye, aniline-1-naphthalene-8-sulfonate (7), can also be accounted for by the partial denaturation because the molten-globule state of ovalbumin shows a much higher dye binding capacity than native and fully denatured ovalbumin (38).

The partially loop-inserted conformer model largely depended on the observation that S-ovalbumin received a cleavage by elastase with a 38-fold greater rate than did native ovalbumin (9, 11). This observation, however, was based on a commercially available, non-purified ovalbumin preparation in which the presence of protein components other than native ovalbumin was detected by differential scanning calorimetry (9). In our re-examination using highly purified ovalbumin, no significant increase in the elastase susceptibility has been detected for S-ovalbumin (20). Although the reason for this discrepancy about protease susceptibility is not clear, the egg white is a well known source for a variety of potent proteinase inhibitors, including ovomucoid, ovoinhibitor, and ovostatin (47). It would be possible that the apparent higher protease susceptibility of S-ovalbumin (9) depends on inacti-
The present finding of the multiple D-Ser residues in S-ovalbumin, the intermediate form, and S-ovalbumin upon unfolding/refolding transition strongly suggests the participation of a chemical stepwise process for the S-ovalbumin formation. Furthermore, we observe that native ovalbumin, the intermediate form, and S-ovalbumin refold correctly from the fully denatured state into the corresponding original non-denatured forms as evaluated by a variety of probes, including a thermostability analysis. This irreversible nature between native ovalbumin and S-ovalbumin, the intermediate form, and S-ovalbumin upon unfolding/refolding transition strongly suggests the participation of a chemical stepwise process for the S-ovalbumin formation. The present finding of the multiple D-Ser residues in S-ovalbumin, therefore, leads us to hypothesize that the configurational inversion of the amino acid residues plays a central role for the formation of the thermostabilized ovalbumin. The configurational inversions may accompany the observed conformational changes, such as the motion of the preceding loop of strand 1A away from strand 2A and the changes in the side-chain conformation of Phe-99.

Acknowledgment—We thank Drs. Shigeo Aibara and Bunzo Mikami (The Graduate School of Agriculture, Kyoto University) for helpful suggestions and discussions about the crystallographic analyses.

REFERENCES