Keywords
Abbreviations:
BMCs (bone marrow cells), CMP (common myeloid precursor), EBs (embryoid bodies), GM-CSF (granulocyte macrophage colony stimulating factor), GMP (granulocyte-macrophage precursor), HSCs (hematopoietic stem cells), IL-3 (interleukin), LCB (long-chain base), LK (Lin− c-Kit+ Sca1−), LSK (Lin−c-Kit+, Sca1+), LT-HSCs (long-term hematopoietic stem cells), MEP (megakaryocyte-erythrocyte precursor), MPP (multipotent progenitor cell), PLP (pyridoxal phosphate), SPT (serine palmitoyltransferase), ST-HSCs (short-term hematopoietic stem cells), UPR (unfolded protein response)- Zhao L.
- Spassieva S.
- Gable K.
- Gupta S.D.
- Shi L.Y.
- Wang J.
- Bielawski J.
- Hicks W.L.
- Krebs M.P.
- Naggert J.
- Hannun Y.A.
- Dunn T.M.
- Nishina P.M.
- Wang X.
- Rao R.P.
- Kosakowska-Cholody T.
- Masood M.A.
- Southon E.
- Zhang H.
- Berthet C.
- Nagashim K.
- Veenstra T.K.
- Tessarollo L.
- Acharya U.
- Acharya J.K.
- Zhao L.
- Spassieva S.
- Gable K.
- Gupta S.D.
- Shi L.Y.
- Wang J.
- Bielawski J.
- Hicks W.L.
- Krebs M.P.
- Naggert J.
- Hannun Y.A.
- Dunn T.M.
- Nishina P.M.


- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
Results
ssSPTa null mutants are homozygous lethal
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
Adult ssSPTa−/− hematopoietic stem cells fail to differentiate along myeloid lineage

- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.



ER stress in ssSPTa−/− BMCs
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.


SSSPTA is critical for SPT function
ssSPTb−/− mice are viable and are not compromised in adult hematopoiesis


Discussion
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
- Zhao L.
- Spassieva S.
- Gable K.
- Gupta S.D.
- Shi L.Y.
- Wang J.
- Bielawski J.
- Hicks W.L.
- Krebs M.P.
- Naggert J.
- Hannun Y.A.
- Dunn T.M.
- Nishina P.M.
- Xie S.Z.
- Garcia-Prat L.
- Voisin V.
- Ferrari R.
- Gan O.I.
- Wagenblast E.
- Kaufmann K.B.
- Zeng A.G.X.
- Takayanagi S.I.
- Patel I.
- Lee E.K.
- Jargstorf J.
- Holmes G.
- Romm G.
- Pan K.
- et al.
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
Experimental procedures
Generation of ssSPTa conditional knockout mice
Generation of ssSPTb null mouse
Blastocyst outgrowth
- Wang X.
- Rao R.P.
- Kosakowska-Cholody T.
- Masood M.A.
- Southon E.
- Zhang H.
- Berthet C.
- Nagashim K.
- Veenstra T.K.
- Tessarollo L.
- Acharya U.
- Acharya J.K.
Embryo dissection and embryoid body formation
EM analyses
Immunoblotting
Myeloid differentiation in liquid culture
[14C]acetate labeling of BMCs
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
[32P]orthophosphoric acid labeling of BMCs
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
SPT activity
Immunophenotyping
- Parthibane V.
- Acharya D.
- Srideshikan S.M.
- Lin J.
- Myerscough D.G.
- Abimannan T.
- Vijaykrishna N.
- Blankenberg D.
- Bondada L.
- Klarmann K.D.
- Fox S.D.
- Andresson T.
- Tessarollo L.
- Acharya U.
- Keller J.R.
- et al.
BM transplantation
BMC sphingolipid analysis by MS
- Wang X.
- Rao R.P.
- Kosakowska-Cholody T.
- Masood M.A.
- Southon E.
- Zhang H.
- Berthet C.
- Nagashim K.
- Veenstra T.K.
- Tessarollo L.
- Acharya U.
- Acharya J.K.
Real-time PCR
Primer sequences for real time RT-PCR | |
---|---|
ssSPTa | Reverse: 5′-AGGTGGGCTGGCGTTAT-3′ |
Reverse: 5′-CTGGGGCATGAAGACGTAGC-3′ | |
ssSPTb | Forward: 5′-CGTGAAGGAGTATTTTGCCTGG -3′ |
Reverse: 5′-GCCACAATGGTCAGTATGATGGT-3′ | |
Nestin | Forward: 5′-TGAGGGTCAGGTGGTTCTG-3′ |
Reverse: 5′-AGAGCAGGGAGGGACATTC-3′ | |
Sox 17 | Forward: 5′-AAGAAACCCTAAACACAAACAGCG-3′ |
Reverse: 5′-TTTGTGGGAAGTGGGATCAAGAC-3′ | |
Gsc | Forward: 5′-AAACGCCGAGAAGTGGAACAAG-3′ |
Reverse: 5′-AAGGCAGGGTGTGTGCAAGTAG-3′ | |
GAPDH | Forward: 5′-ACCATCTTCCAGGAGCGAG-3′ |
Reverse: 5′-TAAGCAGTTGGTGGTGCAG-3′ | |
Actin | Forward: 5′-TTCTTTGCAGCTCCTTCGTT-3′ |
Reverse: 5′-ATGGAGGGGAATACAGCCC-3′ | |
Brachyury | Forward: 5′-CGGACAATTCATCTGCTTG-3′ |
Reverse: 5′-AGGTGGGCTGGCGTTAT-3′ |
Statistical analysis
Data availability
Supporting information
Conflict of interest
Acknowledgments
Author contributions
Supporting information
- Table S1 and Figures S1 to S6
References
- Sphingolipids and their metabolism in physiology and disease.Nat. Rev. Mol. Cell Biol. 2018; 19: 175-191
- Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration.Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 12962-12967
- Fungal sphingolipids: Role in the regulation of virulence and potential as targets for future antifungal therapies.Expert Rev. Anti Infect Ther. 2020; 8: 1083-1092
- De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway.J. Biol. Chem. 2002; 277: 25843-25846
- Monitoring the sphingolipid de novo synthesis by stable-isotope labeling and liquid chromatography-mass spectrometry.Front. Cell Dev. Biol. 2019; 7: 210
- Sphingolipids and lipid rafts: Novel concepts and methods of analysis.Chem. Phys. Lipids. 2018; 216: 114-131
- Structure and function of sphingoglycolipids in transmembrane signalling and cell-cell interactions.Biochem. Soc. Trans. 1993; 21: 583-595
- De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs.Mol. Cell Biol. 1999; 19: 7276-7286
- De novo sphingolipid biosynthesis is required for adipocyte survival and metabolic homeostasis.J. Biol. Chem. 2017; 292: 3929-3939
- Sphingolipid metabolism in trans-golgi/endosomal membranes and the regulation of intracellular homeostatic processes in eukaryotic cells.Adv. Enzyme Regul. 2010; 50: 339-348
- Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: Genetics, physiology, and a method for their selection.J. Bacteriol. 1992; 174: 2565-2574
- Sphingolipid regulators of cellular dysfunction in type 2 diabetes mellitus: A systems overview.Clin. Lipidol. 2014; 9: 553-569
- The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids.J. Biol. Chem. 1983; 258: 10200-10203
- Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice.J. Cell Biol. 2009; 184: 143-158
- Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors.J. Cell Biol. 2011; 192: 557-567
- The ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind.J. Biol. Chem. 2002; 277: 25847-25850
- Non-alcoholic fatty liver disease: Insights from sphingolipidomics.Biochem. Biophys. Res. Commun. 2018; 504: 608-616
- Sphingolipid metabolism and signaling minireview series.J. Biol. Chem. 2002; 277: 25841-25842
- Sphingolipids--the enigmatic lipid class: Biochemistry, physiology, and pathophysiology.Toxicol. Appl. Pharmacol. 1997; 142: 208-225
- Enzymes of sphingolipid metabolism in Drosophila melanogaster.Cell Mol. Life Sci. 2005; 62: 128-142
- Ceramides bind VDAC2 to trigger mitochondrial apoptosis.Nat. Commun. 2019; 10: 1832
- Sphingosine 1-phosphate: Lipid signaling in pathology and therapy.Science. 2019; 366eaar5551
- Sphingolipid metabolism in cancer signalling and therapy.Nat. Rev. Cancer. 2018; 18: 33-50
- Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice.Biochim. Biophys. Acta. 2005; 1737: 44-51
- Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism.Biochim. Biophys. Acta. 2003; 1632: 16-30
- Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques.J. Biol. Chem. 2000; 275: 8409-8415
- Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities.Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 8186-8191
- Sphingolipid biosynthesis in man and microbes.Nat. Prod. Rep. 2018; 35: 921-954
- Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase.J. Biol. Chem. 2013; 288: 10144-10153
- Sptlc1 is essential for myeloid differentiation and hematopoietic homeostasis.Blood Adv. 2019; 3: 3635-3649
- Recombineering: A homologous recombination-based method of genetic engineering.Nat. Protoc. 2009; 4: 206-223
- Analysis of Fgf8 gene function in vertebrate development.Cold Spring Harb. Symp. Quant. Biol. 1997; 62: 159-168
- Blood development: Hematopoietic stem cell dependence and independence.Cell Stem Cell. 2018; 22: 639-651
- Inducible gene targeting in mice.Science. 1995; 269: 1427-1429
- The mouse gene expression database (GXD): 2019 update.Nucleic Acids Res. 2019; 47: D774-D779
- The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase.Plant Cell. 2006; 18: 3576-3593
- Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1.Hum. Mol. Genet. 2015; 24: 6899-6909
- Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity.J. Biol. Chem. 2000; 275: 7597-7603
- Arabidopsis 56-amino Acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity.Plant Cell. 2013; 25: 4627-4639
- Sphingolipid modulation activates proteostasis programs to govern human hematopoietic stem cell self-renewal.Cell Stem Cell. 2019; 25: 639-653.e637
- Sphingolipid signaling and hematopoietic malignancies: To the rheostat and beyond.Anticancer Agents Med. Chem. 2011; 11: 782-793
- The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins.Nature. 1988; 332: 462-464
- The unfolded-protein-response pathway in yeast.Trends Cell Biol. 1994; 4: 56-60
- Signal integration in the endoplasmic reticulum unfolded protein response.Nat. Rev. Mol. Cell Biol. 2007; 8: 519-529
- Gene targeting in mouse embryonic stem cells.Methods Mol. Biol. 2009; 530: 141-164
- A simple approach for mouse embryonic stem cells isolation and differentiation inducing embryoid body formation.Cell Biol. Int. 2009; 33: 1196-1200
- C/EBPalpha deficiency results in hyperproliferation of hematopoietic progenitor cells and disrupts macrophage development in vitro and in vivo.Blood. 2004; 104: 1639-1647
- An improved method to determine serine palmitoyltransferase activity.J. Lipid Res. 2009; 50: 1237-1244
- Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance.J. Exp. Med. 2013; 210: 987-1001
- Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis.J. Clin. Invest. 2015; 125: 3532-3544
Article info
Publication history
Footnotes
Present address for Jing Lin: US Food and Drug Administration, Silver Spring, MD.
Present address for Diwash Acharya: MaxCyte, Inc, Gaithersburg, MD.
Present address for Sargur Madabushi Srideshikan: Department of Radiation Oncology, City of Hope, National Medical Center, Duarte, CA.
Present address for Kimberly Klarmann: Basic Science Program, Leidos Inc, Frederick National Laboratory for Cancer Research, Frederick, MD.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy