Advertisement

Mitochondrial metabolism regulates macrophage biology

Open AccessPublished:June 19, 2021DOI:https://doi.org/10.1016/j.jbc.2021.100904
      Mitochondria are critical for regulation of the activation, differentiation, and survival of macrophages and other immune cells. In response to various extracellular signals, such as microbial or viral infection, changes to mitochondrial metabolism and physiology could underlie the corresponding state of macrophage activation. These changes include alterations of oxidative metabolism, mitochondrial membrane potential, and tricarboxylic acid (TCA) cycling, as well as the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) and transformation of the mitochondrial ultrastructure. Here, we provide an updated review of how changes in mitochondrial metabolism and various metabolites such as fumarate, succinate, and itaconate coordinate to guide macrophage activation to distinct cellular states, thus clarifying the vital link between mitochondria metabolism and immunity. We also discuss how in disease settings, mitochondrial dysfunction and oxidative stress contribute to dysregulation of the inflammatory response. Therefore, mitochondria are a vital source of dynamic signals that regulate macrophage biology to fine-tune immune responses.

      Keywords

      Abbreviations:

      α-KG (α-ketoglutarate), ΔΨm (mitochondrial membrane potential), ACLY (ATP citrate lyase), AMPK (AMP-activated protein kinase), AST (aspartate aminotransferase), CIC (mitochondrial citrate carrier), DAMPs (damage-associated molecular patterns), Drp1 (dynamin-related protein 1), DMF (Dimethyl fumarate), ETC (electron transport chain), eIF5A (hypusination of translation factor eukaryotic initiation factor 5A), ER (endoplasmic reticulum), FAO (fatty acid oxidation), FADH2 (flavin adenine dinucleotide hydride), GABA (γ-amino butyric acid), GAD (glutamic acid decarboxylase), GAPDH (glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase), GSDMD (gasdermin D), HIF-1α (hypoxia inducible factor 1α), HMGB1 (high mobility group box 1), IDH (isocitrate dehydrogenase), IFNγ (interferon-γ), IL-4 (interleukin-4), iNOS (inducible nitric oxide synthase), IRG1 (Immune-Responsive Gene 1), KLF4 (Krüppel-like factor 4), LPS (lipopolysaccharide), MAS (malate-aspartate shuttle), MDVs (mitochondria-derived vesicles), MHC (Major Histocompatibility Complex), mTOR (mammalian target of rapamycin), mtROS (mitochondrial reactive oxygen species), NADH (adenine diphosphate hydride), NF-κB (nuclear factor kappa B), NLRP3 (NOD-, LRR- and pyrin domain-containing 3), NO (nitric oxide), OAA (oxaloacetate), oxPAPC (1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine), OXPHOS (oxidative phosphorylation), PAMPs (pathogen-associated molecular patterns), PARP (Poly (ADP-ribose) polymerase), PGE2 (Prostaglandin E2), PHD (prolyl hydroxylases), PPAR (peroxisome proliferator-activated receptor), RET (reverse electron transport), SDH (succinate dehydrogenase), SIRT (Sirtuin), SUCLG1 (succinyl-CoA synthetase), SUCNR1 (succinate receptor 1), TCA (tricarboxylic acid), TLR (Toll-like receptor), UPR (unfolded protein response)
      Macrophages safeguard tissue homeostasis and regulate inflammatory responses. To exert these varied functions, macrophages show high plasticity and adopt different activation states according to the stimulus signals. The Th1 cytokine interferon-γ (IFNγ) together with Toll-like receptor (TLR) ligands, including lipopolysaccharide (LPS), promotes classically activated proinflammatory macrophages (commonly known as M1-like macrophages), which secrete proinflammatory cytokines such as interleukin-6 (IL-6) and IL-1β to induce inflammatory responses and fight against infection; generate highly reactive oxygen species and nitrogen intermediates to gain efficient microbicidal and tumoricidal activities; and increase major histocompatibility complex (MHC)-I/II, CD80, and CD86 expression (
      • Orecchioni M.
      • Ghosheh Y.
      • Pramod A.B.
      • Ley K.
      Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages.
      ,
      • Shapouri-Moghaddam A.
      • Mohammadian S.
      • Vazini H.
      • Taghadosi M.
      • Esmaeili S.A.
      • Mardani F.
      • Seifi B.
      • Mohammadi A.
      • Afshari J.T.
      • Sahebkar A.
      Macrophage plasticity, polarization, and function in health and disease.
      ). However, continuous and excessive activation of proinflammatory macrophages may lead to sustained inflammation and accessory tissue damage (
      • Sica A.
      • Mantovani A.
      Macrophage plasticity and polarization: In vivo veritas.
      ). Macrophages can also be activated by other stimulating factors to alternatively activated states. For example, the Th2 cytokines interleukin-4 (IL-4) and IL-13 induce macrophage alternative activation (commonly known as M2-like activation) (
      • Sica A.
      • Mantovani A.
      Macrophage plasticity and polarization: In vivo veritas.
      ,
      • Gordon S.
      • Martinez F.O.
      Alternative activation of macrophages: Mechanism and functions.
      ). These macrophages attenuate Th1/M1-driven inflammation, facilitate tissue repair and remodeling, and induce Th2-driven pathologies, such as asthma and helminth infections. Such macrophages highly express a range of specific scavenging molecules, including mannose and galactose receptors and enzymes such as arginase (
      • Xue J.
      • Schmidt S.V.
      • Sander J.
      • Draffehn A.
      • Krebs W.
      • Quester I.
      • De Nardo D.
      • Gohel T.D.
      • Emde M.
      • Schmidleithner L.
      • Ganesan H.
      • Nino-Castro A.
      • Mallmann M.R.
      • Labzin L.
      • Theis H.
      • et al.
      Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
      ,
      • Natoli G.
      • Monticelli S.
      Macrophage activation: Glancing into diversity.
      ). In response to various kinds of environmental stimuli, macrophages populations will change their physiology and shift their phenotype, which allow them to actively participate in disease resolution or progression (
      • Mosser D.M.
      • Edwards J.P.
      Exploring the full spectrum of macrophage activation.
      ).
      Recent studies indicate that shifts in mitochondrial metabolism and physiology are vital for macrophage activation to different states, including alterations of oxidative metabolism, mitochondrial reactive oxygen species (mtROS), tricarboxylic acid (TCA) cycle, mitochondrial ultrastructure, and membrane potential. The signals that drive macrophage inflammatory activation induce breaks in and rewire the TCA cycle by influencing expression of TCA cycle enzymes, IDH (isocitrate dehydrogenase) and SDH (succinate dehydrogenase), resulting in elevations in citrate and succinate, respectively. These signals also augment glycolysis (also known as Warburg Effect). In contrast, IL-4-activated macrophages maintain an unbroken TCA cycle and preferentially engage oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) for ATP production. OXPHOS in IL-4-activated macrophages is fueled by the oxidation of fatty acids and glutamine, which activates the peroxisome proliferator-activated receptor-γ (PPARγ) to mediate the induction of genes regulating alternative macrophage functions (
      • Batista-Gonzalez A.
      • Vidal R.
      • Criollo A.
      • Carreño L.J.
      New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages.
      ). Glucose oxidation, induced by the mTORC2-IRF4 signaling axis, also contributes to IL-4 mediated gene induction (
      • Huang S.C.
      • Smith A.M.
      • Everts B.
      • Colonna M.
      • Pearce E.L.
      • Schilling J.D.
      • Pearce E.J.
      Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation.
      ).
      Shifts in mitochondrial metabolism are closely linked to macrophage activation. In this review, we discuss the mechanistic underpinnings of differential mitochondrial metabolism in distinct macrophage activation states, discuss how they are induced and how they contribute to macrophage activation and biology.

      Macrophage activation signals regulate shifts in mitochondrial metabolism

      The type I inflammatory response usually starts when macrophages and other sentinel cells are activated by pathogen-associated molecular patterns (PAMPs), including microbial cell wall components, nucleic acids, and lipoproteins. Macrophage metabolism also undergoes dynamic changes during such activation. At the center of cellular metabolism is the mitochondria, which not only supplies energy but is also involved in biosynthesis and maintaining cellular redox and serves as a platform for various innate immunological signaling pathways (
      • Tur J.
      • Vico T.
      • Lloberas J.
      • Zorzano A.
      • Celada A.
      Macrophages and mitochondria: A critical interplay between metabolism, signaling, and the functional activity.
      ). Macrophage activation signals alter the activity of the electron transport chain (ETC) and the TCA cycle to influence multiple aspects of mitochondrial metabolism. They also induce an upregulation of glucose and glutamine utilization and a shift toward anabolic pathways. Aerobic glycolysis, induced by LPS-stimulated mammalian target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α) pathways (
      • Cheng S.C.
      • Quintin J.
      • Cramer R.A.
      • Shepardson K.M.
      • Saeed S.
      • Kumar V.
      • Giamarellos-Bourboulis E.J.
      • Martens J.H.
      • Rao N.A.
      • Aghajanirefah A.
      • Manjeri G.R.
      • Li Y.
      • Ifrim D.C.
      • Arts R.J.
      • van der Veer B.M.
      • et al.
      mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity.
      ), is upregulated for ATP production while OXPHOS is repressed through multiple mechanisms, including the two breaks in the TCA cycle. One break results from decreased expression of IDH, the TCA cycle enzyme that converts citrate to α-ketoglutarate (α-KG), allowing for the cumulation of citrate, which can be redirected for generating itaconic acid or withdrawn for fatty acid biosynthesis (
      • Jha A.K.
      • Huang S.C.
      • Sergushichev A.
      • Lampropoulou V.
      • Ivanova Y.
      • Loginicheva E.
      • Chmielewski K.
      • Stewart K.M.
      • Ashall J.
      • Everts B.
      • Pearce E.J.
      • Driggers E.M.
      • Artyomov M.N.
      Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.
      ). The second break occurs after succinate, with a novel pathway termed the aspartate-arginosuccinate shunt, which can produce arginine to support nitric oxide (NO) production. NO generated by inducible nitric oxide synthase (iNOS) can hamper mitochondrial respiration and impair the plasticity of proinflammatory to anti-inflammatory repolarization, and LPS plus IFNγ stimulation can inhibit FAO (
      • Eisner V.
      • Picard M.
      • Hajnóczky G.
      Mitochondrial dynamics in adaptive and maladaptive cellular stress responses.
      ). Consistently, oxidative metabolism is suppressed in LPS-tolerant macrophages, which are no longer able to produce inflammatory cytokines as a result of long-term LPS exposure (
      • Butcher S.K.
      • O'Carroll C.E.
      • Wells C.A.
      • Carmody R.J.
      Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages.
      ). Note that while some characteristics of tolerant macrophages resemble that of the M2 macrophages, it would be an oversimplification to equate the two macrophage states, which differ in many aspects of metabolism, phenotype, and function (
      • Butcher S.K.
      • O'Carroll C.E.
      • Wells C.A.
      • Carmody R.J.
      Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages.
      ).
      In contrast, IL-4-activated macrophages have more demand for glucose, glutamine, and fatty acids compared with inflammatory macrophages and rely on β-oxidation. The increased fatty acid necessary for engaging mitochondrial OXPHOS is derived from lipolysis of triglycerides (
      • Huang S.C.
      • Everts B.
      • Ivanova Y.
      • O'Sullivan D.
      • Nascimento M.
      • Smith A.M.
      • Beatty W.
      • Love-Gregory L.
      • Lam W.Y.
      • O'Neill C.M.
      • Yan C.
      • Du H.
      • Abumrad N.A.
      • Urban Jr., J.F.
      • Artyomov M.N.
      • et al.
      Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages.
      ). This metabolic adaptation results in a shift in the proportion of NADH and FADH2 (nicotinamide adenine dinucleotide and flavin adenine dinucleotide) that feeds the ETC (
      • Van den Bossche J.
      • Baardman J.
      • Otto N.A.
      • van der Velden S.
      • Neele A.E.
      • van den Berg S.M.
      • Luque-Martin R.
      • Chen H.J.
      • Boshuizen M.C.
      • Ahmed M.
      • Hoeksema M.A.
      • de Vos A.F.
      • de Winther M.P.
      Mitochondrial dysfunction prevents repolarization of inflammatory macrophages.
      ). Inhibition of FAO is sufficient to repress the alternatively activated macrophage phenotype and induce M1-like gene programs (
      • Johnson A.R.
      • Qin Y.
      • Cozzo A.J.
      • Freemerman A.J.
      • Huang M.J.
      • Zhao L.
      • Sampey B.P.
      • Milner J.J.
      • Beck M.A.
      • Damania B.
      • Rashid N.
      • Galanko J.A.
      • Lee D.P.
      • Edin M.L.
      • Zeldin D.C.
      • et al.
      Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation.
      ).
      Similar to PAMPs, self-encoded damage-associated molecular patterns (DAMPs) such as mitochondrial DNA and N-formyl peptides (NFP) are detected by macrophages leading to induction of inflammatory responses (
      • Dela Cruz C.S.
      • Kang M.J.
      Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases.
      ). Recent studies indicate that a class of DAMPs represented by oxidized naturally occurring phospholipids, derived from 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (PAPC) and collectively known as oxPAPC, resides in cell membranes and lipoproteins and functions together with PAMPs to induce optimal immune responses (
      • Freigang S.
      The regulation of inflammation by oxidized phospholipids.
      ,
      • Chu L.H.
      • Indramohan M.
      • Ratsimandresy R.A.
      • Gangopadhyay A.
      • Morris E.P.
      • Monack D.M.
      • Dorfleutner A.
      • Stehlik C.
      The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages.
      ). OxPAPC modulates cell metabolism by upregulating mitochondrial respiration and OXPHOS as well as glutamine utilization, an energy and anaplerotic carbon source that replenishes TCA cycle intermediates, leading to increased cytoplasmic levels of oxaloacetate (OAA). HIF-1α is a key transcription factor induced by LPS stimulation that regulates expression of numerous proglycolytic enzymes and proinflammatory cytokines including IL-1β, and its stability is tightly regulated by metabolites of the TCA cycle, such as succinate, fumarate, citrate, and OAA, which inhibit the activity of the HIF-1α prolyl hydroxylases (PHDs) (
      • Koivunen P.
      • Hirsilä M.
      • Remes A.M.
      • Hassinen I.E.
      • Kivirikko K.I.
      • Myllyharju J.
      Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: Possible links between cell metabolism and stabilization of HIF.
      ). OxPAPC treatment stabilizes HIF-1α activity and potentiates IL-1β production in the presence of an intact TCA cycle (
      • Di Gioia M.
      • Spreafico R.
      • Springstead J.R.
      • Mendelson M.M.
      • Joehanes R.
      • Levy D.
      • Zanoni I.
      Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation.
      ).

      Consequences of shifts in mitochondrial metabolism

      Effects of metabolites on macrophage activation

      Shifts in metabolism, including oxidative metabolism, influence the production of various metabolites that have been shown to have powerful roles in influencing inflammation through effects on signaling pathways, transcription factors, and chromatin (
      • Novakovic B.
      • Habibi E.
      • Wang S.Y.
      • Arts R.J.W.
      • Davar R.
      • Megchelenbrink W.
      • Kim B.
      • Kuznetsova T.
      • Kox M.
      • Zwaag J.
      • Matarese F.
      • van Heeringen S.J.
      • Janssen-Megens E.M.
      • Sharifi N.
      • Wang C.
      • et al.
      β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance.
      ,
      • Baardman J.
      • Licht I.
      • de Winther M.P.
      • Van den Bossche J.
      Metabolic-epigenetic crosstalk in macrophage activation.
      ,
      • Noe J.T.
      • Mitchell R.A.
      Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes.
      ). Because of multiple disruptions to the TCA cycle in macrophages stimulated with LPS, certain metabolites such as citrate, itaconate, and succinate accumulate and play important roles in inflammatory macrophages (Fig. 1).
      Figure thumbnail gr1
      Figure 1The effect of TCA intermediates on macrophage activation. Proinflammatory macrophages exhibit two breaks in the TCA cycle (at IDH and SDH), leading to the accumulation of citrate and succinate, and induction of the arginine-succinate shunt (AST) to support NO production. Itaconate, produced by the enzyme immune-responsive gene 1 (IRG1), exerts anti-inflammatory effects by inhibiting the activity of SDH and stimulating Nrf2 and activating transcription factor 3 (ATF3) induction. Fumarate, another TCA metabolite, is highly antimicrobial toward L. monocytogenes under acidic conditions by inhibiting the GAD (glutamic acid decarboxylase) system, which results in intracellular pH increase. It also has an inhibitory effect on aerobic glycolysis by suppressing GAPDH activity.

      Citrate

      Citrate production can be linked to production of a nuclear-cytosolic pool of acetyl coenzyme A (Acetyl-CoA), which serves as a substrate for histone acetylation and lipid synthesis, both of which have been shown to support macrophage activation (
      • Wellen K.E.
      • Hatzivassiliou G.
      • Sachdeva U.M.
      • Bui T.V.
      • Cross J.R.
      • Thompson C.B.
      ATP-citrate lyase links cellular metabolism to histone acetylation.
      ,
      • Covarrubias A.J.
      • Aksoylar H.I.
      • Yu J.
      • Snyder N.W.
      • Worth A.J.
      • Iyer S.S.
      • Wang J.
      • Ben-Sahra I.
      • Byles V.
      • Polynne-Stapornkul T.
      • Espinosa E.C.
      • Lamming D.
      • Manning B.D.
      • Zhang Y.
      • Blair I.A.
      • et al.
      Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.
      ,
      • Langston P.K.
      • Nambu A.
      • Jung J.
      • Shibata M.
      • Aksoylar H.I.
      • Lei J.
      • Xu P.
      • Doan M.T.
      • Jiang H.
      • MacArthur M.R.
      • Gao X.
      • Kong Y.
      • Chouchani E.T.
      • Locasale J.W.
      • Snyder N.W.
      • et al.
      Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses.
      ,
      • Williams N.C.
      • O'Neill L.A.J.
      A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation.
      ). Citrate is exported from the mitochondria through the mitochondrial citrate carrier (CIC), followed by its cleavage into acetyl-CoA and oxaloacetate by ATP citrate lyase (ACLY) in the cytosol. Acetyl-CoA is necessary for TNFα or IFNγ to induce NO and prostaglandin production and has been shown to fuel histone acetylation at IL-4 and LPS-inducible genes in M2 and M1 macrophages, respectively (
      • Covarrubias A.J.
      • Aksoylar H.I.
      • Yu J.
      • Snyder N.W.
      • Worth A.J.
      • Iyer S.S.
      • Wang J.
      • Ben-Sahra I.
      • Byles V.
      • Polynne-Stapornkul T.
      • Espinosa E.C.
      • Lamming D.
      • Manning B.D.
      • Zhang Y.
      • Blair I.A.
      • et al.
      Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.
      ). Oxaloacetate is needed for NO and ROS production by providing NADPH (
      • Infantino V.
      • Pierri C.L.
      • Iacobazzi V.
      Metabolic routes in inflammation: The citrate pathway and its potential as therapeutic target.
      ). In addition, citrate is acted on by the mitochondrial aconitase 2 (ACO2) to produce cis-aconitate, which is further decarboxylated for itaconate synthesis (
      • Kim J.
      • Seo H.M.
      • Bhatia S.K.
      • Song H.S.
      • Kim J.H.
      • Jeon J.M.
      • Choi K.Y.
      • Kim W.
      • Yoon J.J.
      • Kim Y.G.
      • Yang Y.H.
      Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli.
      ). Itaconate acts as a negative regulator of inflammation by inhibiting SDH and the production of the inflammatory cytokines (
      • Lampropoulou V.
      • Sergushichev A.
      • Bambouskova M.
      • Nair S.
      • Vincent E.E.
      • Loginicheva E.
      • Cervantes-Barragan L.
      • Ma X.
      • Huang S.C.
      • Griss T.
      • Weinheimer C.J.
      • Khader S.
      • Randolph G.J.
      • Pearce E.J.
      • Jones R.G.
      • et al.
      Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
      ). These findings endow citrate, transported from the mitochondria, a crucial role in LPS signaling, via effects on production of ROS, NO, prostaglandin, and itaconate as well as effects on inducible histone acetylation and gene expression (
      • Infantino V.
      • Convertini P.
      • Cucci L.
      • Panaro M.A.
      • Di Noia M.A.
      • Calvello R.
      • Palmieri F.
      • Iacobazzi V.
      The mitochondrial citrate carrier: A new player in inflammation.
      ,
      • O'Neill L.A.
      A critical role for citrate metabolism in LPS signalling.
      )

      Itaconate

      Itaconate, produced in the mitochondrial matrix from the TCA cycle metabolite cis-aconitate by the enzyme immune-responsive gene 1 (IRG1) during LPS stimulation (
      • Degrandi D.
      • Hoffmann R.
      • Beuter-Gunia C.
      • Pfeffer K.
      The proinflammatory cytokine-induced IRG1 protein associates with mitochondria.
      ,
      • Michelucci A.
      • Cordes T.
      • Ghelfi J.
      • Pailot A.
      • Reiling N.
      • Goldmann O.
      • Binz T.
      • Wegner A.
      • Tallam A.
      • Rausell A.
      • Buttini M.
      • Linster C.L.
      • Medina E.
      • Balling R.
      • Hiller K.
      Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.
      ), critically regulates multiple aspects of macrophage functions (
      • Lampropoulou V.
      • Sergushichev A.
      • Bambouskova M.
      • Nair S.
      • Vincent E.E.
      • Loginicheva E.
      • Cervantes-Barragan L.
      • Ma X.
      • Huang S.C.
      • Griss T.
      • Weinheimer C.J.
      • Khader S.
      • Randolph G.J.
      • Pearce E.J.
      • Jones R.G.
      • et al.
      Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
      ). A growing number of studies show that itaconate can exert anti-inflammatory effects by inhibiting inflammatory gene expression and reducing oxidative stress in activated macrophages (
      • Lampropoulou V.
      • Sergushichev A.
      • Bambouskova M.
      • Nair S.
      • Vincent E.E.
      • Loginicheva E.
      • Cervantes-Barragan L.
      • Ma X.
      • Huang S.C.
      • Griss T.
      • Weinheimer C.J.
      • Khader S.
      • Randolph G.J.
      • Pearce E.J.
      • Jones R.G.
      • et al.
      Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
      ,
      • Mills E.L.
      • Ryan D.G.
      • Prag H.A.
      • Dikovskaya D.
      • Menon D.
      • Zaslona Z.
      • Jedrychowski M.P.
      • Costa A.S.H.
      • Higgins M.
      • Hams E.
      • Szpyt J.
      • Runtsch M.C.
      • King M.S.
      • McGouran J.F.
      • Fischer R.
      • et al.
      Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
      ). Itaconate influences oxidative metabolism by suppressing the activity of SDH, a key enzyme in TCA cycle and in Complex II of the ETC. Such activity of itaconate leads to succinate accumulation and decreases in oxygen consumption and contributes to its anti-inflammatory activity (
      • Lampropoulou V.
      • Sergushichev A.
      • Bambouskova M.
      • Nair S.
      • Vincent E.E.
      • Loginicheva E.
      • Cervantes-Barragan L.
      • Ma X.
      • Huang S.C.
      • Griss T.
      • Weinheimer C.J.
      • Khader S.
      • Randolph G.J.
      • Pearce E.J.
      • Jones R.G.
      • et al.
      Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
      ,
      • O'Neill L.A.J.
      • Artyomov M.N.
      Itaconate: The poster child of metabolic reprogramming in macrophage function.
      ). Furthermore, itaconate acts as an electrophile to alkylate cysteine residues on KEAP1 protein (
      • Mills E.L.
      • Ryan D.G.
      • Prag H.A.
      • Dikovskaya D.
      • Menon D.
      • Zaslona Z.
      • Jedrychowski M.P.
      • Costa A.S.H.
      • Higgins M.
      • Hams E.
      • Szpyt J.
      • Runtsch M.C.
      • King M.S.
      • McGouran J.F.
      • Fischer R.
      • et al.
      Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
      ), which is a key oxidative and electrophilic sensor and normally drives ubiquitination and degradation of the anti-inflammatory transcription factor NF-E2–related factor 2 (Nrf2) protein (
      • Yamamoto M.
      • Kensler T.W.
      • Motohashi H.
      The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis.
      ), thus allowing newly synthesized Nrf2 to accumulate, translocate into the nucleus, and initiate a transcriptional antioxidant and anti-inflammatory program. In this way, LPS-induced itaconate production leads to Nrf2 protein accumulation and induction of target genes with antioxidant and anti-inflammatory actions (
      • Mills E.L.
      • Ryan D.G.
      • Prag H.A.
      • Dikovskaya D.
      • Menon D.
      • Zaslona Z.
      • Jedrychowski M.P.
      • Costa A.S.H.
      • Higgins M.
      • Hams E.
      • Szpyt J.
      • Runtsch M.C.
      • King M.S.
      • McGouran J.F.
      • Fischer R.
      • et al.
      Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
      ). In contrast, other studies suggest that effects of itaconate on inflammation are not Nrf2-dependent (
      • Sun K.A.
      • Li Y.
      • Meliton A.Y.
      • Woods P.S.
      • Kimmig L.M.
      • Cetin-Atalay R.
      • Hamanaka R.B.
      • Mutlu G.M.
      Endogenous itaconate is not required for particulate matter-induced NRF2 expression or inflammatory response.
      ). They reported that electrophilic properties of itaconate and its derivatives inhibit IκBζ protein induction through activating transcription factor 3, leading to selective inhibition of some TLR-inducible transcriptional responses (
      • Bambouskova M.
      • Gorvel L.
      • Lampropoulou V.
      • Sergushichev A.
      • Loginicheva E.
      • Johnson K.
      • Korenfeld D.
      • Mathyer M.E.
      • Kim H.
      • Huang L.H.
      • Duncan D.
      • Bregman H.
      • Keskin A.
      • Santeford A.
      • Apte R.S.
      • et al.
      Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis.
      ). Finally, there may be a negative feedback loop between itaconate and type I interferon signaling. Type I interferons enhance the expression of Irg1 and the generation of itaconate, but itaconate limits the type I interferon responses by repressing mitochondrial ROS production as well as proinflammatory cytokines, including IL1-β and IL6 (
      • Lampropoulou V.
      • Sergushichev A.
      • Bambouskova M.
      • Nair S.
      • Vincent E.E.
      • Loginicheva E.
      • Cervantes-Barragan L.
      • Ma X.
      • Huang S.C.
      • Griss T.
      • Weinheimer C.J.
      • Khader S.
      • Randolph G.J.
      • Pearce E.J.
      • Jones R.G.
      • et al.
      Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
      ,
      • Yu X.H.
      • Zhang D.W.
      • Zheng X.L.
      • Tang C.K.
      Itaconate: An emerging determinant of inflammation in activated macrophages.
      ).

      Succinate

      It has been shown that during inflammatory macrophage activation, the Krebs cycle metabolite succinate accumulates and enhances mitochondrial ROS production, acting as a signal to activate proinflammatory gene expression (
      • Tannahill G.M.
      • Curtis A.M.
      • Adamik J.
      • Palsson-McDermott E.M.
      • McGettrick A.F.
      • Goel G.
      • Frezza C.
      • Bernard N.J.
      • Kelly B.
      • Foley N.H.
      • Zheng L.
      • Gardet A.
      • Tong Z.
      • Jany S.S.
      • Corr S.C.
      • et al.
      Succinate is an inflammatory signal that induces IL-1β through HIF-1α.
      ,
      • Mills E.L.
      • Kelly B.
      • Logan A.
      • Costa A.S.H.
      • Varma M.
      • Bryant C.E.
      • Tourlomousis P.
      • Däbritz J.H.M.
      • Gottlieb E.
      • Latorre I.
      • Corr S.C.
      • McManus G.
      • Ryan D.
      • Jacobs H.T.
      • Szibor M.
      • et al.
      Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
      ). Succinate oxidation by succinate dehydrogenase (SDH) leads to HIF-1α stabilization through effects on reverse electron transport (RET) and PHD inhibition, leading to the induction of glycolytic genes and sustaining the glycolytic metabolism of inflammatory macrophages (
      • Tannahill G.M.
      • Curtis A.M.
      • Adamik J.
      • Palsson-McDermott E.M.
      • McGettrick A.F.
      • Goel G.
      • Frezza C.
      • Bernard N.J.
      • Kelly B.
      • Foley N.H.
      • Zheng L.
      • Gardet A.
      • Tong Z.
      • Jany S.S.
      • Corr S.C.
      • et al.
      Succinate is an inflammatory signal that induces IL-1β through HIF-1α.
      ). The accumulation of succinate is further linked to the induction of a proinflammatory phenotype through autocrine stimulation of a receptor called succinate receptor 1 (SUCNR1) that activates inflammatory pathways by enhancing IL-1β production (
      • Littlewood-Evans A.
      • Sarret S.
      • Apfel V.
      • Loesle P.
      • Dawson J.
      • Zhang J.
      • Muller A.
      • Tigani B.
      • Kneuer R.
      • Patel S.
      • Valeaux S.
      • Gommermann N.
      • Rubic-Schneider T.
      • Junt T.
      • Carballido J.M.
      GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis.
      ). In intestinal Tuft cells of the gut that express high levels of SUCNR1, succinate has also been shown to activate microbiota-induced type 2 immunity in response to certain infectious agents (
      • Murphy M.P.
      • O'Neill L.A.J.
      Krebs cycle reimagined: The emerging roles of succinate and itaconate as signal transducers.
      • Lei W.
      • Ren W.
      • Ohmoto M.
      • Urban Jr., J.F.
      • Matsumoto I.
      • Margolskee R.F.
      • Jiang P.
      Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine.
      ).

      Fumarate

      Fumarate is another TCA metabolite that regulates macrophage functions. Fumarate is highly antimicrobial toward Escherichia coli and Listeria monocytogenes under acidic conditions, by inhibiting the GAD (glutamic acid decarboxylase) system, which converts glutamate to γ-amino butyric acid (GABA), resulting in intracellular pH increase (
      • Barnes R.H.
      • Karatzas K.A.G.
      Investigation into the antimicrobial activity of fumarate against Listeria monocytogenes and its mode of action under acidic conditions.
      ,
      • Nisbet D.J.
      • Callaway T.R.
      • Edrington T.S.
      • Anderson R.C.
      • Krueger N.
      Effects of the dicarboxylic acids malate and fumarate on E. coli O157:H7 and Salmonella enterica typhimurium populations in pure culture and in mixed ruminal microorganism fermentations.
      ). Dimethyl fumarate (DMF), a derivative of the TCA cycle intermediate fumarate, is used to treat inflammatory diseases such as psoriasis and multiple sclerosis (
      • Kornberg M.D.
      • Bhargava P.
      • Kim P.M.
      • Putluri V.
      • Snowman A.M.
      • Putluri N.
      • Calabresi P.A.
      • Snyder S.H.
      Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity.
      ). DMF inactivates the catalytic cysteine of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to downregulate aerobic glycolysis in activated myeloid and lymphoid cells (
      • Kornberg M.D.
      • Bhargava P.
      • Kim P.M.
      • Putluri V.
      • Snowman A.M.
      • Putluri N.
      • Calabresi P.A.
      • Snyder S.H.
      Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity.
      ). Moreover, exogenous DMF or endogenous fumarate can modify gasdermin D (GSDMD) at critical cysteine residues to form S-(2-succinyl)-cysteine. Since GSDMD is an executioner of pyroptosis, succination of GSDMD blocks its interaction with caspase 1, decreasing its processing, oligomerization, and capacity to cause cell perforation and pyroptotic cell death (
      • Humphries F.
      • Shmuel-Galia L.
      • Ketelut-Carneiro N.
      • Li S.
      • Wang B.
      • Nemmara V.V.
      • Wilson R.
      • Jiang Z.
      • Khalighinejad F.
      • Muneeruddin K.
      • Shaffer S.A.
      • Dutta R.
      • Ionete C.
      • Pesiridis S.
      • Yang S.
      • et al.
      Succination inactivates gasdermin D and blocks pyroptosis.
      ). A recent study has also found that Nrf2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the proinflammatory responses of human pathogenic viruses, including SARS-CoV2 (
      • Olagnier D.
      • Farahani E.
      • Thyrsted J.
      • Blay-Cadanet J.
      • Herengt A.
      • Idorn M.
      • Hait A.
      • Hernaez B.
      • Knudsen A.
      • Iversen M.B.
      • Schilling M.
      • Jørgensen S.E.
      • Thomsen M.
      • Reinert L.S.
      • Lappe M.
      • et al.
      SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate.
      ). These findings indicate the possibility that fumarate may have a similar effect to DMF in inhibiting aerobic glycolysis and possessing antiviral, antimicrobial, and anti-inflammatory activity.

      NO

      Nitric oxide (NO) is a reactive free radical produced by arginine and catalyzed by nitric oxide synthase (NOS). NO can interact with superoxides to produce reactive nitrogen (RNS), leading to macromolecular changes and cell damage (
      • Willems P.H.
      • Rossignol R.
      • Dieteren C.E.
      • Murphy M.P.
      • Koopman W.J.
      Redox homeostasis and mitochondrial dynamics.
      ). All of these may endow NO produced by macrophage with antibacterial, anti-inflammatory, cytotoxic, and tumoricidal effects (
      • MacMicking J.
      • Xie Q.W.
      • Nathan C.
      Nitric oxide and macrophage function.
      ). A paradox has been found that intracellular NO produced by iNOS plays a proapoptotic role in inflammatory macrophages, but high NO induced by the treatment of LPS and IFN-γ exerts antiapoptotic effect on anti-inflammatory macrophages (
      • Boscá L.
      • Zeini M.
      • Través P.G.
      • Hortelano S.
      Nitric oxide and cell viability in inflammatory cells: A role for NO in macrophage function and fate.
      ,
      • Hortelano S.
      • Través P.G.
      • Zeini M.
      • Alvarez A.M.
      • Boscá L.
      Sustained nitric oxide delivery delays nitric oxide-dependent apoptosis in macrophages: Contribution to the physiological function of activated macrophages.
      ). We proposed that its effect on cell metabolism may attribute to this paradoxical situation. On the one hand, recent labeling analyses indicate that in inflammatory macrophages, part of the TCA cycle is co-opted by the aspartate-arginosuccinate shunt to generate arginine and coordinate NO production. The aspartate-aminotransferase Got1, a key enzyme of the shunt, promotes NO and IL-6 production in inflammatory macrophages, while suppressing mitochondrial respiration (
      • Jha A.K.
      • Huang S.C.
      • Sergushichev A.
      • Lampropoulou V.
      • Ivanova Y.
      • Loginicheva E.
      • Chmielewski K.
      • Stewart K.M.
      • Ashall J.
      • Everts B.
      • Pearce E.J.
      • Driggers E.M.
      • Artyomov M.N.
      Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.
      ). NO rapidly triggers release of the mitochondrial-dependent apoptotic mediators, such as cytochrome c, into the cytosol (
      • Karabay A.Z.
      • Aktan F.
      • Sunguroğlu A.
      • Buyukbingol Z.
      Methylsulfonylmethane modulates apoptosis of LPS/IFN-γ-activated RAW 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP proteins.
      ). On the other hand, iNOS-derived NO is known to be a vital effector of inflammatory macrophages that adjusts ETC activity by inhibiting critical N-module subunits in Complex I (
      • Bailey J.D.
      • Diotallevi M.
      • Nicol T.
      • McNeill E.
      • Shaw A.
      • Chuaiphichai S.
      • Hale A.
      • Starr A.
      • Nandi M.
      • Stylianou E.
      • McShane H.
      • Davis S.
      • Fischer R.
      • Kessler B.M.
      • McCullagh J.
      • et al.
      Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation.
      ) and Complex IV (
      • Sarti P.
      • Arese M.
      • Bacchi A.
      • Barone M.C.
      • Forte E.
      • Mastronicola D.
      • Brunori M.
      • Giuffrè A.
      Nitric oxide and mitochondrial complex IV.
      ). By these means, NO and NO-derived reactive nitrogen species are responsible for inhibiting OXPHOS in stimulated macrophages, thus modulating levels of the essential TCA cycle metabolites citrate and succinate, as well as the anti-inflammatory mediator itaconate (
      • Van den Bossche J.
      • Baardman J.
      • Otto N.A.
      • van der Velden S.
      • Neele A.E.
      • van den Berg S.M.
      • Luque-Martin R.
      • Chen H.J.
      • Boshuizen M.C.
      • Ahmed M.
      • Hoeksema M.A.
      • de Vos A.F.
      • de Winther M.P.
      Mitochondrial dysfunction prevents repolarization of inflammatory macrophages.
      ,
      • Bailey J.D.
      • Diotallevi M.
      • Nicol T.
      • McNeill E.
      • Shaw A.
      • Chuaiphichai S.
      • Hale A.
      • Starr A.
      • Nandi M.
      • Stylianou E.
      • McShane H.
      • Davis S.
      • Fischer R.
      • Kessler B.M.
      • McCullagh J.
      • et al.
      Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation.
      ,
      • Everts B.
      • Amiel E.
      • van der Windt G.J.
      • Freitas T.C.
      • Chott R.
      • Yarasheski K.E.
      • Pearce E.L.
      • Pearce E.J.
      Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells.
      ), resulting in reduced production of inflammatory mediators.

      How oxidative metabolism influences gene expression

      Histone modifications

      Growing evidence supports the notion that oxidative metabolism-derived metabolites converge on chromatin to regulate gene expression, either by providing substrates for histone modification or by influencing the activity of enzymes, which modulate histone modifications. Recent studies indicate that acute LPS exposure augments oxidative metabolism and increases the availability of the TCA cycle intermediate citrate that is used by ATP citrate lyase (ACLY) to produce a nuclear-cytoplasmic pool of Ac-CoA, the carbon substrate for histone acetylation, thus enhancing histone acetylation at inflammatory gene promoters to induce inflammatory responses (
      • Langston P.K.
      • Nambu A.
      • Jung J.
      • Shibata M.
      • Aksoylar H.I.
      • Lei J.
      • Xu P.
      • Doan M.T.
      • Jiang H.
      • MacArthur M.R.
      • Gao X.
      • Kong Y.
      • Chouchani E.T.
      • Locasale J.W.
      • Snyder N.W.
      • et al.
      Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses.
      • Lauterbach M.A.
      • Hanke J.E.
      • Serefidou M.
      • Mangan M.S.J.
      • Kolbe C.C.
      • Hess T.
      • Rothe M.
      • Kaiser R.
      • Hoss F.
      • Gehlen J.
      • Engels G.
      • Kreutzenbeck M.
      • Schmidt S.V.
      • Christ A.
      • Imhof A.
      • et al.
      Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase.
      ). In contrast, prolonged exposure to LPS drives a shift to oxidative metabolism shutdown in LPS tolerant macrophages, thus reducing histone acetylation at inflammatory genes due to the decreased production of Ac-CoA (
      • Langston P.K.
      • Nambu A.
      • Jung J.
      • Shibata M.
      • Aksoylar H.I.
      • Lei J.
      • Xu P.
      • Doan M.T.
      • Jiang H.
      • MacArthur M.R.
      • Gao X.
      • Kong Y.
      • Chouchani E.T.
      • Locasale J.W.
      • Snyder N.W.
      • et al.
      Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses.
      ). Therefore, oxidative metabolism influences inflammatory gene induction and suppression via effects on Ac-CoA availability for histone acetylation.
      TCA cycle intermediates influence the activities of DNA and histone methylation enzymes and shape the epigenetic landscape of chromatin. One example is α-KG, which is a necessary cofactor for some dioxygenases that regulate DNA and histone demethylation, i.e., Ten-Eleven Translocation (TETs) and Jumonji C domain containing (JmjC) demethylases. Upon IL-4 stimulation, α-KG produced via glutaminolysis supports the activity of the histone demethylase Jmjd3 to drive loss of trimethylation of histone H3K27, a repressive epigenetic marker, to induce transcription of anti-inflammatory genes (
      • Liu P.S.
      • Wang H.
      • Li X.
      • Chao T.
      • Teav T.
      • Christen S.
      • Di Conza G.
      • Cheng W.C.
      • Chou C.H.
      • Vavakova M.
      • Muret C.
      • Debackere K.
      • Mazzone M.
      • Huang H.D.
      • Fendt S.M.
      • et al.
      alpha-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming.
      ). Interestingly, succinate and fumarate, also TCA cycle intermediates and structurally related to α-KG, may inhibit α-KG-dependent enzymes. So, the balance of TCA cycle reactions can affect levels of DNA and histone methylation to control gene expression (
      • Arts R.J.
      • Novakovic B.
      • Ter Horst R.
      • Carvalho A.
      • Bekkering S.
      • Lachmandas E.
      • Rodrigues F.
      • Silvestre R.
      • Cheng S.C.
      • Wang S.Y.
      • Habibi E.
      • Gonçalves L.G.
      • Mesquita I.
      • Cunha C.
      • van Laarhoven A.
      • et al.
      Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity.
      ,
      • Salminen A.
      • Kauppinen A.
      • Hiltunen M.
      • Kaarniranta K.
      Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process.
      ). Specifically, succinate and fumarate could increase H3K4me3 levels at the promoters of proinflammatory cytokine genes through the suppression of KDM5 histone demethylases, thus driving gene induction (
      • Arts R.J.
      • Novakovic B.
      • Ter Horst R.
      • Carvalho A.
      • Bekkering S.
      • Lachmandas E.
      • Rodrigues F.
      • Silvestre R.
      • Cheng S.C.
      • Wang S.Y.
      • Habibi E.
      • Gonçalves L.G.
      • Mesquita I.
      • Cunha C.
      • van Laarhoven A.
      • et al.
      Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity.
      ,
      • Tarhonskaya H.
      • Nowak R.P.
      • Johansson C.
      • Szykowska A.
      • Tumber A.
      • Hancock R.L.
      • Lang P.
      • Flashman E.
      • Oppermann U.
      • Schofield C.J.
      • Kawamura A.
      Studies on the interaction of the histone demethylase KDM5B with tricarboxylic acid cycle intermediates.
      ,
      • Saeed S.
      • Quintin J.
      • Kerstens H.H.
      • Rao N.A.
      • Aghajanirefah A.
      • Matarese F.
      • Cheng S.C.
      • Ratter J.
      • Berentsen K.
      • van der Ent M.A.
      • Sharifi N.
      • Janssen-Megens E.M.
      • Ter Huurne M.
      • Mandoli A.
      • van Schaik T.
      • et al.
      Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.
      ).
      Apart from histone acetylation and methylation, histone lactylation has been recently implicated in regulating macrophage gene expression. In inflammatory macrophages, reduced oxidative metabolism but increased aerobic glycolysis fuels production of the glycolysis end-product lactate, which is used as a carbon substrate for histone lactylation. Histone lactylation drives a subset of genes induced in M2-like macrophages, particularly homeostatic genes that are involved in wound healing (
      • Zhang D.
      • Tang Z.
      • Huang H.
      • Zhou G.
      • Cui C.
      • Weng Y.
      • Liu W.
      • Kim S.
      • Lee S.
      • Perez-Neut M.
      • Ding J.
      • Czyz D.
      • Hu R.
      • Ye Z.
      • He M.
      • et al.
      Metabolic regulation of gene expression by histone lactylation.
      ).

      Sirtuin-mediated deacetylation

      Sirtuins such as SIRT1 are conserved NAD(+)-dependent deacylases and ADP ribosyl transferases (
      • Chang H.C.
      • Guarente L.
      SIRT1 and other sirtuins in metabolism.
      ). It has been reported that SIRT1 suppresses proinflammatory cytokine production by deacetylating p65 at the early stage of LPS stimulation and deacetylates but activates PGC-1β to promote FAO and mitochondrial biogenesis at the late stage of LPS stimulation (
      • Rodgers J.T.
      • Lerin C.
      • Haas W.
      • Gygi S.P.
      • Spiegelman B.M.
      • Puigserver P.
      Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
      ,
      • Yang X.
      • Liu Q.
      • Li Y.
      • Tang Q.
      • Wu T.
      • Chen L.
      • Pu S.
      • Zhao Y.
      • Zhang G.
      • Huang C.
      • Zhang J.
      • Zhang Z.
      • Huang Y.
      • Zou M.
      • Shi X.
      • et al.
      The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway.
      ,
      • Kelly T.J.
      • Lerin C.
      • Haas W.
      • Gygi S.P.
      • Puigserver P.
      GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation.
      ,
      • Chen X.
      • Lu Y.
      • Zhang Z.
      • Wang J.
      • Yang H.
      • Liu G.
      Intercellular interplay between Sirt1 signalling and cell metabolism in immune cell biology.
      ). Furthermore, the Sirt1 signaling cascade can be activated by increased NAD+ availability to enhance IL-10 production, thus polarizing macrophages for tissue repair during efferocytosis (
      • Zhang S.
      • Weinberg S.
      • DeBerge M.
      • Gainullina A.
      • Schipma M.
      • Kinchen J.M.
      • Ben-Sahra I.
      • Gius D.R.
      • Yvan-Charvet L.
      • Chandel N.S.
      • Schumacker P.T.
      • Thorp E.B.
      Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair.
      ). Another study has also revealed that Sirt1 and Sirt6 are required for the switch from glycolysis to enhanced fatty acid mitochondrial oxidation, while Sirt6 suppresses glucose metabolism by epigenetically silencing the HIF-1α pathway, consequently contributing to a shift toward FAO (
      • Zhong L.
      • D'Urso A.
      • Toiber D.
      • Sebastian C.
      • Henry R.E.
      • Vadysirisack D.D.
      • Guimaraes A.
      • Marinelli B.
      • Wikstrom J.D.
      • Nir T.
      • Clish C.B.
      • Vaitheesvaran B.
      • Iliopoulos O.
      • Kurland I.
      • Dor Y.
      • et al.
      The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha.
      ).

      eIF5A hypusination

      Hypusine is uniquely formed through posttranslational modification of a specific lysine residue in eukaryotic translation initiation factor 5A (eIF5A) by the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Such hypusination occurs shortly after eIF5A synthesis and is needed for eIF-5A activity (
      • Park M.H.
      • Wolff E.C.
      • Folk J.E.
      Hypusine: Its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation.
      ), and according to a recent study, is dynamically regulated after macrophage activation. In IL-4-stimulated macrophages, an increase in production of the polyamine spermidine fuels an increase in eIF5AH to improve the translation efficiency of certain mitochondrial proteins participating in the TCA cycle and OXPHOS, including succinyl-CoA synthetase (SUCLG1) and SDH (
      • Puleston D.J.
      • Buck M.D.
      • Klein Geltink R.I.
      • Kyle R.L.
      • Caputa G.
      • O'Sullivan D.
      • Cameron A.M.
      • Castoldi A.
      • Musa Y.
      • Kabat A.M.
      • Zhang Y.
      • Flachsmann L.J.
      • Field C.S.
      • Patterson A.E.
      • Scherer S.
      • et al.
      Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation.
      ). Another study showed that eIF5AH is vital for inducing the expression of autophagy transcription factor TFEB, thus implicating a role in autophagy regulation (
      • Zhang H.
      • Alsaleh G.
      • Feltham J.
      • Sun Y.
      • Napolitano G.
      • Riffelmacher T.
      • Charles P.
      • Frau L.
      • Hublitz P.
      • Yu Z.
      • Mohammed S.
      • Ballabio A.
      • Balabanov S.
      • Mellor J.
      • Simon A.K.
      Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence.
      ).

      Shifts in mitochondrial metabolism influence macrophage biology

      Mitochondrial dynamics influence macrophage metabolism and gene expression

      Mitochondria represent a major metabolic hub and coordinate metabolic shifts in response to intra- and extracellular signals. Such a role for mitochondria can involve corresponding changes to their morphology and ultrastructure, since nutrient deprivation drives mitochondrial fusion and cristae remodeling to favor coupled respiration and bioenergetic efficiency, while nutrient excess triggers mitochondrial fission and cristae expansion to potentiate uncoupled respiration and reduce mtROS production (
      • Pernas L.
      • Scorrano L.
      Mito-Morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function.
      ). Mitochondrial fusion in IL-4-stimulated macrophages stimulates interactions between ETC complexes that are conducive to OXPHOS and FAO, while fission in inflammatory macrophages causes cristae expansion to dampen ETC efficiency and enhance aerobic glycolysis (Fig. 2). In TLR-stimulated macrophages, the outer mitochondrial membrane protein FAM73b (also known as Miga2) plays a vital role in switching mitochondria from fission to fusion and thus decreasing IL-12 expression (
      • Gao Z.
      • Li Y.
      • Wang F.
      • Huang T.
      • Fan K.
      • Zhang Y.
      • Zhong J.
      • Cao Q.
      • Chao T.
      • Jia J.
      • Yang S.
      • Zhang L.
      • Xiao Y.
      • Zhou J.Y.
      • Feng X.H.
      • et al.
      Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability.
      ). Consistently, mitochondrial fusion regulators Mfn1 and Mfn2 have similar effects on inflammatory gene expression as FAM73b (
      • Sloat S.R.
      • Whitley B.N.
      • Engelhart E.A.
      • Hoppins S.
      Identification of a mitofusin specificity region that confers unique activities to Mfn1 and Mfn2.
      ,
      • Wei H.
      • Zhang Y.
      • Song S.
      • Pinkerton K.E.
      • Geng H.
      • Ro C.U.
      Alveolar macrophage reaction to PM(2.5) of hazy day in vitro: Evaluation methods and mitochondrial screening to determine mechanisms of biological effect.
      ). Furthermore, aberrant mitochondrial elongation due to dynamin-related protein 1 (Drp1) knockdown initiates NLRP3-dependent caspase-1 activation and IL-1β secretion, while induction of mitochondrial fission impedes NLRP3 inflammasomal assembly and activation (
      • Park S.
      • Won J.H.
      • Hwang I.
      • Hong S.
      • Lee H.K.
      • Yu J.W.
      Defective mitochondrial fission augments NLRP3 inflammasome activation.
      ).
      Figure thumbnail gr2
      Figure 2Mitochondrial metabolism modulates gene expression in inflammatory and IL-4-stimulated macrophages. In inflammatory macrophages activated by microbial signals, mitochondrial fission dampens ETC efficiency and enhances aerobic glycolysis. Elevated ΔΨm leads to accumulation of mtROS and induction of Il1b gene and voltage-regulated genes (VRGs), all contribute to macrophage function. In IL-4-stimulated macrophages, mitochondrial fusion stimulates interactions between ETC complexes that are conducive to OXPHOS and FAO. PGE2 modulates the expression of genes encoding the malate-aspartate shuttle (MAS), leading to the decrease of ΔΨm, which increases the activity of ETS variant 1 (ETV1) to promote some IL-4-inducible gene expression. Degradation or turnover of mitochondria via mitophagy is regulated by BNIP3L/NIX receptor and AMPK and mTOR pathway.

      Mitochondrial membrane potential exerts effects on macrophage functions

      The mitochondrial membrane potential (ΔΨm) is generated by proton pumping at multiple sites of the ETC and is needed for multiple aspects of mitochondrial physiology including uptake/import of mitochondrial matrix proteins and many metabolites and ions (
      • Zorova L.D.
      • Popkov V.A.
      • Plotnikov E.Y.
      • Silachev D.N.
      • Pevzner I.B.
      • Jankauskas S.S.
      • Babenko V.A.
      • Zorov S.D.
      • Balakireva A.V.
      • Juhaszova M.
      • Sollott S.J.
      • Zorov D.B.
      Mitochondrial membrane potential.
      ). ΔΨm can be influenced by the efficiency of the TCA cycle, the availability of NADH and FADH2 to feed the ETC, and expression of mitochondrial uncoupling proteins and matrix resident protein such as MICUs, MCUR1, and EMRE (
      • Sancak Y.
      • Markhard A.L.
      • Kitami T.
      • Kovács-Bogdán E.
      • Kamer K.J.
      • Udeshi N.D.
      • Carr S.A.
      • Chaudhuri D.
      • Clapham D.E.
      • Li A.A.
      • Calvo S.E.
      • Goldberger O.
      • Mootha V.K.
      EMRE is an essential component of the mitochondrial calcium uniporter complex.
      ,
      • Mallilankaraman K.
      • Cárdenas C.
      • Doonan P.J.
      • Chandramoorthy H.C.
      • Irrinki K.M.
      • Golenár T.
      • Csordás G.
      • Madireddi P.
      • Yang J.
      • Müller M.
      • Miller R.
      • Kolesar J.E.
      • Molgó J.
      • Kaufman B.
      • Hajnóczky G.
      • et al.
      MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism.
      ,
      • Perocchi F.
      • Gohil V.M.
      • Girgis H.S.
      • Bao X.R.
      • McCombs J.E.
      • Palmer A.E.
      • Mootha V.K.
      MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake.
      ). It has been pointed out that LPS stimulation leads to an elevated ΔΨm, which together with enhanced SDH oxidation of succinate leads to accumulation of mtROS and promotion of Il1b gene induction (
      • Mills E.L.
      • Kelly B.
      • Logan A.
      • Costa A.S.H.
      • Varma M.
      • Bryant C.E.
      • Tourlomousis P.
      • Däbritz J.H.M.
      • Gottlieb E.
      • Latorre I.
      • Corr S.C.
      • McManus G.
      • Ryan D.
      • Jacobs H.T.
      • Szibor M.
      • et al.
      Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
      ). Moreover, ΔΨm affects the expression of a set of voltage-regulated genes (VRGs) and mediates mitochondria-directed regulation of macrophage function. In IL-4-stimulated macrophage, Prostaglandin E2 (PGE2) modulates the expression of genes encoding the malate-aspartate shuttle (MAS) and reduces levels of MAS metabolites, leading to the decrease of ΔΨm. The reduced ΔΨm increases the activity of a transcription factor called ETS variant 1 (ETV1) to promote the expression of some IL-4-inducible genes (
      • Sanin D.E.
      • Matsushita M.
      • Klein Geltink R.I.
      • Grzes K.M.
      • van Teijlingen Bakker N.
      • Corrado M.
      • Kabat A.M.
      • Buck M.D.
      • Qiu J.
      • Lawless S.J.
      • Cameron A.M.
      • Villa M.
      • Baixauli F.
      • Patterson A.E.
      • Hässler F.
      • et al.
      Mitochondrial membrane potential regulates nuclear gene expression in macrophages exposed to prostaglandin E2.
      ) (Fig. 2).

      Mitophagy

      Degradation or turnover of mitochondria via autophagy (mitophagy) is an evolutionarily conserved mechanism for mitochondrial quality control and homeostasis (
      • Montava-Garriga L.
      • Ganley I.G.
      Outstanding questions in mitophagy: What we do and do not know.
      ). Upon stress or inflammation, mitophagy prevents the accumulation of damaged mitochondria and the increased steady-state levels of ROS that otherwise leads to oxidative stress and cell death. Mitophagy may restrict inflammatory cytokine secretion and directly regulate mitochondrial antigen presentation and immune cell homeostasis. Moreover, the mitophagy receptor BNIP3L/NIX-dependent mitophagy manipulates metabolic reprogramming toward glycolysis, supporting inflammatory macrophage polarization to develop a rapid immune response during inflammation (
      • Esteban-Martínez L.
      • Boya P.
      BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming.
      ). Mitophagy can also be stimulated by the energy sensor AMP-activated protein kinase (AMPK), leading to inactivation of the NLRP3 inflammasome (
      • Sanchez-Lopez E.
      • Zhong Z.
      • Stubelius A.
      • Sweeney S.R.
      • Booshehri L.M.
      • Antonucci L.
      • Liu-Bryan R.
      • Lodi A.
      • Terkeltaub R.
      • Lacal J.C.
      • Murphy A.N.
      • Hoffman H.M.
      • Tiziani S.
      • Guma M.
      • Karin M.
      Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production.
      ). In macrophages, activated mTOR can suppress mitophagy, while selective inhibition of PI3K/Akt/mTOR signaling will lead to the accumulation of dysfunctional mitochondria and induce macrophage apoptosis (
      • Zhao Y.
      • Feng X.
      • Li B.
      • Sha J.
      • Wang C.
      • Yang T.
      • Cui H.
      • Fan H.
      Dexmedetomidine protects against lipopolysaccharide-induced acute kidney injury by enhancing autophagy through inhibition of the PI3K/AKT/mTOR pathway.
      ).

      Mitochondrial dysfunction and oxidative stress in the inflammatory response

      Mitochondrial stress

      Mitochondria are one of the main targets of cellular stress induced by inflammation, pathogen infection, and aging. Mitochondrial perturbations including mtROS generation, ATP synthesis reduction, glutathione levels reduction, and mitochondrial morphology alterations may all lead to mitochondrial stress (
      • Eisner V.
      • Picard M.
      • Hajnóczky G.
      Mitochondrial dynamics in adaptive and maladaptive cellular stress responses.
      ,
      • D'Amico D.
      • Sorrentino V.
      • Auwerx J.
      Cytosolic proteostasis networks of the mitochondrial stress response.
      ) (Fig. 3). In inflammatory macrophages, mitochondrial stress can contribute to release of DAMPs such as mitochondrial DNA (mtDNA) that stimulate innate immune receptors and downstream pathways, implicating mitochondria as both a target and an instigator of the inflammatory response (
      • West A.P.
      • Khoury-Hanold W.
      • Staron M.
      • Tal M.C.
      • Pineda C.M.
      • Lang S.M.
      • Bestwick M.
      • Duguay B.A.
      • Raimundo N.
      • MacDuff D.A.
      • Kaech S.M.
      • Smiley J.R.
      • Means R.E.
      • Iwasaki A.
      • Shadel G.S.
      Mitochondrial DNA stress primes the antiviral innate immune response.
      ). For example, herpesvirus infection induces mtDNA stress and aberrant mtDNA packaging to promote mtDNA escape into the cytosol, where it is recognized by the DNA sensor cyclic GMP-AMP synthase (cGAS) to activate STING (stimulator of interferon genes)-IRF3-dependent signaling and induce interferon (IFN)-stimulated gene (ISG) expression, enhance type I IFN responses, and confer broad viral resistance (
      • West A.P.
      • Khoury-Hanold W.
      • Staron M.
      • Tal M.C.
      • Pineda C.M.
      • Lang S.M.
      • Bestwick M.
      • Duguay B.A.
      • Raimundo N.
      • MacDuff D.A.
      • Kaech S.M.
      • Smiley J.R.
      • Means R.E.
      • Iwasaki A.
      • Shadel G.S.
      Mitochondrial DNA stress primes the antiviral innate immune response.
      ). The mtDNA also can be released into the extracellular plasma, where it activates the TLR9 pathway to increase proinflammatory cytokine production (
      • Riley J.S.
      • Tait S.W.
      Mitochondrial DNA in inflammation and immunity.
      ,
      • Wu G.
      • Zhu Q.
      • Zeng J.
      • Gu X.
      • Miao Y.
      • Xu W.
      • Lv T.
      • Song Y.
      Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-κB.
      ). Moreover, mitochondrial stress may cause mitochondrial unfolded protein response and mitophagy to eliminate dysfunctional mitochondria characterized by low membrane potential and a high level of ROS. If all else fails, stressed macrophages undergo apoptosis (
      • Li H.
      • Xiao Y.
      • Tang L.
      • Zhong F.
      • Huang G.
      • Xu J.M.
      • Xu A.M.
      • Dai R.P.
      • Zhou Z.G.
      Adipocyte fatty acid-binding protein promotes palmitate-induced mitochondrial dysfunction and apoptosis in macrophages.
      ,
      • Larson-Casey J.L.
      • Deshane J.S.
      • Ryan A.J.
      • Thannickal V.J.
      • Carter A.B.
      Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis.
      )
      Figure thumbnail gr3
      Figure 3Mitochondrial stress and mtROS in the inflammatory response. Mitochondrial dysfunction including mtROS generation, reduced ATP synthesis and glutathione levels, and mtDNA release into the cytosol may all lead to mitochondrial stress. Cytoplasmic mtDNA can stimulate type I IFN responses via the cGAS-STING-IRF3 pathway and activate NLRP3 inflammasome and TLR9 pathway to increase proinflammatory cytokines production. mtROS production has been shown to cause DNA damage, unfolded protein response (UPR), and inflammatory responses through HIF-1α and MAPK/NF-κB pathways in LPS-stimulated macrophages.
      Inflammasomes are both a key target and an instigator of mitochondrial stress in its induction of inflammatory responses (
      • Guo H.
      • Callaway J.B.
      • Ting J.P.
      Inflammasomes: Mechanism of action, role in disease, and therapeutics.
      ). PAMPs or DAMPs including mtROS and oxidized mtDNA can prime and activate the NLRP3 inflammasome, leading to the secretion of inflammatory cytokines including IL-1β and IL-18 (
      • An N.
      • Gao Y.
      • Si Z.
      • Zhang H.
      • Wang L.
      • Tian C.
      • Yuan M.
      • Yang X.
      • Li X.
      • Shang H.
      • Xiong X.
      • Xing Y.
      Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases.
      ,
      • Wang Z.
      • Zhang S.
      • Xiao Y.
      • Zhang W.
      • Wu S.
      • Qin T.
      • Yue Y.
      • Qian W.
      • Li L.
      NLRP3 inflammasome and inflammatory diseases.
      ) and pyroptosis, a form of lytic programmed cell death (
      • Jorgensen I.
      • Miao E.A.
      Pyroptotic cell death defends against intracellular pathogens.
      ). On the other hand, it has been reported that blockade of the p38 MAPK signaling pathway represses expression of the NLRP3 inflammasome and IL-1β and cleavage of caspase-1, thus predisposing macrophages to die from noninflammatory apoptosis rather than proinflammatory pyroptosis (
      • Li D.
      • Ren W.
      • Jiang Z.
      • Zhu L.
      Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury.
      ). NLRP3 is modified and activated by acetylation in macrophages and is deacetylated by Sirtuin 2 (SIRT2), a cytosolic NAD+-dependent deacetylase and metabolic sensor, contributing to aging-associated inflammation and insulin resistance (
      • He M.
      • Chiang H.H.
      • Luo H.
      • Zheng Z.
      • Qiao Q.
      • Wang L.
      • Tan M.
      • Ohkubo R.
      • Mu W.C.
      • Zhao S.
      • Wu H.
      • Chen D.
      An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance.
      ).

      Mitochondrial ROS (mtROS)

      ROS, including superoxide (O2), hydrogen peroxide (H2O2), and hydroxyl radical (OH), are very reactive and can attack lipids, proteins, and DNA (
      • Rendra E.
      • Riabov V.
      • Mossel D.M.
      • Sevastyanova T.
      • Harmsen M.C.
      • Kzhyshkowska J.
      Reactive oxygen species (ROS) in macrophage activation and function in diabetes.
      ). ROS can be produced at multiple intracellular sites including the mitochondria, endoplasmic reticulum, peroxisomes, and phagosomes; in activated macrophages, NADPH oxidase and mitochondrial ETC activity are thought to be major sources (
      • West A.P.
      • Brodsky I.E.
      • Rahner C.
      • Woo D.K.
      • Erdjument-Bromage H.
      • Tempst P.
      • Walsh M.C.
      • Choi Y.
      • Shadel G.S.
      • Ghosh S.
      TLR signalling augments macrophage bactericidal activity through mitochondrial ROS.
      ,
      • Hall C.J.
      • Boyle R.H.
      • Astin J.W.
      • Flores M.V.
      • Oehlers S.H.
      • Sanderson L.E.
      • Ellett F.
      • Lieschke G.J.
      • Crosier K.E.
      • Crosier P.S.
      Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.
      ). Recently, reverse electron transport (RET) has been shown to contribute to mtROS production in LPS-stimulated macrophages. Increased mitochondrial oxidation of succinate via SDH and an elevation of ΔΨm combine to boost RET and consequent mtROS production at Complex I, leading to increased induction of IL-1β (
      • Mills E.L.
      • Kelly B.
      • Logan A.
      • Costa A.S.H.
      • Varma M.
      • Bryant C.E.
      • Tourlomousis P.
      • Däbritz J.H.M.
      • Gottlieb E.
      • Latorre I.
      • Corr S.C.
      • McManus G.
      • Ryan D.
      • Jacobs H.T.
      • Szibor M.
      • et al.
      Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
      ). Another study reported that the glycerol phosphate shuttle contributes to RET and mtROS production in LPS tolerant macrophages (
      • Langston P.K.
      • Nambu A.
      • Jung J.
      • Shibata M.
      • Aksoylar H.I.
      • Lei J.
      • Xu P.
      • Doan M.T.
      • Jiang H.
      • MacArthur M.R.
      • Gao X.
      • Kong Y.
      • Chouchani E.T.
      • Locasale J.W.
      • Snyder N.W.
      • et al.
      Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses.
      ). Increased NADH/NAD+ ratio in LPS-stimulated macrophages can also favor the generation of O2− at Complex I (
      • Dubouchaud H.
      • Walter L.
      • Rigoulet M.
      • Batandier C.
      Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse electron transfer through complex I.
      ,
      • Murphy M.P.
      How mitochondria produce reactive oxygen species.
      ).
      How does increased mtROS contribute to macrophage functions? mtROS has been shown to promote killing of phagosomal bacterial by inducing cellular H2O2 (
      • West A.P.
      • Brodsky I.E.
      • Rahner C.
      • Woo D.K.
      • Erdjument-Bromage H.
      • Tempst P.
      • Walsh M.C.
      • Choi Y.
      • Shadel G.S.
      • Ghosh S.
      TLR signalling augments macrophage bactericidal activity through mitochondrial ROS.
      ). Furthermore, mitochondrial enzyme superoxide dismutase-2 (SOD2) can be delivered from mitochondria to bacteria-containing phagosomes via mitochondria-derived vesicles (MDVs), maintaining phagosomal H2O2 production and thus bacterial killing (
      • Abuaita B.H.
      • Schultz T.L.
      • O'Riordan M.X.
      Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus.
      ). mtROS can also act as a proinflammatory signal to induce proinflammatory gene expression and cytokines production through regulating MAPK and NF-κB pathways (
      • Mills E.L.
      • Kelly B.
      • Logan A.
      • Costa A.S.H.
      • Varma M.
      • Bryant C.E.
      • Tourlomousis P.
      • Däbritz J.H.M.
      • Gottlieb E.
      • Latorre I.
      • Corr S.C.
      • McManus G.
      • Ryan D.
      • Jacobs H.T.
      • Szibor M.
      • et al.
      Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
      ,
      • Gu L.
      • Larson Casey J.L.
      • Andrabi S.A.
      • Lee J.H.
      • Meza-Perez S.
      • Randall T.D.
      • Carter A.B.
      Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis.
      ,
      • Forrester S.J.
      • Kikuchi D.S.
      • Hernandes M.S.
      • Xu Q.
      • Griendling K.K.
      Reactive oxygen species in metabolic and inflammatory signaling.
      ). Moreover, mtROS production is implicated in the stabilization of HIF-1α, thus promotes aerobic glycolysis and IL-1β induction in LPS-activated macrophages (
      • Fuhrmann D.C.
      • Wittig I.
      • Brüne B.
      TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression.
      ). Finally, mtROS produced by Complex III of the mitochondrial ETC plays a role in the DNA damage response and NAD+ metabolism in LPS-stimulated macrophages. Such mtROS promotes DNA damage and activation of DNA damage-sensing poly (ADP-ribose) polymerases (PARPs), leading to depletion of its substrate NAD+. Consequent induction of nicotinamide phosphoribosyl transferase (NAMPT), a key enzyme in the NAD+ salvage pathway, is linked to maintenance of glycolytic flux, Warburg metabolism, and the inflammatory response (
      • Cameron A.M.
      • Castoldi A.
      • Sanin D.E.
      • Flachsmann L.J.
      • Field C.S.
      • Puleston D.J.
      • Kyle R.L.
      • Patterson A.E.
      • Hässler F.
      • Buescher J.M.
      • Kelly B.
      • Pearce E.L.
      • Pearce E.J.
      Inflammatory macrophage dependence on NAD(+) salvage is a consequence of reactive oxygen species-mediated DNA damage.
      ). The increased level of mtROS results from inhibited glycolytic activity, contributing to exacerbated unfolded protein response (UPR) and inflammatory response (
      • Mogilenko D.A.
      • Haas J.T.
      • L'Homme L.
      • Fleury S.
      • Quemener S.
      • Levavasseur M.
      • Becquart C.
      • Wartelle J.
      • Bogomolova A.
      • Pineau L.
      • Molendi-Coste O.
      • Lancel S.
      • Dehondt H.
      • Gheeraert C.
      • Melchior A.
      • et al.
      Metabolic and innate immune cues merge into a specific inflammatory response via the UPR.
      ).
      Altogether, these findings implicate mtROS as an important component of antibacterial responses and inflammatory cytokine production and further establish the critical role of mitochondria in regulating innate immune signaling in macrophages.

      Conclusions and perspectives

      Mounting evidence indicates that mitochondrial metabolism coordinates signal transduction, chromatin regulation, and transcriptional regulation to influence macrophage activation and fine-tune the immune responses. Mitochondria can no longer be viewed solely as the energy machinery of the cell but as a vital source of dynamic signals that coordinate changes to shifting environments. Future work may focus on the adaptive and dynamic mitochondrial responses of macrophages in other settings. For example, tissue resident macrophages (TRMs) reside in most tissues of the body, where they are thought to serve as critical support cells with context-dependent roles in maintaining tissue homeostasis and tissue stress adaptation. Some studies are starting to report how macrophage metabolism influences such roles (
      • Ginhoux F.
      • Guilliams M.
      Tissue-resident macrophage ontogeny and homeostasis.
      ), but information is currently limited due to technological challenges in examining mitochondrial metabolism in situ and/or from small numbers of TRMs. With technological advances in metabolite profiling and other metabolic techniques on the horizon (
      • Artyomov M.N.
      • Van den Bossche J.
      Immunometabolism in the single-cell era.
      ), we can expect to see some breakthroughs in our understanding of the role of TRMs mitochondrial metabolism in the future.

      Conflict of interest

      The authors declare that they have no conflicts of interest with the contents of this article.

      Acknowledgments

      This study was supported by grants from National Natural Science Foundation of China ( 81803557 , 32070895 , and 92057105 ).

      Author contributions

      Y. W. formal analysis; T. H. funding acquisition; Y. W. project administration; Y. W., N. L., X. Z., and T. H. writing—original draft; Y. W. and T. H. writing—review and editing.

      Funding and additional information

      The authors were supported by the School of Life Sciences and Technology, ShanghaiTech University .

      References

        • Orecchioni M.
        • Ghosheh Y.
        • Pramod A.B.
        • Ley K.
        Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages.
        Front. Immunol. 2019; 10: 1084
        • Shapouri-Moghaddam A.
        • Mohammadian S.
        • Vazini H.
        • Taghadosi M.
        • Esmaeili S.A.
        • Mardani F.
        • Seifi B.
        • Mohammadi A.
        • Afshari J.T.
        • Sahebkar A.
        Macrophage plasticity, polarization, and function in health and disease.
        J. Cell Physiol. 2018; 233: 6425-6440
        • Sica A.
        • Mantovani A.
        Macrophage plasticity and polarization: In vivo veritas.
        J. Clin. Invest. 2012; 122: 787-795
        • Gordon S.
        • Martinez F.O.
        Alternative activation of macrophages: Mechanism and functions.
        Immunity. 2010; 32: 593-604
        • Xue J.
        • Schmidt S.V.
        • Sander J.
        • Draffehn A.
        • Krebs W.
        • Quester I.
        • De Nardo D.
        • Gohel T.D.
        • Emde M.
        • Schmidleithner L.
        • Ganesan H.
        • Nino-Castro A.
        • Mallmann M.R.
        • Labzin L.
        • Theis H.
        • et al.
        Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
        Immunity. 2014; 40: 274-288
        • Natoli G.
        • Monticelli S.
        Macrophage activation: Glancing into diversity.
        Immunity. 2014; 40: 175-177
        • Mosser D.M.
        • Edwards J.P.
        Exploring the full spectrum of macrophage activation.
        Nat. Rev. Immunol. 2008; 8: 958-969
        • Batista-Gonzalez A.
        • Vidal R.
        • Criollo A.
        • Carreño L.J.
        New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages.
        Front. Immunol. 2019; 10: 2993
        • Huang S.C.
        • Smith A.M.
        • Everts B.
        • Colonna M.
        • Pearce E.L.
        • Schilling J.D.
        • Pearce E.J.
        Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation.
        Immunity. 2016; 45: 817-830
        • Tur J.
        • Vico T.
        • Lloberas J.
        • Zorzano A.
        • Celada A.
        Macrophages and mitochondria: A critical interplay between metabolism, signaling, and the functional activity.
        Adv. Immunol. 2017; 133: 1-36
        • Cheng S.C.
        • Quintin J.
        • Cramer R.A.
        • Shepardson K.M.
        • Saeed S.
        • Kumar V.
        • Giamarellos-Bourboulis E.J.
        • Martens J.H.
        • Rao N.A.
        • Aghajanirefah A.
        • Manjeri G.R.
        • Li Y.
        • Ifrim D.C.
        • Arts R.J.
        • van der Veer B.M.
        • et al.
        mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity.
        Science. 2014; 345: 1250684
        • Jha A.K.
        • Huang S.C.
        • Sergushichev A.
        • Lampropoulou V.
        • Ivanova Y.
        • Loginicheva E.
        • Chmielewski K.
        • Stewart K.M.
        • Ashall J.
        • Everts B.
        • Pearce E.J.
        • Driggers E.M.
        • Artyomov M.N.
        Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization.
        Immunity. 2015; 42: 419-430
        • Eisner V.
        • Picard M.
        • Hajnóczky G.
        Mitochondrial dynamics in adaptive and maladaptive cellular stress responses.
        Nat. Cell Biol. 2018; 20: 755-765
        • Butcher S.K.
        • O'Carroll C.E.
        • Wells C.A.
        • Carmody R.J.
        Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages.
        Front. Immunol. 2018; 9: 933
        • Huang S.C.
        • Everts B.
        • Ivanova Y.
        • O'Sullivan D.
        • Nascimento M.
        • Smith A.M.
        • Beatty W.
        • Love-Gregory L.
        • Lam W.Y.
        • O'Neill C.M.
        • Yan C.
        • Du H.
        • Abumrad N.A.
        • Urban Jr., J.F.
        • Artyomov M.N.
        • et al.
        Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages.
        Nat. Immunol. 2014; 15: 846-855
        • Van den Bossche J.
        • Baardman J.
        • Otto N.A.
        • van der Velden S.
        • Neele A.E.
        • van den Berg S.M.
        • Luque-Martin R.
        • Chen H.J.
        • Boshuizen M.C.
        • Ahmed M.
        • Hoeksema M.A.
        • de Vos A.F.
        • de Winther M.P.
        Mitochondrial dysfunction prevents repolarization of inflammatory macrophages.
        Cell Rep. 2016; 17: 684-696
        • Johnson A.R.
        • Qin Y.
        • Cozzo A.J.
        • Freemerman A.J.
        • Huang M.J.
        • Zhao L.
        • Sampey B.P.
        • Milner J.J.
        • Beck M.A.
        • Damania B.
        • Rashid N.
        • Galanko J.A.
        • Lee D.P.
        • Edin M.L.
        • Zeldin D.C.
        • et al.
        Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation.
        Mol. Metab. 2016; 5: 506-526
        • Dela Cruz C.S.
        • Kang M.J.
        Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases.
        Mitochondrion. 2018; 41: 37-44
        • Freigang S.
        The regulation of inflammation by oxidized phospholipids.
        Eur. J. Immunol. 2016; 46: 1818-1825
        • Chu L.H.
        • Indramohan M.
        • Ratsimandresy R.A.
        • Gangopadhyay A.
        • Morris E.P.
        • Monack D.M.
        • Dorfleutner A.
        • Stehlik C.
        The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages.
        Nat. Commun. 2018; 9: 996
        • Koivunen P.
        • Hirsilä M.
        • Remes A.M.
        • Hassinen I.E.
        • Kivirikko K.I.
        • Myllyharju J.
        Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: Possible links between cell metabolism and stabilization of HIF.
        J. Biol. Chem. 2007; 282: 4524-4532
        • Di Gioia M.
        • Spreafico R.
        • Springstead J.R.
        • Mendelson M.M.
        • Joehanes R.
        • Levy D.
        • Zanoni I.
        Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation.
        Nat. Immunol. 2020; 21: 42-53
        • Novakovic B.
        • Habibi E.
        • Wang S.Y.
        • Arts R.J.W.
        • Davar R.
        • Megchelenbrink W.
        • Kim B.
        • Kuznetsova T.
        • Kox M.
        • Zwaag J.
        • Matarese F.
        • van Heeringen S.J.
        • Janssen-Megens E.M.
        • Sharifi N.
        • Wang C.
        • et al.
        β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance.
        Cell. 2016; 167: 1354-1368.e1314
        • Baardman J.
        • Licht I.
        • de Winther M.P.
        • Van den Bossche J.
        Metabolic-epigenetic crosstalk in macrophage activation.
        Epigenomics. 2015; 7: 1155-1164
        • Noe J.T.
        • Mitchell R.A.
        Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes.
        J. Leukoc. Biol. 2019; 106: 359-367
        • Wellen K.E.
        • Hatzivassiliou G.
        • Sachdeva U.M.
        • Bui T.V.
        • Cross J.R.
        • Thompson C.B.
        ATP-citrate lyase links cellular metabolism to histone acetylation.
        Science. 2009; 324: 1076-1080
        • Covarrubias A.J.
        • Aksoylar H.I.
        • Yu J.
        • Snyder N.W.
        • Worth A.J.
        • Iyer S.S.
        • Wang J.
        • Ben-Sahra I.
        • Byles V.
        • Polynne-Stapornkul T.
        • Espinosa E.C.
        • Lamming D.
        • Manning B.D.
        • Zhang Y.
        • Blair I.A.
        • et al.
        Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.
        Elife. 2016; 5e11612
        • Langston P.K.
        • Nambu A.
        • Jung J.
        • Shibata M.
        • Aksoylar H.I.
        • Lei J.
        • Xu P.
        • Doan M.T.
        • Jiang H.
        • MacArthur M.R.
        • Gao X.
        • Kong Y.
        • Chouchani E.T.
        • Locasale J.W.
        • Snyder N.W.
        • et al.
        Glycerol phosphate shuttle enzyme GPD2 regulates macrophage inflammatory responses.
        Nat. Immunol. 2019; 20: 1186-1195
        • Williams N.C.
        • O'Neill L.A.J.
        A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation.
        Front. Immunol. 2018; 9: 141
        • Infantino V.
        • Pierri C.L.
        • Iacobazzi V.
        Metabolic routes in inflammation: The citrate pathway and its potential as therapeutic target.
        Curr. Med. Chem. 2019; 26: 7104-7116
        • Kim J.
        • Seo H.M.
        • Bhatia S.K.
        • Song H.S.
        • Kim J.H.
        • Jeon J.M.
        • Choi K.Y.
        • Kim W.
        • Yoon J.J.
        • Kim Y.G.
        • Yang Y.H.
        Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli.
        Sci. Rep. 2017; 7: 39768
        • Lampropoulou V.
        • Sergushichev A.
        • Bambouskova M.
        • Nair S.
        • Vincent E.E.
        • Loginicheva E.
        • Cervantes-Barragan L.
        • Ma X.
        • Huang S.C.
        • Griss T.
        • Weinheimer C.J.
        • Khader S.
        • Randolph G.J.
        • Pearce E.J.
        • Jones R.G.
        • et al.
        Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation.
        Cell Metab. 2016; 24: 158-166
        • Infantino V.
        • Convertini P.
        • Cucci L.
        • Panaro M.A.
        • Di Noia M.A.
        • Calvello R.
        • Palmieri F.
        • Iacobazzi V.
        The mitochondrial citrate carrier: A new player in inflammation.
        Biochem. J. 2011; 438: 433-436
        • O'Neill L.A.
        A critical role for citrate metabolism in LPS signalling.
        Biochem. J. 2011; 438: e5-e6
        • Degrandi D.
        • Hoffmann R.
        • Beuter-Gunia C.
        • Pfeffer K.
        The proinflammatory cytokine-induced IRG1 protein associates with mitochondria.
        J. Interferon Cytokine Res. 2009; 29: 55-67
        • Michelucci A.
        • Cordes T.
        • Ghelfi J.
        • Pailot A.
        • Reiling N.
        • Goldmann O.
        • Binz T.
        • Wegner A.
        • Tallam A.
        • Rausell A.
        • Buttini M.
        • Linster C.L.
        • Medina E.
        • Balling R.
        • Hiller K.
        Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 7820-7825
        • Mills E.L.
        • Ryan D.G.
        • Prag H.A.
        • Dikovskaya D.
        • Menon D.
        • Zaslona Z.
        • Jedrychowski M.P.
        • Costa A.S.H.
        • Higgins M.
        • Hams E.
        • Szpyt J.
        • Runtsch M.C.
        • King M.S.
        • McGouran J.F.
        • Fischer R.
        • et al.
        Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
        Nature. 2018; 556: 113-117
        • O'Neill L.A.J.
        • Artyomov M.N.
        Itaconate: The poster child of metabolic reprogramming in macrophage function.
        Nat. Rev. Immunol. 2019; 19: 273-281
        • Yamamoto M.
        • Kensler T.W.
        • Motohashi H.
        The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis.
        Physiol. Rev. 2018; 98: 1169-1203
        • Sun K.A.
        • Li Y.
        • Meliton A.Y.
        • Woods P.S.
        • Kimmig L.M.
        • Cetin-Atalay R.
        • Hamanaka R.B.
        • Mutlu G.M.
        Endogenous itaconate is not required for particulate matter-induced NRF2 expression or inflammatory response.
        Elife. 2020; 9e54877
        • Bambouskova M.
        • Gorvel L.
        • Lampropoulou V.
        • Sergushichev A.
        • Loginicheva E.
        • Johnson K.
        • Korenfeld D.
        • Mathyer M.E.
        • Kim H.
        • Huang L.H.
        • Duncan D.
        • Bregman H.
        • Keskin A.
        • Santeford A.
        • Apte R.S.
        • et al.
        Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis.
        Nature. 2018; 556: 501-504
        • Yu X.H.
        • Zhang D.W.
        • Zheng X.L.
        • Tang C.K.
        Itaconate: An emerging determinant of inflammation in activated macrophages.
        Immunol. Cell Biol. 2019; 97: 134-141
        • Tannahill G.M.
        • Curtis A.M.
        • Adamik J.
        • Palsson-McDermott E.M.
        • McGettrick A.F.
        • Goel G.
        • Frezza C.
        • Bernard N.J.
        • Kelly B.
        • Foley N.H.
        • Zheng L.
        • Gardet A.
        • Tong Z.
        • Jany S.S.
        • Corr S.C.
        • et al.
        Succinate is an inflammatory signal that induces IL-1β through HIF-1α.
        Nature. 2013; 496: 238-242
        • Mills E.L.
        • Kelly B.
        • Logan A.
        • Costa A.S.H.
        • Varma M.
        • Bryant C.E.
        • Tourlomousis P.
        • Däbritz J.H.M.
        • Gottlieb E.
        • Latorre I.
        • Corr S.C.
        • McManus G.
        • Ryan D.
        • Jacobs H.T.
        • Szibor M.
        • et al.
        Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages.
        Cell. 2016; 167: 457-470.e413
        • Littlewood-Evans A.
        • Sarret S.
        • Apfel V.
        • Loesle P.
        • Dawson J.
        • Zhang J.
        • Muller A.
        • Tigani B.
        • Kneuer R.
        • Patel S.
        • Valeaux S.
        • Gommermann N.
        • Rubic-Schneider T.
        • Junt T.
        • Carballido J.M.
        GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis.
        J. Exp. Med. 2016; 213: 1655-1662
        • Murphy M.P.
        • O'Neill L.A.J.
        Krebs cycle reimagined: The emerging roles of succinate and itaconate as signal transducers.
        Cell. 2018; 174: 780-784
        • Lei W.
        • Ren W.
        • Ohmoto M.
        • Urban Jr., J.F.
        • Matsumoto I.
        • Margolskee R.F.
        • Jiang P.
        Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine.
        Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 5552-5557
        • Barnes R.H.
        • Karatzas K.A.G.
        Investigation into the antimicrobial activity of fumarate against Listeria monocytogenes and its mode of action under acidic conditions.
        Int. J. Food Microbiol. 2020; 324: 108614
        • Nisbet D.J.
        • Callaway T.R.
        • Edrington T.S.
        • Anderson R.C.
        • Krueger N.
        Effects of the dicarboxylic acids malate and fumarate on E. coli O157:H7 and Salmonella enterica typhimurium populations in pure culture and in mixed ruminal microorganism fermentations.
        Curr. Microbiol. 2009; 58: 488-492
        • Kornberg M.D.
        • Bhargava P.
        • Kim P.M.
        • Putluri V.
        • Snowman A.M.
        • Putluri N.
        • Calabresi P.A.
        • Snyder S.H.
        Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity.
        Science. 2018; 360: 449-453
        • Humphries F.
        • Shmuel-Galia L.
        • Ketelut-Carneiro N.
        • Li S.
        • Wang B.
        • Nemmara V.V.
        • Wilson R.
        • Jiang Z.
        • Khalighinejad F.
        • Muneeruddin K.
        • Shaffer S.A.
        • Dutta R.
        • Ionete C.
        • Pesiridis S.
        • Yang S.
        • et al.
        Succination inactivates gasdermin D and blocks pyroptosis.
        Science. 2020; 369: 1633-1637
        • Olagnier D.
        • Farahani E.
        • Thyrsted J.
        • Blay-Cadanet J.
        • Herengt A.
        • Idorn M.
        • Hait A.
        • Hernaez B.
        • Knudsen A.
        • Iversen M.B.
        • Schilling M.
        • Jørgensen S.E.
        • Thomsen M.
        • Reinert L.S.
        • Lappe M.
        • et al.
        SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate.
        Nat. Commun. 2020; 11: 4938
        • Willems P.H.
        • Rossignol R.
        • Dieteren C.E.
        • Murphy M.P.
        • Koopman W.J.
        Redox homeostasis and mitochondrial dynamics.
        Cell Metab. 2015; 22: 207-218
        • MacMicking J.
        • Xie Q.W.
        • Nathan C.
        Nitric oxide and macrophage function.
        Annu. Rev. Immunol. 1997; 15: 323-350
        • Boscá L.
        • Zeini M.
        • Través P.G.
        • Hortelano S.
        Nitric oxide and cell viability in inflammatory cells: A role for NO in macrophage function and fate.
        Toxicology. 2005; 208: 249-258
        • Hortelano S.
        • Través P.G.
        • Zeini M.
        • Alvarez A.M.
        • Boscá L.
        Sustained nitric oxide delivery delays nitric oxide-dependent apoptosis in macrophages: Contribution to the physiological function of activated macrophages.
        J. Immunol. 2003; 171: 6059-6064
        • Karabay A.Z.
        • Aktan F.
        • Sunguroğlu A.
        • Buyukbingol Z.
        Methylsulfonylmethane modulates apoptosis of LPS/IFN-γ-activated RAW 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP proteins.
        Immunopharmacol. Immunotoxicol. 2014; 36: 379-389
        • Bailey J.D.
        • Diotallevi M.
        • Nicol T.
        • McNeill E.
        • Shaw A.
        • Chuaiphichai S.
        • Hale A.
        • Starr A.
        • Nandi M.
        • Stylianou E.
        • McShane H.
        • Davis S.
        • Fischer R.
        • Kessler B.M.
        • McCullagh J.
        • et al.
        Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation.
        Cell Rep. 2019; 28: 218-230.e217
        • Sarti P.
        • Arese M.
        • Bacchi A.
        • Barone M.C.
        • Forte E.
        • Mastronicola D.
        • Brunori M.
        • Giuffrè A.
        Nitric oxide and mitochondrial complex IV.
        IUBMB Life. 2003; 55: 605-611
        • Everts B.
        • Amiel E.
        • van der Windt G.J.
        • Freitas T.C.
        • Chott R.
        • Yarasheski K.E.
        • Pearce E.L.
        • Pearce E.J.
        Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells.
        Blood. 2012; 120: 1422-1431
        • Lauterbach M.A.
        • Hanke J.E.
        • Serefidou M.
        • Mangan M.S.J.
        • Kolbe C.C.
        • Hess T.
        • Rothe M.
        • Kaiser R.
        • Hoss F.
        • Gehlen J.
        • Engels G.
        • Kreutzenbeck M.
        • Schmidt S.V.
        • Christ A.
        • Imhof A.
        • et al.
        Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase.
        Immunity. 2019; 51: 997-1011.e1017
        • Liu P.S.
        • Wang H.
        • Li X.
        • Chao T.
        • Teav T.
        • Christen S.
        • Di Conza G.
        • Cheng W.C.
        • Chou C.H.
        • Vavakova M.
        • Muret C.
        • Debackere K.
        • Mazzone M.
        • Huang H.D.
        • Fendt S.M.
        • et al.
        alpha-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming.
        Nat. Immunol. 2017; 18: 985-994
        • Arts R.J.
        • Novakovic B.
        • Ter Horst R.
        • Carvalho A.
        • Bekkering S.
        • Lachmandas E.
        • Rodrigues F.
        • Silvestre R.
        • Cheng S.C.
        • Wang S.Y.
        • Habibi E.
        • Gonçalves L.G.
        • Mesquita I.
        • Cunha C.
        • van Laarhoven A.
        • et al.
        Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity.
        Cell Metab. 2016; 24: 807-819
        • Salminen A.
        • Kauppinen A.
        • Hiltunen M.
        • Kaarniranta K.
        Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process.
        Ageing Res. Rev. 2014; 16: 45-65
        • Tarhonskaya H.
        • Nowak R.P.
        • Johansson C.
        • Szykowska A.
        • Tumber A.
        • Hancock R.L.
        • Lang P.
        • Flashman E.
        • Oppermann U.
        • Schofield C.J.
        • Kawamura A.
        Studies on the interaction of the histone demethylase KDM5B with tricarboxylic acid cycle intermediates.
        J. Mol. Biol. 2017; 429: 2895-2906
        • Saeed S.
        • Quintin J.
        • Kerstens H.H.
        • Rao N.A.
        • Aghajanirefah A.
        • Matarese F.
        • Cheng S.C.
        • Ratter J.
        • Berentsen K.
        • van der Ent M.A.
        • Sharifi N.
        • Janssen-Megens E.M.
        • Ter Huurne M.
        • Mandoli A.
        • van Schaik T.
        • et al.
        Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.
        Science. 2014; 345: 1251086
        • Zhang D.
        • Tang Z.
        • Huang H.
        • Zhou G.
        • Cui C.
        • Weng Y.
        • Liu W.
        • Kim S.
        • Lee S.
        • Perez-Neut M.
        • Ding J.
        • Czyz D.
        • Hu R.
        • Ye Z.
        • He M.
        • et al.
        Metabolic regulation of gene expression by histone lactylation.
        Nature. 2019; 574: 575-580
        • Chang H.C.
        • Guarente L.
        SIRT1 and other sirtuins in metabolism.
        Trends Endocrinol. Metab. 2014; 25: 138-145
        • Rodgers J.T.
        • Lerin C.
        • Haas W.
        • Gygi S.P.
        • Spiegelman B.M.
        • Puigserver P.
        Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
        Nature. 2005; 434: 113-118
        • Yang X.
        • Liu Q.
        • Li Y.
        • Tang Q.
        • Wu T.
        • Chen L.
        • Pu S.
        • Zhao Y.
        • Zhang G.
        • Huang C.
        • Zhang J.
        • Zhang Z.
        • Huang Y.
        • Zou M.
        • Shi X.
        • et al.
        The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway.
        Adipocyte. 2020; 9: 484-494
        • Kelly T.J.
        • Lerin C.
        • Haas W.
        • Gygi S.P.
        • Puigserver P.
        GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation.
        J. Biol. Chem. 2009; 284: 19945-19952
        • Chen X.
        • Lu Y.
        • Zhang Z.
        • Wang J.
        • Yang H.
        • Liu G.
        Intercellular interplay between Sirt1 signalling and cell metabolism in immune cell biology.
        Immunology. 2015; 145: 455-467
        • Zhang S.
        • Weinberg S.
        • DeBerge M.
        • Gainullina A.
        • Schipma M.
        • Kinchen J.M.
        • Ben-Sahra I.
        • Gius D.R.
        • Yvan-Charvet L.
        • Chandel N.S.
        • Schumacker P.T.
        • Thorp E.B.
        Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair.
        Cell Metab. 2019; 29: 443-456.e445
        • Zhong L.
        • D'Urso A.
        • Toiber D.
        • Sebastian C.
        • Henry R.E.
        • Vadysirisack D.D.
        • Guimaraes A.
        • Marinelli B.
        • Wikstrom J.D.
        • Nir T.
        • Clish C.B.
        • Vaitheesvaran B.
        • Iliopoulos O.
        • Kurland I.
        • Dor Y.
        • et al.
        The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha.
        Cell. 2010; 140: 280-293
        • Park M.H.
        • Wolff E.C.
        • Folk J.E.
        Hypusine: Its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation.
        Biofactors. 1993; 4: 95-104
        • Puleston D.J.
        • Buck M.D.
        • Klein Geltink R.I.
        • Kyle R.L.
        • Caputa G.
        • O'Sullivan D.
        • Cameron A.M.
        • Castoldi A.
        • Musa Y.
        • Kabat A.M.
        • Zhang Y.
        • Flachsmann L.J.
        • Field C.S.
        • Patterson A.E.
        • Scherer S.
        • et al.
        Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation.
        Cell Metab. 2019; 30: 352-363.e358
        • Zhang H.
        • Alsaleh G.
        • Feltham J.
        • Sun Y.
        • Napolitano G.
        • Riffelmacher T.
        • Charles P.
        • Frau L.
        • Hublitz P.
        • Yu Z.
        • Mohammed S.
        • Ballabio A.
        • Balabanov S.
        • Mellor J.
        • Simon A.K.
        Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence.
        Mol. Cell. 2019; 76: 110-125.e119
        • Pernas L.
        • Scorrano L.
        Mito-Morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function.
        Annu. Rev. Physiol. 2016; 78: 505-531
        • Gao Z.
        • Li Y.
        • Wang F.
        • Huang T.
        • Fan K.
        • Zhang Y.
        • Zhong J.
        • Cao Q.
        • Chao T.
        • Jia J.
        • Yang S.
        • Zhang L.
        • Xiao Y.
        • Zhou J.Y.
        • Feng X.H.
        • et al.
        Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability.
        Nat. Commun. 2017; 8: 1805
        • Sloat S.R.
        • Whitley B.N.
        • Engelhart E.A.
        • Hoppins S.
        Identification of a mitofusin specificity region that confers unique activities to Mfn1 and Mfn2.
        Mol. Biol. Cell. 2019; 30: 2309-2319
        • Wei H.
        • Zhang Y.
        • Song S.
        • Pinkerton K.E.
        • Geng H.
        • Ro C.U.
        Alveolar macrophage reaction to PM(2.5) of hazy day in vitro: Evaluation methods and mitochondrial screening to determine mechanisms of biological effect.
        Ecotoxicol. Environ. Saf. 2019; 174: 566-573
        • Park S.
        • Won J.H.
        • Hwang I.
        • Hong S.
        • Lee H.K.
        • Yu J.W.
        Defective mitochondrial fission augments NLRP3 inflammasome activation.
        Sci. Rep. 2015; 5: 15489
        • Zorova L.D.
        • Popkov V.A.
        • Plotnikov E.Y.
        • Silachev D.N.
        • Pevzner I.B.
        • Jankauskas S.S.
        • Babenko V.A.
        • Zorov S.D.
        • Balakireva A.V.
        • Juhaszova M.
        • Sollott S.J.
        • Zorov D.B.
        Mitochondrial membrane potential.
        Anal. Biochem. 2018; 552: 50-59
        • Sancak Y.
        • Markhard A.L.
        • Kitami T.
        • Kovács-Bogdán E.
        • Kamer K.J.
        • Udeshi N.D.
        • Carr S.A.
        • Chaudhuri D.
        • Clapham D.E.
        • Li A.A.
        • Calvo S.E.
        • Goldberger O.
        • Mootha V.K.
        EMRE is an essential component of the mitochondrial calcium uniporter complex.
        Science. 2013; 342: 1379-1382
        • Mallilankaraman K.
        • Cárdenas C.
        • Doonan P.J.
        • Chandramoorthy H.C.
        • Irrinki K.M.
        • Golenár T.
        • Csordás G.
        • Madireddi P.
        • Yang J.
        • Müller M.
        • Miller R.
        • Kolesar J.E.
        • Molgó J.
        • Kaufman B.
        • Hajnóczky G.
        • et al.
        MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism.
        Nat. Cell Biol. 2012; 14: 1336-1343
        • Perocchi F.
        • Gohil V.M.
        • Girgis H.S.
        • Bao X.R.
        • McCombs J.E.
        • Palmer A.E.
        • Mootha V.K.
        MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake.
        Nature. 2010; 467: 291-296
        • Sanin D.E.
        • Matsushita M.
        • Klein Geltink R.I.
        • Grzes K.M.
        • van Teijlingen Bakker N.
        • Corrado M.
        • Kabat A.M.
        • Buck M.D.
        • Qiu J.
        • Lawless S.J.
        • Cameron A.M.
        • Villa M.
        • Baixauli F.
        • Patterson A.E.
        • Hässler F.
        • et al.
        Mitochondrial membrane potential regulates nuclear gene expression in macrophages exposed to prostaglandin E2.
        Immunity. 2018; 49: 1021-1033.e1026
        • Montava-Garriga L.
        • Ganley I.G.
        Outstanding questions in mitophagy: What we do and do not know.
        J. Mol. Biol. 2020; 432: 206-230
        • Esteban-Martínez L.
        • Boya P.
        BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming.
        Autophagy. 2018; 14: 915-917
        • Sanchez-Lopez E.
        • Zhong Z.
        • Stubelius A.
        • Sweeney S.R.
        • Booshehri L.M.
        • Antonucci L.
        • Liu-Bryan R.
        • Lodi A.
        • Terkeltaub R.
        • Lacal J.C.
        • Murphy A.N.
        • Hoffman H.M.
        • Tiziani S.
        • Guma M.
        • Karin M.
        Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production.
        Cell Metab. 2019; 29: 1350-1362.e1357
        • Zhao Y.
        • Feng X.
        • Li B.
        • Sha J.
        • Wang C.
        • Yang T.
        • Cui H.
        • Fan H.
        Dexmedetomidine protects against lipopolysaccharide-induced acute kidney injury by enhancing autophagy through inhibition of the PI3K/AKT/mTOR pathway.
        Front. Pharmacol. 2020; 11: 128
        • D'Amico D.
        • Sorrentino V.
        • Auwerx J.
        Cytosolic proteostasis networks of the mitochondrial stress response.
        Trends Biochem. Sci. 2017; 42: 712-725
        • West A.P.
        • Khoury-Hanold W.
        • Staron M.
        • Tal M.C.
        • Pineda C.M.
        • Lang S.M.
        • Bestwick M.
        • Duguay B.A.
        • Raimundo N.
        • MacDuff D.A.
        • Kaech S.M.
        • Smiley J.R.
        • Means R.E.
        • Iwasaki A.
        • Shadel G.S.
        Mitochondrial DNA stress primes the antiviral innate immune response.
        Nature. 2015; 520: 553-557
        • Riley J.S.
        • Tait S.W.
        Mitochondrial DNA in inflammation and immunity.
        EMBO Rep. 2020; 21e49799
        • Wu G.
        • Zhu Q.
        • Zeng J.
        • Gu X.
        • Miao Y.
        • Xu W.
        • Lv T.
        • Song Y.
        Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-κB.
        J. Thorac. Dis. 2019; 11: 4816-4828
        • Li H.
        • Xiao Y.
        • Tang L.
        • Zhong F.
        • Huang G.
        • Xu J.M.
        • Xu A.M.
        • Dai R.P.
        • Zhou Z.G.
        Adipocyte fatty acid-binding protein promotes palmitate-induced mitochondrial dysfunction and apoptosis in macrophages.
        Front. Immunol. 2018; 9: 81
        • Larson-Casey J.L.
        • Deshane J.S.
        • Ryan A.J.
        • Thannickal V.J.
        • Carter A.B.
        Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis.
        Immunity. 2016; 44: 582-596
        • Guo H.
        • Callaway J.B.
        • Ting J.P.
        Inflammasomes: Mechanism of action, role in disease, and therapeutics.
        Nat. Med. 2015; 21: 677-687
        • An N.
        • Gao Y.
        • Si Z.
        • Zhang H.
        • Wang L.
        • Tian C.
        • Yuan M.
        • Yang X.
        • Li X.
        • Shang H.
        • Xiong X.
        • Xing Y.
        Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases.
        Front. Immunol. 2019; 10: 1592
        • Wang Z.
        • Zhang S.
        • Xiao Y.
        • Zhang W.
        • Wu S.
        • Qin T.
        • Yue Y.
        • Qian W.
        • Li L.
        NLRP3 inflammasome and inflammatory diseases.
        Oxid. Med. Cell. Longev. 2020; 2020: 4063562
        • Jorgensen I.
        • Miao E.A.
        Pyroptotic cell death defends against intracellular pathogens.
        Immunol. Rev. 2015; 265: 130-142
        • Li D.
        • Ren W.
        • Jiang Z.
        • Zhu L.
        Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury.
        Mol. Med. Rep. 2018; 18: 4399-4409
        • He M.
        • Chiang H.H.
        • Luo H.
        • Zheng Z.
        • Qiao Q.
        • Wang L.
        • Tan M.
        • Ohkubo R.
        • Mu W.C.
        • Zhao S.
        • Wu H.
        • Chen D.
        An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance.
        Cell Metab. 2020; 31: 580-591.e585
        • Rendra E.
        • Riabov V.
        • Mossel D.M.
        • Sevastyanova T.
        • Harmsen M.C.
        • Kzhyshkowska J.
        Reactive oxygen species (ROS) in macrophage activation and function in diabetes.
        Immunobiology. 2019; 224: 242-253
        • West A.P.
        • Brodsky I.E.
        • Rahner C.
        • Woo D.K.
        • Erdjument-Bromage H.
        • Tempst P.
        • Walsh M.C.
        • Choi Y.
        • Shadel G.S.
        • Ghosh S.
        TLR signalling augments macrophage bactericidal activity through mitochondrial ROS.
        Nature. 2011; 472: 476-480
        • Hall C.J.
        • Boyle R.H.
        • Astin J.W.
        • Flores M.V.
        • Oehlers S.H.
        • Sanderson L.E.
        • Ellett F.
        • Lieschke G.J.
        • Crosier K.E.
        • Crosier P.S.
        Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.
        Cell Metab. 2013; 18: 265-278
        • Dubouchaud H.
        • Walter L.
        • Rigoulet M.
        • Batandier C.
        Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse electron transfer through complex I.
        J. Bioenerg. Biomembr. 2018; 50: 367-377
        • Murphy M.P.
        How mitochondria produce reactive oxygen species.
        Biochem. J. 2009; 417: 1-13
        • Abuaita B.H.
        • Schultz T.L.
        • O'Riordan M.X.
        Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus.
        Cell Host Microbe. 2018; 24: 625-636.e625
        • Gu L.
        • Larson Casey J.L.
        • Andrabi S.A.
        • Lee J.H.
        • Meza-Perez S.
        • Randall T.D.
        • Carter A.B.
        Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis.
        Redox Biol. 2019; 26: 101307
        • Forrester S.J.
        • Kikuchi D.S.
        • Hernandes M.S.
        • Xu Q.
        • Griendling K.K.
        Reactive oxygen species in metabolic and inflammatory signaling.
        Circ. Res. 2018; 122: 877-902
        • Fuhrmann D.C.
        • Wittig I.
        • Brüne B.
        TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression.
        Redox Biol. 2019; 20: 204-216
        • Cameron A.M.
        • Castoldi A.
        • Sanin D.E.
        • Flachsmann L.J.
        • Field C.S.
        • Puleston D.J.
        • Kyle R.L.
        • Patterson A.E.
        • Hässler F.
        • Buescher J.M.
        • Kelly B.
        • Pearce E.L.
        • Pearce E.J.
        Inflammatory macrophage dependence on NAD(+) salvage is a consequence of reactive oxygen species-mediated DNA damage.
        Nat. Immunol. 2019; 20: 420-432
        • Mogilenko D.A.
        • Haas J.T.
        • L'Homme L.
        • Fleury S.
        • Quemener S.
        • Levavasseur M.
        • Becquart C.
        • Wartelle J.
        • Bogomolova A.
        • Pineau L.
        • Molendi-Coste O.
        • Lancel S.
        • Dehondt H.
        • Gheeraert C.
        • Melchior A.
        • et al.
        Metabolic and innate immune cues merge into a specific inflammatory response via the UPR.
        Cell. 2019; 178: 263
        • Ginhoux F.
        • Guilliams M.
        Tissue-resident macrophage ontogeny and homeostasis.
        Immunity. 2016; 44: 439-449
        • Artyomov M.N.
        • Van den Bossche J.
        Immunometabolism in the single-cell era.
        Cell Metab. 2020; 32: 710-725