Ulthahigh resolution MS1/MS2-based Reconstruction of Metabolic Networks in Mammalian Cells Reveals Changes for Selenite and Arsenite Action

Teresa W-M. Fan, PhD, Qiushi Sun, PhD, Richard M. Higashi, PhD

PII: S0021-9258(22)01029-8
DOI: https://doi.org/10.1016/j.jbc.2022.102586
Reference: JBC 102586

To appear in: Journal of Biological Chemistry

Received Date: 26 June 2022
Revised Date: 3 October 2022
Accepted Date: 5 October 2022

Please cite this article as: W-M. Fan T, Sun Q, Higashi RM, Ultrahigh resolution MS1/MS2-based Reconstruction of Metabolic Networks in Mammalian Cells Reveals Changes for Selenite and Arsenite Action, Journal of Biological Chemistry (2022), doi: https://doi.org/10.1016/j.jbc.2022.102586.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
Ultra-high resolution MS1/MS2-based Reconstruction of Metabolic Networks in Mammalian Cells Reveals Changes for Selenite and Arsenite Action

Short title: Mass spectrometry-based reconstruction of metabolic network

Teresa W-M. Fan, PhD.1,2,3
Qiushi Sun, PhD.1#
Richard M. Higashi, PhD1,2,3

1Center for Environmental and Systems Biochemistry (CESB), University of Kentucky, Lexington, KY, USA
2Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
3Markey Cancer Center, University of Kentucky, Lexington, KY, USA

Corresponding author information:
Teresa W-M Fan, E-mail address: teresa.fan@uky.edu.

#Present Address: Department of Internal Medicine/Endocrinology, Yale School of Medicine, New Haven, CT, USA.

This article contains supporting information.
Abstract

Metabolic networks are complex, intersecting, and composed of numerous enzyme-catalyzed biochemical reactions that transfer various molecular moieties among metabolites. Thus, robust reconstruction of metabolic networks requires metabolite moieties to be tracked, which cannot be readily achieved with mass spectrometry (MS) alone. We previously developed an Ion Chromatography (IC)-ultrahigh resolution (UHR)-MS1/data independent (DI)-MS2 method to track the simultaneous incorporation of the heavy isotopes 13C and 15N into the moieties of purine/pyrimidine nucleotides in mammalian cells. UHR-MS1 resolves and counts multiple tracer atoms in intact metabolites while DI-tandem MS (MS2) determines isotopic enrichment in their moieties without concern for the numerous mass isotopologue source ions to be fragmented. Together, they enabled rigorous MS-based reconstruction of metabolic networks at specific enzyme levels. We have expanded this approach to trace the labeled atom fate of $[^{13}$C$_6$]-glucose in 3D A549 spheroids in response to the anti-cancer agent selenite and that of $[^{13}$C$_5$,15N$_2$]-glutamine in 2D BEAS-2B cells in response to arsenite transformation. We deduced altered activities of specific enzymes in the Krebs cycle, pentose phosphate pathway, gluconeogenesis, and UDP N-acetylglucosamine synthesis pathways elicited by the stressors. These metabolic details help elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS2B cells by arsenite.

Keywords
Selenite; arsenite; $[^{13}$C$_6$]-glucose; $[^{13}$C$_5$,15N$_2$]-glutamine; positional isotopologues; stable isotope resolved metabolomics (SIRM); metabolic pathway reconstruction.
Introduction

Metabolomics has been instrumental in accelerating the elucidation of metabolic reprogramming induced by disease states or drug treatment (1-4) and the discovery of metabolism-based biomarkers (5-7). As metabolite levels are governed by many factors including rates of synthesis and degradation, multiple input and output pathways, and exchange across compartments (8), it has been challenging to reconstruct metabolic networks based on total metabolite profiles alone. Metabolic transformations through the network require numerous enzyme-catalyzed reactions that transfer the structural moiety among metabolites. Thus, the ability to track metabolite moiety will greatly reduce the ambiguities in metabolic network analysis. Stable isotope-resolved metabolomics (SIRM) fulfills this requirement by systematically tracking the transformations of individual tracer atoms from precursors to products using a combination of MS\(^1\) and NMR methods, which provides respectively the number and position of the tracer atoms in given metabolites. This approach has been successfully applied to determine altered metabolic activities by disease development and other perturbations in 2D/3D cell cultures (9-15), human tissues \textit{ex vivo} (16-18), patient-derived xenograft (PDX) mice \textit{in vivo} (19,20), and even human subjects \textit{in vivo} (17,21).

However, compared with MS, the moderate sensitivity of NMR limits the overall metabolite coverage. This limitation prompted us to develop an Ion Chromatography-Ultrahigh Resolution-MS\(^1\)/data independent-MS\(^2\) (IC-UHR-MS\(^1\)/DI-MS\(^2\)) method to enable determination of tracer atom position(s) in metabolite moiety by MS with higher resolution and sensitivity than NMR. This in turn allow robust reconstruction of metabolic network responses to stressors at specific enzyme levels (22). The UHR-MS\(^1\) step is capable of resolving the neutron mass difference among different tracer atoms (e.g. Δmass = 0.006995 amu between 13C and 15N) (10,23). This capability enables multiplexing of biologically compatible tracer atoms such as 13C, 15N and 2H in the same (e.g. $[^{13}$C\(_5\),15N\(_2\)]-Gln) or different substrates (e.g. $[^{13}$C\(_6\)]-glucose + $[^{15}$N\(_2\)]-Gln) to expand the metabolic pathway coverage while circumventing sample batch effects in multiplex SIRM (mSIRM) studies (24,25).

We have expanded the pathway reconstruction of purine/pyrimidine nucleotide synthesis to the reconstruction of metabolic networks consisting of the Krebs cycle, pentose phosphate pathway (PPP), gluconeogenesis, and UDP N-acetylglucosamine (UDP-GlcNAc) synthesis pathways in 3D A549 spheroids and arsenite-transformed BEAS-2B cells. By tracing $[^{13}$C\(_6\)]-glucose or $[^{13}$C\(_5\),15N\(_2\)]-Gln transformations into the moiety of these pathway metabolites, we were able to deduce changes in specific enzyme activities induced by selenite in A549 spheroids or by arsenite in BEAS-2B cells. This
information enabled us to surmise the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that presumably mediates the transformation of BEAS-2B cells by arsenite.

Results

Isotope enrichment distributions of major metabolites from glycolysis, the Krebs cycle, PPP, gluconeogenesis, and UDP-GlcNAc metabolism were obtained from the UHR-MS\(^1\) and MS\(^2\) spectra in both \([^{13}\text{C}_6]\)-glucose traced A549 spheroids ± anti-cancer selenite treatment and \([^{13}\text{C}_6,^{15}\text{N}_2]\)-Gln traced BEAS-2B cells compared with arsenite transformed BEAS-2B cells. Example MS\(^1\) (A) and MS\(^2\) (B) spectra are shown for citrate in Fig. S1. Isotopologue concentrations were calculated from the peak area ratio of samples to calibration standard mixtures after natural abundance correction, followed by normalization to the sample protein concentration.

The Krebs cycle

The glycolytic product of \([^{13}\text{C}_6]\)-Glc (\(^{13}\text{C}_3\)-pyruvate) enters the Krebs cycle either via \(^{13}\text{C}_2\)-acetyl CoA produced from the pyruvate dehydrogenase (PDH) reaction or directly into \(^{13}\text{C}_3\)-oxaloacetate (OAA) via pyruvate carboxylase (PC) activity. After the first turn, the PDH-initiated Krebs cycle produces \(^{13}\text{C}_2\)-isotopologues (●) of various intermediates, whereas PCB-initiated Krebs cycle generates \(^{13}\text{C}_3\)-isotopologues (●) of citrate, \(\text{cis}\)-aconitate, malate, fumarate, and aspartate (26), and the malic enzyme (ME) reaction scrambles \(^{13}\text{C}\) in pyruvate leading to the synthesis of \(^{13}\text{C}_1\)-metabolites (●) (Figs. S2A and 1A). It should be noted that this pathway scheme takes into account unlabeled carbon (●) that can come from preexisting pools of free metabolites as well as their precursors such as glycogen, proteins and lipids.

In the \([^{13}\text{C}_6]\)-Glc traced A549 spheroids, we saw the occurrence of \(^{13}\text{C}_2\) (2, red box), and \(^{13}\text{C}_3\)-citrate (3, green box), which are the respective products of PDH-initiated (canonical) and anaplerotic PC-initiated Krebs cycle (Figs. 1A-b, S1A). The presence of the \(^{13}\text{C}_3\)-3,4,5-citrate species (3) in the MS\(^2\) data also points to PC activity (Figs. 1A-c, S1B). It is evident from the UHR-MS\(^1\) data that \(^{13}\text{C}_2\)-citrate accumulated more than \(^{13}\text{C}_3\)-citrate indicating a higher activity of PDH-initiated than anaplerotic PC-initiated Krebs cycle. However, \(^{13}\text{C}_2\)-malate (f) and -Asp (g) were comparable in levels to the \(^{13}\text{C}_3\)-counterparts (Fig 1A). This discrepancy can be accounted for by the contribution of a second turn canonical Krebs cycle activity to the \(^{13}\text{C}_3\) pools, which is consistent with the synthesis of \(^{13}\text{C}_4\)-citrate (b), a specific product of the second turn. Although low in levels, \(^{13}\text{C}_1\)-citrate and -Glu (i) were present,
suggesting contribution from the ME reaction. Selenite induced the depletion of all 13C$_2$-, 13C$_3$-, and 13C$_4$-isotopologues of the Krebs cycle intermediates in A549 spheroids, except for αKG (d), which showed enhanced buildup. These data are consistent respectively with inhibition of PDH, PC, and ME-mediated Krebs cycle activity, particularly at the α-ketoglutarate dehydrogenase (OGDH) step by selenite leading to the accumulation of all 13C-isotopologues of αKG. The 13C labeling patterns of the MS2 fragments verified the selenite effect on PDH (2 or 13C$_2$-15N$_2$-Glu, h; 3 or 13C$_3$-15N$_2$-Glu-GSH, k) and PC (3 or 13C$_3$-15N$_2$-Asp, h) activity (Fig. 1A) while revealing inhibition of GSH synthesis by blocking the PDH-initiated Krebs cycle activity and Ser–Gly synthesis pathways (cf. Fig S3). The latter is evidenced by the depletion of 13C$_3$-Glu (k) and 13C$_2$-Gly (l) moiety of GSH. This information could not be ascertained based on the MS1 data of GSH (j) alone (Fig. 1A).

In 13C$_5$,15N$_2$-Gln traced BEAS-2B cells, the labeled Gln enters the Krebs cycle by first conversion to 13C$_5$,15N$_1$-Glu (a) via glutaminase-catalyzed glutaminolysis and then to 13C$_5$-αKG (b) via glutamic-oxaloacetic transaminase (GOT)-catalyzed transamination and/or glutamate dehydrogenase 1 (GLUD1)-catalyzed oxidative deamination. 13C$_5$-αKG is further transformed to 13C$_4$-succinate (d), -fumarate (e), -malate (f), and -citrate (h) via the Krebs cycle (Figs. S2B and 1B). 13C$_4$-malate can be converted to 13C$_3$-pyruvate (l) via the ME reaction, leading to the synthesis of 13C$_2$- and 13C$_3$-citrate, -fumarate, -malate, and -Asp via respectively PDH- and PC-initiated Krebs cycle activities. Moreover, 13C$_4$,15N-Asp (j) can be produced via GOT-catalyzed transamination while 13C$_4$,15N-GSH (m) is synthesized from 13C$_4$,15N-Glu. Such pathway reconstruction was deduced from the presence of all expected 13C and 15N-isotopologues of the glutaminolytic and Krebs cycle products based on the MS1 and MS2 data. Arsenite transformed cells (BAsT) showed depletion of all of these products except for the labeled GSH in terms of both Glu (n) and Gly (o) moieties (Fig. 1B). These data pointed to inhibition of the glutaminase and/or Krebs cycle activity but activation of GSH synthesis in BAsT versus control cells.

In addition, detailed analysis of the 13C and/or 15N labeling patterns of both the parent metabolites (molecular ions in MS1) and fragments (in MS2) revealed differential arsenite effects on individual enzyme reactions. For example, the first two products of glutaminase (i.e. 13C$_5$,15N-Glu in a and 13C$_5$-αKG in b) showed arsenite-induced depletion, which suggests glutaminase inhibition by arsenite. However, from the MS2 data, we saw 13C$_3$ (3)-, 13C$_4$ (4)-C1 to C5-citrate (i) accumulated while the product 13C$_3$ (3)- and 13C$_4$ (4)- C1 to C4-αKG depleted (c), which points to additional block at the aconitase (ACO) and/or IDH steps. The former is consistent with the known inhibition of aconitase by arsenite (27). If this were the only effect of arsenite, we would expect the same trend for the MS1 data.
for citrate (h), which was not the case. The production of these fragments had a contribution from the ME (●, light blue box) and/or PC (●, green box) in addition to the glutaminase (●, red box)-mediated pathways. The observed discrepancy between MS1 and MS2 data could be attributed to the confounding activation of the ME and PC-mediated pathways by arsenite, leading to the accumulation of the three citrate fragments. This interpretation could also apply to the discrepancy between MS1 (f) and MS2 (g) data of malate. The accumulation of 13C$_4$-succinate (d) and depletion of the products 13C$_4$-fumarate (e) are consistent with the inhibition of SDH based on the MS1 data, which was reported previously (28). Moreover, the arsenite-induced accumulation in the 13C$_5$, 15N$_1$-Glu (n) and 13C$_2$, 15N$_1$-Gly moieties (o) of GSH argue for the activation of the GSH synthesis pathway while that in 15N$_1$-Glu suggests enhanced GOT activity in addition. The former is consistent with arsenite-induced GSH accumulation and activation of GSH synthesis genes reported for lung epithelial cells (28). Thus, by combining the MS1 and MS2 data, it is practical to translate changes in the complex 13C and 15N labeling patterns of the Krebs cycle metabolites into altered activity of specific enzymes, which would not be reliable based on either MS1 or MS2 data alone.

The pentose phosphate pathway (PPP) and gluconeogenesis

The PPP is a major route for glucose oxidation to produce ribose-5-phosphate (R5P) and NADPH, which are respectively the precursor to nucleotide synthesis and reductant for anabolic and antioxidant metabolism. In this pathway, $[^{13}C_6]$-Glc is converted to ribulose-5-phosphate (Ru5P) via hexokinase (HK), G6P dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (PGD), which is then isomerized to R5P (oxidative branch) and epimerized to xylulose-5-phosphate (X5P), followed by the transketolase (TKT) and transaldolase (TALDO) reactions to respectively produce sedoheptulose-7-phosphate (S7P) + glyceraldehyde-3-phosphate (GAP) and fructose-6-phosphate (F6P) and erythrose-4-phosphate (E4P) (freely reversible non-oxidative branch), respectively (Fig. 2A). In $[^{13}C_6]$-Glc traced A549 cells, we saw domination of fully 13C labeled isotopologues of G6P (a), 6PG (b), Ru5P/R5P (c), and S7P (d) in the MS1 data (Fig 2A). For S7P, the 13C$_2$- and 13C$_5$-isotopologues were also present and at higher levels than the 15C$_1$- (absent) and 13C$_3$-isotopologues. Based on the TKT and transaldolase reaction mechanism (denoted by green arrows), the former two species can be produced directly by the forward TKT reaction and the latter two species by the reverse transaldolase reaction. Thus, the observed scrambled 13C labeling patterns of S7P is consistent with higher forward or oxidative PPP than reverse or non-oxidative PPP activity. Selenite treatment enhanced the levels of 13C$_2$- and 13C$_5$-S7P while reducing those of 13C$_1$- and 13C$_3$-S7P (d), which suggests a shift from non-oxidative to NADPH-generating oxidative PPP. This is consistent with the lack of depletion of 13C-6PG (b) and 13C-R5P+Ru5P (c) despite the large depletion of G6P (a) by selenite. Interestingly, selenite
induced depletion of 13C$_5$- and 13C$_6$-F6P (e) but buildup of the 13C$_3$-4,5,6 fragment of F6P (f). Together with the accumulation of 13C labeled S7P, the former points to inhibition of TALDO activity by selenite while the latter could be attributed to enhanced gluconeogenesis by selenite (cf. Fig. S3).

In $[^{13}$C$_5$, 15N$_2$]-Gln traced BEAS-2B cells, very low levels of 13C incorporation were evident in some of the PPP products and their 13C scrambling patterns presumably resulted from a combination of gluconeogenic, transketolase, and transaldolase activities (Fig. 2B). The fully 13C labeled isotopologues of G6P (a), R5P+Ru5P (c), and F6P (e) as well as 13C$_1$-6PG (b) accumulated more in BAsT than control cells. Although most of these changes were at the detection limit and non-statistically significant, they could reflect enhanced oxidative PPP activity in BAsT cells (cf. Fig. 2A). This would generate more NADPH to support reduction of GSSG to GSH (cf. Fig. 1B) for relieving oxidative stress induced by arsenite (28).

UDP-GlcNAc biosynthesis pathway

Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is an activated form of N-Acetyl glucosamine (GlcNAc) needed for O and N-linked protein glycosylation, which are important in regulating numerous cellular processes, such as protein targeting to organelles (29) and nutrient sensing (30,31). UDP-GlcNAc has four biochemical moieties (Fig. S4) that are derived from several intersecting metabolic pathways (32) (Fig. 3). The hexosamine moiety comes from glucose and the amido N of Gln via the hexosamine biosynthesis pathway (HBP), the acetyl group is donated from acetyl CoA generated from glucose, amino acids or fatty acids, the ribose unit derives from glucose via the PPP, and the uracil ring is produced from pyrimidine biosynthesis using C and N sources such as glucose and Gln.

From the UHR-MS1 spectra of UDP-GlcNAc, high intensity of the 13C$_6$-, 13C$_8$-, 13C$_{11}$- and 13C$_{13}$-peaks were observed in $[^{13}$C$_5$]-Glc traced A549 cells (Fig. 3A-d). The ambiguities in the labeled unit assignment for these isotopologues were resolved with the DI-MS2 data. We observed low enrichment of 13C$_{1-3}$ (1-3) peaks in the uracil fragment of UDP-GlcNAc (Fig. 3A-f), which was akin to the corresponding pattern of the precursor UTP (Fig. 3A-c). In contrast, the glucosamine plus acetyl fragment showed high enrichment of the 13C$_6$ (6) and 13C$_8$ (8) species (Fig. 3A-e), as the case for the two in the MS1 data (Fig. 3A-d). These two species can be confidently assigned to 13C$_6$-glucosamine- and 13C$_6$-glucosamine- + 13C$_2$-acetyl-bearing UDP-GlcNAc, respectively. Although we did not directly observe relevant fragments, we can justifiably assign two other abundant isotopologues (13C$_{11}$ and 13C$_{13}$) to respectively 13C$_6$-glucosamine + 13C$_5$-ribose- and 13C$_6$-glucosamine- + 13C$_5$- ribose + 13C$_2$-acetyl-bearing UDP-GlcNAc, based on the prevalence of the 13C$_6$-glucosamine and 13C$_6$-glucosamine.
+ $^{13}\text{C}_2$-acetyl moieties (Fig. 3A-e) as well as $^{13}\text{C}_5$-ribose in the UTP precursor (Fig. 3A-b). Selenite treatment enhanced the enrichment of the $^{13}\text{C}_6$-GlcNAc fragment of UDP-GlcNAc (e) but reduced that of the $^{13}\text{C}_6$-GlcNAc (e) and $^{13}\text{C}_{1,2}$-uracil fragments of UDP-GlcNAc (f) as well as the $^{13}\text{C}_8, 11-15$ isotopologues of intact UDP-GlcNAc (d) (Fig. 3A). These data are consistent with the block in the uracil synthesis plus reduced synthesis and/or incorporation of ribose into UTP and UDP-GlcNAc, as either or both processes are required for the synthesis of the $^{13}\text{C}_{11,15}$-isotopologues. They also point to the maintenance of glucosamine synthesis but reduced acetyl incorporation into GlcNAc via the HBP. Again, such detailed deduction of selenite’s effect on the UDP-GlcNAc biosynthetic pathway would not be feasible without the combined MS1 and MS2 data.

In $[^{13}\text{C}_5,^{15}\text{N}_2]$-Gln traced BEAS-2B cells, UHR-MS1 data of UDP-GlcNAc showed isotopologues with single (^{15}N) and dual ($^{13}\text{C},^{15}\text{N}$) tracer atoms (Fig. 3B-d). Together with the MS2 fragment data, the two most abundant $^{13}\text{C}_3,^{15}\text{N}_2$ (C3N2) and $^{13}\text{C}_3,^{15}\text{N}_3$ (C3N3) species in the MS1 data mainly consisted of $^{13}\text{C}_3,^{15}\text{N}_1$- and $^{13}\text{C}_3,^{15}\text{N}_2$-uracil (e) plus $^{15}\text{N}_1$-glucosamine units (f) respectively with minor contribution of the $^{13}\text{C}_1,^{15}\text{N}_1$-uracil plus $^{13}\text{C}_2,^{15}\text{N}_1$-glucosamine unit. This is consistent with the prominence of the $^{13}\text{C}_3,^{15}\text{N}_1$- and $^{13}\text{C}_3,^{15}\text{N}_2$-uracil fragment in the UTP precursor (b). As illustrated in the atom-resolved pathway scheme, these two most abundant species should be derived from the reaction sequence of glutaminase – first turn of the Krebs cycle (PDH, PC, ME-mediated) – pyrimidine synthesis. The MS2 fragment of N-acetylglucosamine showed dominant enrichment of the $^{15}\text{N}_1$-species with some enrichment of the $^{13}\text{C}_2,^{15}\text{N}_1$-species (f) (Fig. 3B). These data indicate high activity of HBP along with ME-mediated Krebs cycle reactions giving rise to $^{13}\text{C}_2$-acetyl CoA for acetyl transfer to glucosamine (cf. Fig. S4). Arsenite transformation depleted the low-abundance ^{15}N and $^{13}\text{C},^{15}\text{N}$-isotopologues of UDP-GlcNAc (d) and its precursor UTP (a), which primarily resulted from reduced ^{15}N and/or ^{13}C incorporation into the N-acetylglucosamine and uracil moieties (b,e,f) since little ^{13}C enrichment was evident in the ribose unit of UTP (c) (Fig. 3B). Thus, chronic exposure to arsenite blocked both HBP and uracil biosynthesis in BEAS-2B cells. However, the enrichment of the most abundant $^{13}\text{C}_3,^{15}\text{N}_2$-uracil fragment of UDP-GlcNAc and its precursor UTP was enhanced by arsenite (b,e). This species can be derived from $^{13}\text{C}_4,^{15}\text{N}_1$-Asp (with loss of $^{13}\text{CO}_2$) + ^{15}N-carbamoyl phosphate (^{15}N-CP). As the $^{13}\text{C}_3,^{15}\text{N}_1$-uracil fragment of both UTP and UDP-GlcNAc was reduced in enrichment, it is plausible that enhanced enrichment of $^{13}\text{C}_3,^{15}\text{N}_2$-uracil-bearing UDP-GlcNAc is driven by the formation and/or incorporation of ^{15}N-CP at the expense of the $^{13}\text{C}_3,^{15}\text{N}_1$ species in arsenite-transformed BEAS2B cells. Such detailed deduction of pathway changes is made possible by the use of the dual tracer in combination with the ability to resolve label positions in UDP-GlcNAc moieties by the DI-MS2 method.
Discussion

We have applied a previously developed IC-UHR-FTMS¹/DI-MS² method (22) for extensive and robust reconstruction of [¹³C₆]-Glc or [¹³C₅, ¹⁵N₂]-Gln-fueled central metabolic networks in mammalian cells. This method met the needs for resolving dual tracer distribution in intact metabolites with ultra high-resolution MS¹ while simultaneously acquiring positional labeling in metabolite moieties via DI-MS². In this report, we illustrated how to rigorously reconstruct the Krebs cycle, PPP, gluconeogenesis, and UDP-GlcNAc synthesis pathway by utilizing the combination of UHR-MS¹ with MS² data. This approach enabled us to unambiguously discern in-cell altered activity of specific enzymes induced by anti-cancer selenite treatment in lung adenocarcinoma A549 spheroids or by arsenite transformation in lung epithelial BEAS-2B cells.

For A549 spheroids, we found that selenite’s ability to attenuate the Krebs cycle activity lies in the blockade of enzymes both in the canonical (OGDH) and anaplerotic (PC, ME) pathways (Fig. 1A). This is consistent with the suppression of the OGDH gene and PC protein but contrary to the overexpression of the ME gene in the 2D counterparts reported previously (13,33). Another notable distinction of selenite’s effect is less inhibition of GSH synthesis in 3D (Fig. 1A) versus 2D A549 cells (34), which should contribute to a better capacity of the spheroid culture for anti-oxidation. Our present data points to reduced synthesis (i.e. blocked GOT), rather than attenuated incorporation, of the precursor Glu as the cause for selenite’s inhibition of GSH synthesis in A549 spheroids. This is reasoned from the depletion of ¹³C labeled Glu despite the buildup of its ¹³C labeled αKG precursor. As for PPP, selenite-induced shift to the oxidative branch is expected to produce more NADPH to better sustain the reduction of GSSG to GSH, which is used to alleviate oxidative stress by detoxifying reactive oxygen species (ROS) (34). This shift can also maintain R5P production despite the block of the TALDO activity in the non-oxidative branch (Fig. 2A). These changes of the GSH and R5P synthesis pathways in 3D A549 spheroids presumably contribute to their better resistance to selenite toxicity than the 2D counterpart, as observed previously (34). In addition, our combined MS¹ and MS² data revealed that subsequent R5P incorporation into UTP and the supply of acetyl CoA and/or its entry into HBP was blocked by selenite, leading to attenuated synthesis of UDP-GlcNAc. This, together with somewhat compromised Krebs cycle, could underlie the growth inhibition of A549 spheroids with prolonged selenite treatment (34).

Arsenite is known to impact various metabolic proteins that contain the sulfhydryl group (35) (e.g. IkB kinase and glucose transporter) leading to different disease states including cancer (36,37). However,
the details of metabolic reprogramming in transformed epithelial cells induced by chronic, low-dose exposure to arsenite are still elusive. Our MS\(^1\) and MS\(^2\)-based metabolic network reconstruction revealed the complex action of arsenite on the Krebs cycle, PPP, and anti-oxidation pathways in lung epithelial BEAS-2B cells, including blockade of ACO, IDH, SDH, and GLS but activation of ME/PC, GOT, and GSH synthesis activities. One important outcome of these reprogrammed events can be ROS buildup but not in excess to avoid apoptosis while driving different carcinogenic events (37). Moreover, despite the block of HBP and overall uracil synthesis, arsenite-transformed BEAS-2B cells largely maintained UDP-GlcNAc production by activating the CP synthesis and/or incorporation steps of the UDP-GlcNAc synthesis pathway. UDP-GlcNAc is the required substrate for O-GlcNAcylation of several oncogenic regulators that drive cancer development (38) and the maintenance of this oncometabolite pool is expected to be important to arsenite transformation of BEAS-2B cells.

In conclusion, we applied an IC-UHR-MS\(^1\)/DI-MS\(^2\) method to track changes in \(^{13}\)C/\(^{15}\)N labeling patterns of metabolites and their moieties in SIRM studies of A549 spheroids or BEAS-2B cells in response to selenite or arsenite transformation, respectively. This approach enabled robust reconstruction of the metabolic network consist of the Krebs cycle, PPP, gluconeogenesis, and UDP-GlcNAc synthesis pathway to discern specific enzyme activities in the network altered by the treatments. In turn, this information helps elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS-2B cells by arsenite.

Experimental Procedures

Materials

All materials including the make-up solvent methanol for Ion chromatography, individual standards of metabolites used for quantification were obtained as described previously (22).

Preparation of calibration standard mixtures

A mixture of 86 (Mix 1) and 81 (Mix2) standards were prepared as two separate calibration standard mixtures as described previously (22). The standard mixtures were aliquotted, lyophilized, and stored at -80 °C for long term use. When needed, lyophilized Mix 1 was dissolved in 120 μL 18 MΩ water, vortexed and 50 μL was used to reconstitute with Mix 2 to form the final calibration standard mixture.

IC-UHR-MS\(^1\) and DI-MS\(^2\)
Ion chromatography-ultrahigh resolution Fourier transform mass spectrometry (IC-UHR-FTMS)

Metabolites were separated on an IonPac AG11-HC-4 μm guard column (2 × 50 mm) coupled to an IonPac AS11-HC-4 μm RFIC&HPIC (2 × 250 mm) analytical column in a Dionex ICS5000+ system (Thermo Scientific) equipped with a dual pump, an eluent generator, an autosampler, and a detector/chromatography module. Conditions for chromatographic separations (i.e. KOH gradient) and ion suppressor, and desolvation in the heated electrospray were as described previously (22). MS data were acquired using the Xcalibur software. A batch of samples started with a 15 min blank (water) injection to check for contamination in the instrument, followed by two injections of calibration standard mixtures to ensure the stability of MS signals and another 15 min water injection to check for carryover on the IC column. Lyophilized cell extracts were freshly reconstituted in 20 μL 18 MΩ water plus 1 μM DSS (sodium trimethylsilylpropanesulfonate) and run in a random order. Each sample was followed by one or two 15 min injections of water blank to minimize carryover. The calibration standard mixture was run after every 6-8 cell extracts to track signal loss in the same batch of run. Each sample batch ended with an injection of the calibration standard mixture, followed by water to double check the normality of MS signals and sample carryover.

Data-independent tandem MS measurement for cell polar extracts

Data-independent MS^2 analysis (DI-MS^2) was performed in between full MS^1 scans for quantifying targeted fragment(s) of major metabolites in polar extracts, as described previously (22). To achieve this, we set (1) the cycle time of no more than 2-3 seconds for acquiring 10-15 points across each chromatographic peak for reliable quantification of precursors and their isotopologues; (2) sufficient resolving power in full scan (500,000) and MS^2 (60,000) modes to discriminate ^13C from ^15N-containing isotopologues of precursors and fragments; (3) full isotopologue coverage for each metabolite in selecting the precursor mass range for MS^2 scan (i.e. 280-440 with the isolation window of 200 m/z). Other conditions were as described previously (22).

Data analysis and quantification

We first established an in-house exact mass database for the precursors and fragment products based on the corresponding mass ion spectra acquired for individual metabolite standards. Several public metabolomics databases, including the Human Metabolome DataBase (HMDB) (39), the Kyoto Encyclopedia of Genes and Genomes (KEGG) (40), and METLIN (41), and Mass Frontier were used to help interpret MS^2 data for metabolite fragmentation patterns. This database was then incorporated into TraceFinder v3.3 (Thermo Scientific) for assigning and integrating the peak areas of precursor
ions in MS\(^1\) spectra and fragment ions in MS\(^2\) spectra of targeted metabolites in cell extracts for further quantification. Precursors and fragments were assigned with mass accuracy set to 5 ppm. Assignments were curated before isotopic peak areas were corrected for natural abundance as previously described (42). Metabolites in samples were quantified from the corrected MS\(^1\) data by calibrating against the two calibration standard mixtures run before (Std 1) and after (Std 2) the samples. The response factor was calculated for each sandwiched sample run as follows:
Response factor = (Area [Std 1] + (Area [Std 2] – Area [Std 1]) x nth run number/run number))/std concentration. The metabolite concentration was then calculated by dividing the corrected MS\(^1\) peak area with the response factor and normalized against the extract aliquot and amount of total protein. The fragment peak areas were similarly normalized.

Preparation of \(^{13}\)C labeled polar extracts of 3D A549 spheroids ± selenite
A549 cells were grown to 90% confluence in 10-cm plates, followed by loading with magnetic nanoparticles (Nanoshuttle\(^\text{TM}\), N3D Biosciences) overnight at 37°C/5% CO\(_2\), as described previously (15). Cells were then detached and seeded into 6-well Costar-cell repellent plates (Corning, Inc) at 400,000 cells/well for spheroid formation. Spheroids were cultured for 4 days before medium change to [\(^{13}\)C\(_6\)]-Glc ± 10 \(\mu\)M Na\(_2\)SeO\(_3\) and grown at 37°C/5% CO\(_2\) for 24 h. Spheroids were harvested, rinsed twice with cold PBS, and then briefly with cold nanopure water before simultaneous quenching and extraction of polar metabolites in cold 70% methanol (15). One-eighth of the polar fraction was aliquoted and lyophilized for IC-UHR-MS\(^1\)/DI-MS\(^2\) analysis.

Preparation of \(^{13}\)C, \(^{15}\)N labeled polar extracts of 2D BEAS-2B cells ± arsenite transformation
Primary bronchial epithelial BEAS-2B cells (ATCC) were cultured under two conditions: 1) in Bronchial Epithelial Cell Growth Medium (BEGM, Lonza Corporation) as control; 2) in BEGM + 1 \(\mu\)M Na\(_2\)AsO\(_3\) in 10-cm plates as transformed cells (BAsT). Cells were grown to 60-70% confluence before passaging to generate over 24 weeks. At week 24, 4 mM [\(^{13}\)C\(_5\),\(^{15}\)N\(_2\)]-Gln was introduced to both groups and grown at 37°C/5% CO\(_2\) for 24 h. Cells were then quenched with cold acetonitrile and extracted for polar metabolites in acetonitrile/water/chloroform (V/V 2:1.5:1) as described previously (16,43). One-eighth of the polar fraction was aliquoted and lyophilized for IC-UHR-MS\(^1\)/DI-MS\(^2\) analysis.

Data Availability
All data acquired are available upon request.

Acknowledgements
This work was supported by NCI P01CA163223-01A1, 1U24DK097215-01A1, 1R01CA118434-01A2, 5R21ES025669-02, 5P20GM121327, 5P30ES026529, and Shared Resource(s) of the University of Kentucky Markey Cancer Center P30CA177558. We thank Dr. Salim El-Amouri for assistance in the A549 spheroid tracer experiment and polar extraction, Ms. Yan Zhang for the BEAS-2B cells tracer experiment and polar extraction. We also thank Dr. Marc O. Warmoes, Patrick Shepherd, and Travis Thompson for developing the TraceFinder curation method and R scripts for automatic natural abundance correction, quantification, and normalization, and Dr. A. Lane for comments on the manuscript.

References

Footnotes

Abbreviations
BAsT: arsenite transformed BEAS-2B cells
DDA: Data dependent analysis
DIA: Data independent analysis
CDB: compound database
FT: Fourier transform
SIRM: Stable Isotope Resolved Metabolomics
IC: ion chromatography
MS: mass spectrometry
NMR: nuclear magnetic resonance
HCD: high-energy collisional dissociation
UDP-GlcNAc: Uridine diphosphate N-acetylglucosamine
m/z: mass to charge ratio
UHR: ultra high-resolution
NADH: Nicotinamide adenine dinucleotide
GSH: glutathione
Figure Legends

Figure 1. 13C and 15N isotopologue analysis of IC-UHR-MS1 and MS2 data shows blocked Krebs cycle by selenite in A549 spheroids and by arsenite transformation in BEAS-2B cells.
A. A549 Spheroids. B. BEAS-2B cells

Polar extracts were analyzed by IC-UHR-MS1 and DI-MS2. 13C and 15N atoms were traced from $[^{13}\text{C}_6]$-Glc (A) or $[^{13}\text{C}_5,^{15}\text{N}_2]$-Gln (B) into the Krebs cycle metabolites after first and second turns (enclosed in brackets). Due to space limitation, not all possible labeled products are shown. ●: 12C; ◆: 14N; ●: 15N; ●, ●, ●: 13C from the first turn of the PDH, PC, and ME-mediated Krebs cycle reactions, respectively. The X-axis refers to the number of 13C and/or 15N atoms in each isotopologue. The Y-axis represents µmole or ion intensity normalized to amounts of total protein. Data shown are mean ± SEM (n = 3) for A549 spheroids and mean ± SEM (n = 2) for BEAS-2B cells. The boxes are color-coded to denote the contribution of the GLS (red)/GOT (blue) in B, PDH (red) in A, and PC- (green), and ME-mediated (light blue) Krebs cycle reactions in A and B to given isotopologues of metabolites. AcCoA: acetyl CoA; αKG: α-ketoglutarate; OAA: oxaloacetate; GSH: glutathione; PDH: pyruvate dehydrogenase; ACO: aconitase; PC: pyruvate carboxylase; ME: malic enzyme; GLS: glutaminase; IDH: isocitrate dehydrogenase; OGDH: α-ketoglutarate dehydrogenase; GLUD1: glutamate dehydrogenase; GOT: glutamate-oxaloacetate transaminase. *: p < 0.05; **: p < 0.01; ***: p < 0.005; ****: p < 0.001

Figure 2: 13C isotopologue analysis of IC-UHR-MS1 and MS2 data shows enhanced oxidative PPP in response to selenite in A549 spheroids or to arsenite transformation in BEAS-2B cells.

A. A549 Spheroids. B. BEAS-2B cells

13C atoms were traced from $[^{13}\text{C}_6]$-Glc (A) or $[^{13}\text{C}_5,^{15}\text{N}_2]$-Gln (B) into the PPP and gluconeogenic products. Brackets in A denote 13C products of the reverse transaldolase (TALDO) reaction while green curves and arrows delineate the recombination of R5P moiety with X5P (TKT reaction) or F6P moiety with E4P (TALDO reaction) to generate sedoheptulose-7-phosphate (S7P). Due to space limitation, not all possible labeled products are shown. The same sets of extracts as in Fig. 1 were analyzed by IC-UHR-MS1 and DI-MS2. The X-/Y-axes and number of replicates are as in Fig. 1. 6PG: 6-phosphogluconate; R5P: ribose-5-phosphate; Ru5P: ribulose-5-phosphate; X5P: xylulose 5-phosphate; E4P: erythrose-4-phosphate; G6PD/PGD: glucose-6-phosphate/6-phosphogluconate dehydrogenase; TK: transketolase; GPI: glucose-6-phosphate isomerase; all other abbreviations and symbols are as in Fig. S2. *: p < 0.05;
Figure 3. Altered 13C and/or 15N incorporation into UTP/UDP-GlcNAc and their moieties in response to selenite in A549 spheroids or to arsenite transformation in BEAS-2B cells.

A. A549 Spheroids. **B.** BEAS-2B cells

13C and/or 15N atoms were traced from $[^{13}$C$_{5}$]-Glc (A) or $[^{13}$C$_{5},^{15}$N$_{2}$]-Gln (B) into UDP-GlcNAc. ●: 12C; ◆: 14N; ○: 15N; ●, ●, ●: 13C from the first turn of the PDH, PCB, and ME-mediated Krebs cycle reactions, respectively. The same sets of extracts as in Fig. 1 were analyzed by IC-UHR-MS1 and DI-MS2. **A-a, B-a and A-d, B-d:** determined from MS1 of UTP/UDP-GlcNAc; **A-b to c/f and B-b to c/f:** determined from the MS2 of the ribose and uracil moieties of UTP and UDP-GlcNAc in A549 spheroid and BEAS-2B cells, respectively; **A-e and B-e:** determined from the MS2 of the GlcNAc moiety of UDP-GlcNAc in A549 spheroid and BEAS-2B cells, respectively. The X-/Y-axes and number of replicates are as in Fig. 1. HBP: hexosamine biosynthesis pathway; Pyr: pyruvate; PDH: pyruvate dehydrogenase; PC: pyruvate carboxylase; ME: malic enzyme; GLS: glutaminase; CP: carbamoyl phosphate; OMP: orotidine monophosphate; Ac: acetyl; GlcNAc1 or 6P: N-acetylglucosamine 1 or 6-phosphate. *: p < 0.05; **: p < 0.01; ***: p < 0.005; ****: p < 0.001; *****: p < 0.0005.
Figure 1

A A549 spheroids

15C6-Glc

Aspartate

Pyruvate

CO2

AcCoA

Citrate

c-Aconitate

Krebs Cycle

Fumarate

Malate

GOT

Glu

GSH

B BEAS-2B cells

15C6-Glc

Aspartate

Pyruvate

CO2

AcCoA

Citrate

c-Aconitate

Krebs Cycle

Fumarate

Malate

GOT

Glu

GSH
Figure 2.

A A549 spheroids

Glycolysis

![Glycolysis pathway diagram](diagram_a549)

Gluconeogenesis

![Gluconeogenesis pathway diagram](diagram_a549)

B BEAS-2B cells

Glycolysis

![Glycolysis pathway diagram](diagram_beas)

Gluconeogenesis

![Gluconeogenesis pathway diagram](diagram_beas)
Figure 3.

A A549 spheroids

Krebs cycle
1st turn
PDH/PCB/ME

\[^{13}C_6\text{-Glc}\]
Gln + CO\(_2\)
R5P
PP
PRPP

Pyrimidine Synthesis

B BEAS-2B cells

GLS-PDH
PC, ME

\[^{13}C_5,^{15}N_2\text{-Gln}\]
CO\(_2\)
Uracil@UTP
Ribo@UTP
UTP

Pyrimidine Synthesis

\[^{13}C_6\text{-Glc}\]
AcCoA
HBP

\[^{13}C_5,^{15}N_2\text{-Gln}\]
GlcNAc6P
GlcNAc1P

UDPGlcNAc
Author Credit Statement

TWMF and RMH conceptualized the work, QSS and RMH designed and performed the MS experiments, QSS and RMH analyzed the MS data, TWMF translated the MS data into metabolic networks, TWMF and QSS prepared the figures, TWMF wrote the initial draft and QSS/RMH reviewed the manuscript, TWMF and RMH acquired the financial support for the work.
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: