Mechanism of chorismate dehydratase MqnA, the first enzyme of the futalosine pathway, proceeds via substrate-assisted catalysis

Archna Prasad, Constanze Breithaupt, Duc-Anh Nguyen, Hauke Lilie, Jörg Ziegler, Milton T. Stubbs

PII: S0021-9258(22)01044-4
DOI: https://doi.org/10.1016/j.jbc.2022.102601
Reference: JBC 102601

To appear in: Journal of Biological Chemistry

Received Date: 5 May 2022
Revised Date: 10 October 2022
Accepted Date: 12 October 2022

Please cite this article as: Prasad A, Breithaupt C, Nguyen DA, Lilie H, Ziegler J, Stubbs MT, Mechanism of chorismate dehydratase MqnA, the first enzyme of the futalosine pathway, proceeds via substrate-assisted catalysis, Journal of Biological Chemistry (2022), doi: https://doi.org/10.1016/j.jbc.2022.102601.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
Mechanism of chorismate dehydratase MqnA, the first enzyme of the futalosine pathway, proceeds via substrate-assisted catalysis

Archna Prasad¹, Constanze Breithaupt¹, Duc-Anh Nguyen¹, Hauke Lilie¹, Jörg Ziegler² and Milton T. Stubbs*¹

¹Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität – Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle/Saale, Germany
²Leibniz-Institut für Pflanzenbiochemie, Weinbergweg 3, 06120 Halle/Saale, Germany
¹present address: Proteros biostructures GmbH, Bunsenstr. 7a, D - 82152 Martinsried, Germany

*To whom correspondence should be addressed:
Email: stubbs@biochemtech.uni-halle.de; Tel.: +49 345 55 24901; Fax +49 345 55 27360;
oricid 0000-0003-1278-9013

Running title: Substrate assisted chorismate dehydration by MqnA

Keywords: Menaquinone, electron transport chain, menaquinone biosynthesis, futalosine pathway, chorismate dehydratase, MqnA, chorismate

Abbreviations used: 3-EPB: 3-enolpyruvyl-benzoate; 3-HBA: 3-hydroxy-benzoate, 3,4-CHD: 3,4-dihydroxycyclohexa-1,5-dienoate; VFT fold: Venus flytrap fold

Dedication: Dedicated to Professors Robert Huber and Wolfram Bode on the occasions of their 85th and 80th birthdays, respectively
Abstract

MqnA, the only chorismate dehydratase known so far, catalyzes the initial step in the biosynthesis of menaquinone via the futalosine pathway. Details of the MqnA reaction mechanism remain unclear. Here we present crystal structures of *Streptomyces coelicolor* MqnA and its active site mutants in complex with chorismate and the product 3-enolpyruvyl-benzoate, produced during heterologous expression in *Escherichia coli*. Together with activity studies, our data are in line with dehydration proceeding via substrate assisted catalysis, with the enol pyruvyl group of chorismate acting as catalytic base. Surprisingly, structures of the mutant Asn17Asp with co-purified ligand suggest that the enzyme converts to a hydrolase by serendipitous positioning of the carboxyl group. All complex structures presented here exhibit a closed Venus flytrap fold, with the enzyme exploiting the characteristic ligand binding properties of the fold for specific substrate binding and catalysis. The conformational rearrangements that facilitate complete burial of substrate/product, with accompanying topological changes to the enzyme surface, could foster substrate channeling within the biosynthetic pathway.

Introduction

In prokaryotes, ubiquinone and menaquinone serve as electron carriers in the electron transport chain (1). Although some prokaryotes utilize ubiquinone solely, mycobacteria and most Gram-positive bacteria produce menaquinone exclusively, and many Gram-negative bacteria such as *Escherichia coli* switch from ubiquinone to menaquinone when grown under anaerobic conditions (2). In humans, menaquinone (vitamin K₂) acts as a cosubstrate in the carboxylation of glutamic acids that leads to the activation of proteins essential for blood coagulation, control of cell growth, apoptosis, signal transduction and calcium metabolism (3). As de novo biosynthesis of menaquinone is performed only by prokaryotes, humans must acquire menaquinone through diet, intestinal bacterial synthesis or conversion of plant-derived phylloquinone (vitamin K₁).

Two distinct pathways of menaquinone biosynthesis have been described in bacteria (Figure 1): the classical o-succinylbenzoate pathway that has been studied extensively in *E. coli* (4, 5) and the more recently discovered futalosine pathway (6). Phylogenetic analyses suggest that the futalosine pathway evolved earlier than the o-succinylbenzoate pathway (7). The former was found in nearly one third of all menaquinone producing prokaryotes analyzed, including pathogenic bacteria like *Helicobacter pylori*, *Campylobacter jejuni*, *Chlamydiae* and spirochetes, but not in important commensal bacteria including lactobacilli. Enzymes involved in this pathway are therefore potential targets for the development of new antibiotics (8).

MqnA is the first enzyme of the futalosine pathway (6–12), catalyzing the dehydration of chorismate to yield 3-enolpyruvyl-benzoate (3-EPB), a reaction not observed for any other enzyme so far (Figure 1). Chorismate is the product of the shikimate pathway and the precursor of many aromatic compounds including the amino acids phenylalanine, tyrosine and tryptophan, the folate coenzymes, the iron chelating siderophores in addition to the electron carriers ubiquinone and menaquinone (Figure S1). As enzymes of the shikimate pathway – as well as enzymes that convert chorismate – are present only in bacteria, fungi and plants, they are likewise promising targets for potential antimicrobials and herbicides.

Crystal structures of MqnA from *Streptomyces coelicolor* (ScMqnA) and *Deinococcus radiodurans* (DrMqnA), solved initially as “proteins of unknown function” as part of the Structural Genomics Initiative (12), revealed an overall fold reminiscent of periplasmic binding proteins. Sequence conservation in these structures, as well as recent analyses of DrMqnA from *Deinococcus radiodurans* in complex with a putative substrate analog 3-hydroxy-benzoate (3-HBA) suggest that the active site of MqnA is located in a deep cleft in the center of the enzyme (13).
Here we present high resolution crystal structures of ScMqnA in complex with the product 3-EPB, as well as mutants in complex with the chorismate substrate and the presumed hydrolysis product 3,4-dihydroxycyclohexa-1,5-dienoate (3,4-CHD), and show that substrate and products bind in a manner completely different to the ligand 3-HBA. Our structural data, combined with enzyme activity studies of MqnA and its mutants, allows elucidation of the unusual reaction mechanism of MqnA. In all structures presented here, the bound substrates and products are shielded completely from bulk solvent, indicating that substrate access and product release require “opening” of the active site cleft. Although MqnA adopts a Venus flytrap (VFT) fold found typically in ligand binding proteins, the degree of opening/closing in MqnA (and probably other enzymes) appears to be different to those of their non-enzymatic structural neighbors.

Results and Discussion

ScMqnA is a homodimer

Recombinant ScMqnA purified from E. coli crystallized in two crystal forms (monoclinic with space group P2₁ and orthorhombic with space group P2₁2₁2₁) that diffracted to resolutions of 1.9 Å and 2.2 Å, respectively (see Table S1 for data collection and refinement statistics), with both forms containing two molecules in the asymmetric unit. In each case, the two molecules of ScMqnA are related by an 180,3° rotation (Figure S2A), with a buried surface area of 2150Å² (a size that is typical for protein-protein complexes and well above values observed for crystal contacts of monomeric proteins (14)), involving 63 amino acids in the interface. The same interaction is observed between chain A/D and B/C of the four molecules in the asymmetric unit of the earlier structure of ScMqnA (2nxo, (12)). Sedimentation equilibrium ultracentrifugation (Figure S2B) confirmed the presence of an ScMqnA dimer in solution, with a molecular weight of 62 kDa (theoretical monomer mass 31.4 kDa). Chains A and B of the monoclinic form as well as chain B of the orthorhombic form are well defined in their entirety and superimpose well upon one another, whereas electron density for residues 107-112 is less well defined in orthorhombic chain A, indicating the presence of more than one conformation (Figure S3). This is accompanied by a significant upward shift of 1.3 Å in strand β7, helix α5 and the connecting loop (encompassing residues 129-143) compared to all three other chains. Data and figures in the text are based on the monoclinic structure unless otherwise stated.

Overall structure of ScMqnA

ScMqnA adopts a Venus flytrap fold consisting of two similar lobes interconnected by two linkers (Figure 2A) (15, 16). The two lobes are each composed of a mixed β-sheet flanked on both sides by α-helices, with a topology 2₁₁₃₁₅₁₁, typical of the SCOP superfamily of periplasmic binding protein-like structures type II. As in other Venus flytrap proteins, the C-terminal lobe (lobe 2) is inserted after the 4th β-strand of the N-terminal lobe (lobe 1). The two lobes of MqnA are followed by an uncommon 90 amino acid long α-helical region (α-clamp) that wraps around the back of lobe 1. ScMqnA strand β4 is interrupted by a four amino acid loop (Phe73-Ala77) that protrudes from lobe 1 into the α-clamp, where it makes numerous hydrophobic contacts to amino acids of helix α9, the C-terminus and the loop connecting α11 and α12. Also unusual is a π-bulge in the middle of helix α6 (at Ile160) of lobe 2 that allows additional hydrophobic interactions between α6 and the α-clamp. The dimer is formed largely by interactions of the N-terminal amino acids with helix α11 and the succeeding loop of the second molecule, as well as of amino acids 19-38 (containing β2 and α1) with the equivalent region of the second molecule. As the dimer interface is distant from the active site and from the moving regions in Venus flytrap proteins, it is not expected to influence catalysis.

Electron density of copurified ligand reveals product complex

During model building, additional electron density observed in both crystal forms could
be assigned to the product of chorismate dehydration, 3-enolpyruvyl-benzoate (3-EPB) (Figures 2B, 3A) in a cavity at the interface between the two lobes corresponding to the ligand binding site in periplasmic binding proteins. As neither chorismate nor 3-EPB were added to MqnA before or during crystallization (and 3-EPB has not been reported as a metabolite in E. coli (17)), we conclude that the recombinant MqnA must have converted chorismate, abundant in E. coli cells, into 3-EPB that then remained bound in the active site. The presence of 3-EPB in purified MqnA was additionally confirmed by LC-MS/MS analysis (Figure S4, Table S2), where mass spectra and retention times were indistinguishable from the compound generated by incubation of ScMqnA with chorismate (see also Figure 4). Identification of 3-EPB in both crystal forms prompted us to re-examine the published crystallographic data for ScMqnA (12), solved prior to identification of the futaslosine pathway. Unbiased difference electron density shows clearly the presence of 3-EPB in all four chains in the deposited data (Figure S5). In all three crystal forms, 3-EPB is completely buried between the two lobes (see Movie S1), where it is held in place by hydrophobic contacts (to Ile13, Pro41, Val78, Val84, Cys87, Ile150, Phe186, Ala187) and multiple polar interactions to amino acids that are highly conserved in MqnA (Figure 2B, 2C, Figure S6).

No positively charged side chains contact either of the two 3-EPB carboxylate groups. Instead, both are positioned at the N-termini of two α-helices (the benzoate carboxy group near α3 and α4, and the enol pyruvyl group near α1 and α6), allowing compensation of their negative charges by the positive poles of the α-helices. In comparison to the synthetic ligand 3-HBA(13), 3-EPB is positioned deeper in the active site (Figure S7). Neither of the carboxy groups superimpose on that of the benzoate carboxy group of 3-HBA; instead, an acetate ion from the crystallization buffer for DrMqnA occupies the position of the 3-EPB enol pyruvyl carboxylate, which is oriented by strong hydrogen bonds to the side chains of Asn17 and Ser86 (ScMqnA numbering), both of which are absolutely conserved in MqnA (Figure S6), and to the main chain amide of Gly151. Tyr242, located ~3.5Å from the carboxy group of the enol pyruvyl substituent, forms a hydrogen bond with the side chain of Ser86 and may therefore help to orient Ser86 for 3-EPB binding. In addition, the 3-EPB benzoate carboxy group makes hydrogen bonds to the side chains of Thr59 and Ser109, and to main chain atoms of Arg110, Thr111, and Ser112 of the mobile loop mentioned above. Significantly, the binding site is only partially occupied in the less ordered orthorhombic chain A (Figure S4C), suggesting that 3-EPB binding draws residues of lobe 2 towards the active site. Finally, two ordered water molecules make hydrogen bonds to the carboxy groups of 3-EPB (Figure 2C).

Identifying the catalytic base reveals substrate-assisted dehydration

Remarkably, there are no ionizable side chains in the proximity of the aromatic ring of 3-EPB that could act as catalytic base or acid during dehydration. The enol pyruvyl group of the product is however fixed by hydrogen bonds in an orientation that positions the carboxylate oxygen O13 in hydrogen bonding distance to C3 of 3-EPB (2.8-3.0Å). Consequently, chorismate dehydration could proceed via substrate assisted elimination through deprotonation of C3 by the enol pyruvyl group. To test this hypothesis, we investigated the effect of mutating Asn17, Ser86 and Tyr242. Mutants Asn17Asp, Asn17Ser and Ser86Ala showed low activity in an end-point assay run over 3 hours and no detectable activity in a kinetic assay (Figure 4, Table 1). The Asn17Ala mutant showed no significant change in velocity but a twofold increase of the K_{m} value in the kinetic assay, whereas the Tyr242Phe mutant showed no reduction in activity in either assay.

Each of the mutants crystallized in the monoclinic space group, under slightly different conditions to those of wild type ScMqnA and with minor changes in the cell constants (Table S1). The overall structures of the mutants are almost identical to the wild type and can be superimposed with r.m.s.d values of ~0.2-0.7Å, with minor differences in the loops encompassing residues 107-110 and 133-136. Despite the lower activity of mutants

Archna et al. Substrate assisted chorismate dehydration by MqnA 4
Asn17Ala, Asn17Ser and Ser86Ala, density for the product 3-EPB was clearly visible in each map (Figure S8). Superposition of the Asn17Ala structure on that of the wild type reveals an identical positioning of the product. In the Asn17Ser crystals, on the other hand, 3-EPB binds in two alternate conformations, one identical to that in WT ScMqnA while the other exhibits a reoriented enol pyruvyl carboxy group that hydrogen bonds to the mutated Ser17 as well as to the side chain and main chain of Ser86. This conformation exhibits unfavorable distances and angles for proton transfer from C3 of the ring system, suggesting that the low activity of Asn17Ser is caused by improper positioning of the enol pyruvyl carboxy group. The 3-EPB aromatic ring system is tilted in the Ser86Ala mutant compared to the WT complex, with the enol pyruvyl carboxy group, which can no longer hydrogen bond to Ser86Ala due to the missing Ser86Oβ, shifted by ~2Å to hydrogen bond with Tyr242. Such a conformation would preclude substrate assisted catalysis, explaining the observed low activity of the Ser86Ala mutant.

The ScMqnA Asn17Ala crystals could be successfully soaked with chorismate using short incubation times of 2-3 min. Whereas the electron density of the enol pyruvyl group is not fully defined, probably due to the missing interaction with Asn17, the rest of the substrate clearly is (Figure 3B). The enzyme-bound chorismate adopts a pseudoequatorial conformation, the preferred conformation of chorismate in solution (18), in which the hydroxy-C4 bond and the enolpyruvyl-C3 bond are equatorial to the ring structure. This is in contrast to the otherwise so far universally observed pseudodiagonal conformation adopted for catalysis in e.g. chorismate mutase (19) or the isochorismate synthases MenF/EntC (20) (Figure 5). Chorismate binds to ScMqnA in a similar manner to 3-EPB, except for a slight shift of the enol pyruvyl group towards Phe242 caused by the puckering of the ring system. As observed for 3-EPB, the carboxylate oxygen O13 of chorismate is positioned in hydrogen bonding distance to chorismate C3 (on average 2.8Å), which would allow it to act as a catalytic base accepting a proton from C3 (Figure 3C). The complex structure is in agreement with the activity data that showed a velocity comparable to wild type MqnA and a reduced affinity that is likely to be caused by the missing hydrogen bond between substrate and Asn17.

Superposition of the Asn17Ala-chorismate structure onto that of wild type ScMqnA shows that no positively charged side chain is present near the leaving hydroxy group that could activate it by protonation. The Asn17 side chain nitrogen atom, however, would be in hydrogen bonding distance to the hydroxy group. Polarization of the C4-OH bond by the Asn17 side chain amide in combination with deprotonation of C3 by the enol pyruvyl carboxylate and the driving force of aromatization of the cyclohexadiene ring is probably sufficient to abstract the hydroxide, in agreement with the E1cb mechanism proposed by Mahanta et al. based on the observed MqnA activity at basic pH values (13). Additionally, a water molecule that is involved in a hydrogen bonding network via the enol pyruvyl group in wild type ScMqnA structures, would form a hydrogen bond to the hydroxy group of chorismate and could thus further stabilize the evolving negative charge or even protonate the leaving hydroxy group.

Introduction of additional carboxylate results in alternative bound ligand

Surprisingly, positive difference electron density at the active site of mutant Asn17Asp corresponded to neither chorismate nor 3-EPB, neither of which were detected by LC-MS/MS analysis (Figure S4). Instead, the ligand could be modelled as 3,4-dihydroxycyclohexa-1,5-dienoate (3,4-CHD), a hydrolysis product of chorismate (21) together with an ordered solvent molecule (Figure 3D). Compared to 3-EPB and chorismate, 3,4-CHD shows a small but significant shift towards the side chain of Asn17Asp, with the two hydroxyl groups within hydrogen bonding distance of Asn17AspOδ2 and a new water molecule bridging 3,4-CHD O11, Asn17AspOδ2, Ser86Oβ and backbone amide Gly151NH. As with 3-EPB, 3,4-CHD has not been detected as an E. coli metabolite (17), so that we likewise
suggest that the ligand has been generated during expression of the Asn17Asp ScMqnA mutant, remaining bound to and co-purified with the enzyme. Introduction of the Asn17Asp carboxy group in the immediate vicinity of the enolpyruvyl group would be sufficient to change the mechanism from a substrate-assisted dehydration reaction to an enzyme-catalysed (albeit slow) hydrolysis (Figure 3E). This would be tantamount to converting the enzyme into a chorismate hydrolase or chorismatase, with a mechanism analogous to that proposed for FkbO (21), for which a pseudodiagonal chorismate conformation has also been postulated.

Substrate entry and product release require active site opening

All our ScMqnA complex structures, as well as the previously solved ScMqnA structure (12), exhibit a closed, solvent inaccessible active site, raising the question of how substrate and product can access and leave the active site and what conformation is adopted by ligand-free ScMqnA. Although we were unable to obtain any ligand free crystals (in each case, a copurifying ligand was found in the active site), the active site of the orthorhombic A chain is only partially occupied by 3-EPB. This is accompanied by disorder of the region 109-112 and an upward movement of amino acids of lobe 2 including strand β7 and helix α5 (Figure S3). Interestingly, a similar adjustment is observed comparing the two chains of the 3-HBA-DrMqnA complex structure (13) (Figure S9): Whereas the active site of chain A adopts a closed, solvent inaccessible conformation, that of chain B is open and solvent accessible, mainly due to a rearrangement of residues 107-111 (numbering according to ScMqnA sequence), a small shift of helix α2 in lobe 1 and a slight outward rotation of the complete lobe 2.

A characteristic feature of Venus flytrap proteins is the ligand mediated switching between an open ligand-free and a closed ligand-bound structure. This conversion is normally performed by a significant rigid body motion of one lobe relative to the other through changes in dihedral angles of amino acids in the hinge regions. Open and closed conformations of lysine/arginine/ornithine-binding protein and maltodextrin binding protein, for example, can be interconverted by a rotation of lobe 2 by 52° and 37°, respectively, without significant structural changes within the separate lobe domains (Figure S10) (22–24). In contrast, the rotation angle between the two 3-HBA-DrMqnA lobe domains (13) accounts only for 7°; in ligand-free DrMqnA (pdb code 2i6e (12)), the eight independent chains exhibit states between these two conformations.

We postulate that an equilibrium exists between open and closed states of MqnA, with binding of the benzoate and enol pyruvate carboxy groups of the chorismate substrate / 3-EPB product favoring the closed state. A comparable situation has been observed in the chorismate converting MST enzymes (25) (Figure S1), in which a magnesium ion binds to the benzoate carboxy group of chorismate and thereby closes the active site pocket (20). Opening of the ScMqnA active site can be seen as a combined result of local conformational changes – especially of the 109-112 region – and a slight rotation of the two lobes. Interestingly, other Venus Flytrap enzymes, such as desulfinase DszB (26), thiaminase I and thiamin pyrimidine synthase Thi5 (27, 28), also show local rearrangements of loops and α-helices at the opening of the active site, with negligible motion of the two lobes towards each other. Taken together, these observations suggest that enzymes exploit the ligand binding properties of the Venus flytrap fold for specific substrate binding and catalysis, but restrict conformational changes largely to the immediate proximity of the active site.

Ligand mediated conformational switching is utilized by cognate ABC transporters to differentiate between loaded and unbound periplasmic binding proteins (29). In analogy, it is conceivable that the conformational rearrangements in MqnA, facilitating the complete burial of substrates and products with accompanying topological changes to the surface of the enzyme, could play a role in substrate / product channeling from and to other enzymes of the biosynthetic pathway.
Experimental procedures

Cloning, overexpression and purification of recombinant ScMqnA

The mqnA gene from Streptomyces coelicolor (strain ATCC BAA-471/A3(2)/M145; UniProt Q9L0T8) was amplified by PCR using genomic DNA obtained from DSMZ Braunschweig as template and the forward and reverse primers (GGA ATT CCA TAT GGT GGA CAA TTC TCG CAC CCG G) and CCG CTC GAG GGG CTT GAG CAG CTC GAC CT. The amplified DNA fragment was subcloned into Ndel/XhoI digested pET21a. After transformation of the plasmid into Rosetta (DE3) Escherichia coli, the cells were grown to an OD₆₀₀ of 0.6-0.8 at 37°C in Luria-Bertani medium, cooled to 20°C and supplemented with 0.3 mM isopropyl-1-thio-β-D-galactopyranoside for induction of protein expression. The cells were harvested after overnight expression by centrifugation resuspended in lysis buffer [50 mM Tris/HCl pH 8.0, 300 mM NaCl, 5 % Glycerol, 50 mM imidazole] before elution of MqnA with elution buffer [50 mM Tris/HCl pH 8.0, 300 mM NaCl, 5 % glycerol, 100 mM imidazole]. Eluted protein was further purified by size exclusion chromatography using a Superdex200 10/300 column (GE Healthcare) equilibrated in 10 mM HEPES pH 7.5, 150 mM NaCl, 10 % Glycerol, 5 mM DTT. Protein concentrations were determined using the UV absorbance at 280 nm and the appropriate calculated molar absorption coefficients.

ScMqnA mutants were generated by PCR amplification of the pET21a-MqnA plasmid using the primers harboring one single mutation (N17D primer: CAC ATC CAG TTC CTG CAC GTC CTG CCC CTG, N17S primer: CAC ATC CAG TTC CTG AGC TGC CTG CCC CTG, N17A primer: CAC ATC CAG TTC CTG GCC TGC CTG CCC CTG, S86A primer: AC GGC CCC GTG ATG GCG TGC GTG ATC GTC and Y242F primer: C ACC CTG GCG AAG TGC GTG ATC GTC) and subsequent DpnI-digestion of the methylated template plasmid. After transformation of the reaction mixture into XL1-blue competent cells clones that contained the desired mutations were identified by sequencing. The ScMqnA mutants were purified using the same protocol as for the wild type.

Crystallization, data collection and structure determination

Purified ScMqnA and its mutants (10 mg/ml) were screened for crystallization conditions using sitting drop vapor diffusion with a crystallization robot (Cartesian) in 96 well plates (SWISSCI MRC Crystallization plates). Initially obtained small crystals were optimized by hanging drop vapor diffusion in 15 well plates (Qiagen, Hilden, Germany). Crystals appeared overnight at 20°C under a variety of conditions (Table S1) and grew for 1-2 days. For soaking experiments, crystals of ScMqnA mutants were soaked with 10 mM of chorismate in crystallization solution at 10°C for less than three minutes, as crystals tended to dissolve after longer times.

Prior to data collection, crystals were flash frozen in liquid nitrogen, with some needing cryoprotection (20% (v/v) glycerol). Diffraction data were collected in-house at 100 K with Cu Kα radiation (λ=1.5418 Å) using a CCD detector (Saturn 944+, Rigaku/MSC, Tokyo, Japan) mounted on a rotating anode generator (Micromax 007, Rigaku/MSC, Tokyo, Japan). All crystals diffracted in the range of 1.7-2.0 Å (Table S1). X-ray diffraction data were indexed and integrated using XDS (30) and the structures solved by the molecular replacement method using Phaser-MR(31). The previously published ScMqnA structure (PDB entry: 2NXO) (12) was used as a search model to solve the orthorhombic (P2₁2₁2₁) wild type structure, and chain B of this used as search model for the monoclinic crystal forms. Structures were refined by iterative model building in Coot(32) and refinement using phenix_refine(33). All structure figures were generated using

Archna et al. Substrate assisted chorismate dehydration by MqnA 7
PyMOL (34). Data collection and refinement statistics are listed in Table S1.

Identification of co-purified bound ligands

Purified protein was concentrated to 30-50 mg/ml and mixed 1:1 with a 6M guanidine chloride solution to denature the protein. After centrifuging 100 µl of the mixture through a 1 ml Vivaspin column (10 kD cutoff), the flow through was diluted 10 times before being subjected to LC-MS/MS analysis using an Agilent 1290 LC system connected to an API 3200 triple quadrupole mass spectrometer equipped with a TurboIon ion source (AB Sciex, Darmstadt, Germany). The analytes were separated on a Nucleoshell C18 column (2.6 µm, 50 x 3 mm; Macherey-Nagel, Düren, Germany) at 30°C at a flow rate of 500 µl min⁻¹ using 0.2 % (v/v) acetic acid in water or acetonitrile as eluents A and B, respectively. The percentage of B was linearly increased from 0 % to 25 % over 4 min, and thereafter to 98 % B over 1 min. After 2 min at 98 % B, the starting conditions were restored over 1 min, and the column was allowed to re-equilibrate for 1 min. The ion source was operated in the negative mode at a curtain gas pressure of 30 psi, an ion source voltage of -4,500 V, a temperature of 450°C, and sheath and desolvation gas pressures of 50 psi, respectively. Data were acquired in the multiple reaction monitoring (MRM) mode (Q1 and Q3 set at unit resolution) with a target scan time of 50 ms. N₂ was used as collision gas with a pressure of 5 psi. MRM transitions for each compound as well as compound specific instrument parameters are shown in Table S2. Collision induced dissociation mass spectra were recorded at a collision potential of -20 V.

End-point activity screen for ScMqnA_wt and mutants

300 µM of ScMqnA and its mutants were incubated at room temperature for 3 hr with 2 mM of chorismate (C1716; Sigma-Aldrich) in 100 mM Tris/HCl, pH 7.5. The enzyme was removed using Vivaspin 1 ml tubes (GE Healthcare) with a cut off of 10 kDa. The product formed in all the reactions was purified by HPLC (UltiMate3000 Thermo Scientific) as described by Mahanta et al.(11). Product formation was monitored by following the increase in absorbance at 254 nm. The product peak was identified by liquid chromatography/mass spectrometry (LC-MS) as described above.

MqnA kinetics assay using LC-MS/MS

All assays were conducted with substrate concentrations of 0–1500 µM and enzyme concentration of 0.05 µM in 50 µl of total reaction buffer (100 mM Tris/HCl, pH 7.5). The reaction mixture was incubated at room temperature (22°C) for 5 min and quenched by addition of 50 µl of 6 M guanidium chloride. 900 µl of 100 % methanol was added to the reaction mixture followed by centrifugation at 21100 g for 30 min to remove any precipitate. 10 µl of the supernatant was taken for LC-MS. LC-MS/MS analysis was performed as described above. Peak areas were calculated using the IntelliQuant algorithm of the Analyst 1.6.2 software (AB Sciex, Darmstadt, Germany) and manually adjusted if necessary. All subsequent calculations were performed with Excel (Microsoft Office Professional Plus 2010). Kinetic parameters were determined by fitting the data to the Michaelis-Menten equation using the nonlinear least-squares fitting program in FigP (Fig.P Software Incorporated, Hamilton, ON, Canada).

Association state of ScMqnA analysed by analytical ultracentrifugation

ScMqnA at protein concentrations of 0.02 – 1 mg/ml in 10 mM Hepes, pH 7.5, 150 mM NaCl, 5 mM DTT, 10% (v/v) glycerol was analysed using a Beckman Optima XL-I centrifuge equipped with an An50Ti rotor and double sector cells. Sedimentation equilibrium measurements were carried out at 20°C and 12 000 rpm, sedimentation velocity was monitored for 3 hours at 40 000 rpm, 20°C every 10 min. The data were recorded at a wavelength of 280 nm and analysed using the software Sedfit (35). Buffer density was measured to 1.026 g/ml.

Sequence alignment and conservation analysis

Sequence alignment was performed using Clustal Omega tool (36) for multiple sequence alignment and EsPript 3.0 (37).
Data availability: The structures presented in this paper have all been deposited in the Protein Data Bank (PDB) with the codes 7AHR, 7AN5, 7AN6, 7AN7, 7AN8 and 7YWC (Table S1). All remaining data are contained within the article.

Funding and additional information: This work was supported by the Landesforschungsschwerpunkt Sachsen-Anhalt "Molekulare Biowissenschaften als Motor der Wissensbasierten Ökonomie" (Fkz. ZS/2016/06/79740) to M.T.S.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

34. Schrödinger, LLC (2015) *The {PyMOL} Molecular Graphics System, Version~1.8*

Figure Legends

Figure 1: MqnA (chorismate dehydratase) catalyzes the first step in the biosynthesis of menaquinone via the fumalosine pathway. The corresponding step in the “classical” o-succinylbenzoate pathway is catalyzed by the isochorismate synthase MenF.

Figure 2: Overall structure of ScMqnA and its active site. (A) Cartoon representation of the overall structure of ScMqnA. The N-terminal lobe 1 is colored light pink, the second lobe is colored orange and the C-terminal α-clamp cyan. The two linker regions, connecting the two lobes are shown in blue. The MqnA product 3-enolpyruvyl-benzoate (3-EPB) binds to the active site that is buried between the two lobes. (B) Close-up view of the ScMqnA active site. Amino acids that form the binding pocket are shown as sticks, coloring corresponds to panel A. 3-EPB is shown as yellow stick model and water molecules are red spheres. Hydrogen bonds are represented as black dashed lines with distances (Å) indicated. Amino acids of the pocket that do not form hydrogen bonds are mainly involved in hydrophobic interactions. (C) Selected regions of MqnA sequence conservation from various organisms (Sc: Streptomyces coelicolor; Hp: Helicobacter pylori; Cj: Campylobacter jejuni; Pc: Pedobacter cryoconitis; Ca: Chlamydia abortus; Tt: Thermus thermophilus; Dr: Deinococcus radiodurans; Dp: Desulfovibrio piger; Af: Archaeoglobus fulgidus; Pb: Paenibacillus beijingensis). Color bars above the alignment correspond to structure elements as in (A). Completely conserved and partially conserved amino acids are shaded in red and yellow, respectively. Active site amino acids that are involved in the interaction with 3-EPB (including hydrophobic interactions) are indicated with a green star. Red stars indicate catalytically important amino acids. See Figure S6 for complete sequences.

Figure 3: Active sites of ScMqnA and its mutants with bound ligands reveal the mechanism of dehydration. The omit Fo-Fc electron density (contoured at 3 σ) of the ligand is shown as green mesh, hydrogen bonds are represented as black dashed lines and ordered solvent molecules near the active site ligands are shown as red spheres. Distances that differ with respect to wild type (see also Figure 2B) are indicated (Å). (A) Wild type ScMqnA with co-purified 3-enolpyruvyl-benzoate (3-EPB); (B) ScMqnA mutant Asn17Ala with soaked chorismate; (C) Proposed mechanism of chorismate dehydration by MqnA via substrate assisted catalysis. Departure of the hydroxy leaving group might be facilitated by deprotonation of a water molecule bound to Asn17 (displayed by pink arrow); (D) ScMqnA mutant Asn17Asp with omit Fo-Fc electron density interpreted as 3,4-dihydroxy-cyclohexa-1,5-dienoate (3,4-CHD); (E) Putative mechanism of chorismate hydrolysis by the ScMqnA mutant Asn17Asp, analogous to that of the chorismate hydrolase (chorismatase) FkbO (21).

Figure 4: Enzymatic activity screening and kinetic study of ScMqnA and its mutants. (A) HPLC chromatograms of initial screening of enzymatic activity. The chromatograms were recorded after 3 hr of incubation of individual enzymes and chorismate. ScMqnA and the mutants are shown in different colours as indicated on the right top corner of the chromatogram. Inset: Mass spectrum identifying product as 3-EPB. (B) Comparison of the catalytic velocity (v, white bars) at 1500 µM chorismate concentration as well as the catalytic efficiency (kcat/Km, black bars) of ScMqnA and its mutants. (C) Substrate-velocity curves for ScMqnA and its mutants. Each data point was measured three times (n = 3).

Figure 5: Conformations of chorismate found in the active sites of ScMqnA (pseudo-diequatorial), chorismate mutase and isochorismate synthase (both pseudo-diaxial) together with the corresponding products. The pseudo-diequatorial conformation of chorismate (the preferred conformation in solution (18)) found in MqnA fosters a compact form that is capable of intramolecular protonation and stabilization of the leaving hydroxy group by a water-mediated hydrogen bond to the enol pyruvyl group. In contrast, chorismate mutase binds chorismate in the pseudodiaxial conformation (19) (as do the isochorismate synthases MenF/EntC (20)), required for the Claisen rearrangement to take place via a chairlike transition resulting in conversion of chorismate to prephenate.
Table 1: Kinetic data for ScMqnA and its mutants

<table>
<thead>
<tr>
<th></th>
<th>K_m (µM)</th>
<th>v_{max} (nkat/mg)</th>
<th>k_{cat} (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScMqnA (wildtype)</td>
<td>121 +/- 38</td>
<td>7.63 +/- 0.65</td>
<td>0.24 +/- 0.02</td>
</tr>
<tr>
<td>ScMqnA (Asn17Asp)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ScMqnA (Asn17Ser)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ScMqnA (Asn17Ala)</td>
<td>257 +/- 87</td>
<td>7.88 +/- 0.81</td>
<td>0.25 +/- 0.02</td>
</tr>
<tr>
<td>ScMqnA (Ser86Ala)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ScMqnA (Tyr242Phe)</td>
<td>377 +/- 106</td>
<td>17.65 +/- 2.15</td>
<td>0.56 +/- 0.06</td>
</tr>
</tbody>
</table>

Every datapoint was measured three times ($n = 3$), and standard errors were calculated by the fitting software. The kinetics of Asn17Asp, Asn17Ser and Ser86Ala could not be determined due to their very weak activity in the assay.
Author CRedit Statement

Archna Prasad: Conceptualization, Investigation, Methodology, Data curation, Writing - Original draft.
Constanze Breithaupt: Conceptualization, Writing – Reviewing and Editing.
Duc-Anh Nguyen: Investigation.
Hauke Lilie: Investigation.
Jörg Ziegler: Investigation.
Milton T. Stubbs: Conceptualization, Funding Acquisition, Supervision, Writing – Reviewing and Editing.
Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.