Structural studies of SALL family protein zinc finger cluster domains in complex with DNA reveal preferential binding to an AATA tetranucleotide motif

Wenwen Ru, Tomoyuki Koga, Xiaoyang Wang, Qiong Guo, Micah D. Gearhart, Shidong Zhao, Mark Murphy, Hiroko Kawakami, Dylan Corcoran, Jiahai Zhang, Zhongliang Zhu, Xuebiao Yao, Yasuhiko Kawakami, Chao Xu

PII: S0021-9258(22)01050-X
DOI: https://doi.org/10.1016/j.jbc.2022.102607
Reference: JBC 102607

To appear in: Journal of Biological Chemistry

Received Date: 20 July 2022
Revised Date: 10 October 2022
Accepted Date: 11 October 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
Structural studies of SALL family protein zinc finger cluster domains in complex with DNA reveal preferential binding to an AATA tetranucleotide motif

Wenwen Ru¹,#, Tomoyuki Koga²,#, Xiaoyang Wang¹, Qiong Guo¹, Micah D. Gearhart³, Shidong Zhao¹, Mark Murphy³, Hiroko Kawakami³, Dylan Corcoran³, Jiahai Zhang¹, Zhongliang Zhu¹, Xuebiao Yao¹, Yasuhiko Kawakami³,⁴*, and Chao Xu¹,*

¹MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, P. R. China;

²Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA;

³Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA;

⁴Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA

#These authors contributed equally.

*To whom correspondence should be addressed. E-mail: xuchaor@ustc.edu.cn; kawak005@umn.edu.

Running title: Structures of SALL4 bound with AT-rich DNAs

Keywords:

transcription factors, gene transcription, zinc finger, induced pluripotent stem cell, crystal structure
Abstract

The Spalt-like 4 transcription factor (SALL4) plays an essential role in controlling the pluripotent property of embryonic stem cells (ESCs) via binding to AT-rich regions of genomic DNA, but structural details on this binding interaction have not been fully characterized. Here we present crystal structures of the zinc finger cluster 4 (ZFC4) domain of SALL4 (SALL4ZFC4) bound with different double stranded DNAs containing a conserved AT-rich motif. In the structures, two zinc fingers of SALL4ZFC4 recognize an AATA tetranucleotide. We also solved the DNA-bound structures of SALL3ZFC4 and SALL4ZFC1. These structures illuminate a common preference for the AATA tetranucleotide shared by ZFC4 of SALL1, SALL3, and SALL4. Furthermore, our cell biology experiments demonstrate that the DNA-binding activity is essential for SALL4 function as DNA-binding defective mutants of mouse Sall4 failed to repress aberrant gene expression in Sall4-/− mESCs. Thus, these analyses provide new insights into the mechanisms of action underlying SALL family proteins in controlling cell fate via preferential targeting to AT-rich sites within genomic DNA during cell differentiation.
Introduction

Transcription factors (TFs) play essential roles in embryo development through binding to the specific regions of genomic DNA to direct different complexes in mediating programmable gene transcription (1-3). The occupancy of sequence-specific TFs is typically determined by the base composition within a genomic DNA region (4-6). It has been well known that unmodified CpG dinucleotide serves as signaling motif to recruit epigenetic regulators containing CXXC domain, a known CpG-binding module(7-9). Although AT-rich regions are also highly enriched in some important regulatory genomic DNA elements, including TATA box(10,11), whether they also recruit sequence-specific TFs and how they function in embryo development are largely unknown (12,13).

Very recently, two lines of work independently identified Spalt-like transcription factor 4 (SALL4) as the AT-rich DNA binding protein via pull-down mass spectrometry screen and protein binding microarray, respectively(14,15). SALL4 belongs to the Spalt-like transcription factors (SALLs) family, which includes SALL1-4 (16). Both SALL1 and SALL3 contain four zinc finger clusters (ZFCs), termed as ZFC1-4, whereas SALL2 and SALL4 contain three ZFCs, and lack ZFC4 and ZFC3, respectively (14). SALL4 is highly expressed in embryonic stem cells (ESCs) and several tumors, but absent in most adult tissues. Dysfunctional SALL4 pathway is associated with severe human diseases, including Holt-Oram syndrome (HOS)(17), acro-renal-ocular syndrome (AROS)(18), leukemogenesis and other cancers (19). SALL4 contains seven zinc fingers within its three clusters and an additional single zinc finger near the N-terminus (14). The ZFC4 is essential for SALL4 to recognize AT-rich sequence to repress expression of a variety of genes, and its mutation results in abnormal differentiation and embryonic lethality (14,15). All SALL proteins except SALL2 recognize AT-rich DNAs via ZFC4 (14,15). Despite the critical role of SALL4 ZFC4 in embryo development and its conservation in other SALL proteins, how it binds to AT-rich DNAs and how the SALL4 occupancy at AT-rich regions influences gene expression, remain elusive.

By using isothermal titration calorimetry (ITC) binding assays we ascertain that
the ZFC4 of SALL3 and SALL4 prefer AT-rich DNAs. By solving the structures of SALL3 and SALL4 ZFC4 bound with different AT-rich DNAs, we revealed that the SALL3 and SALL4 ZFC4 recognize AT-rich DNAs through the Gln-Ade residue base pairing and thymine-mediated van der Waals interactions. In addition, we found that SALL4 ZFC1 also serves as a binder of AT-rich DNAs, albeit with weaker binding affinity. Inspired by previous finding that loss of Sall4 in ESCs causes aberrant neural gene expression (20), we evaluated the functional relevance of DNA-binding and found that DNA-binding deficient SALL4 mutant fails to repress aberrant expression of several genes, such as Irx3 and Irx5. Therefore, our study not only unveils how ZFC4 of SALL proteins preferentially recognizes AT-rich DNAs, but also sheds light on the biological importance of their binding to AT-rich DNA sequences in ESCs.

Results

ZFC4 of SALL4 and SALL3 selectively recognize AT-rich DNAs

To quantitatively study the binding activity of SALL4 to DNAs with different base compositions, we cloned, expressed, and purified a SALL4 fragment (residues 856-930) spanning human SALL4ZFC4 (Figure 1A), and measured its binding affinities towards different double stranded DNAs (dsDNAs) using ITC. Consistent with previous studies (14,15), SALL4ZFC4 binds to different 12-mer DNAs containing AATATT with K_Ds in a range of 6.9-9.0 μM (Figures 1B-1C, Supplementary Table S1). In contrast, the binding was abolished when central four (ATAT) or six (AATATT) nucleotides were replaced by CG-rich nucleotides (Supplementary Table S1). To understand whether other SALL family members possess similar DNA binding selectivity, we cloned, expressed, and purified the ZFC4 domain of SALL3 (SALL3ZFC4) spanning aa 1102-1167, and examined its DNA binding property by ITC. Our binding analyses indicate that SALL3ZFC4 binds to the AATATT-containing 12-mer DNA with a K_D of 8.0 μM (Figure 1D), comparable to that of SALL4ZFC4 (K_D = 6.9 μM). Like SALL4ZFC4, SALL3ZFC4 displayed no binding affinity towards CGCG- or CGCGCG- containing DNAs (Supplementary Table S1). Thus, we conclude that ZFC4 domains of SALL3 and SALL4 specifically recognize AT-rich
DNAs judged by an *in vitro* binding assay.

The structures of SALL4 with different AT-rich DNAs

To gain insight into the molecular mechanism underlying AT-rich DNA recognition by SALL4, we solved the crystal structure of the SALL4 with a 12-mer dsDNA (5'-GGTAATATTTC-3') in a 2.45 Å resolution (Supplementary Table S2). The density maps of protein and the dsDNA are of high quality (Supplementary Figure S1A-S1B). There are two double-stranded DNA molecules in an asymmetric unit, with each of them bound with two SALL4 molecules. SALL4 is comprised of two zinc fingers, termed as ZFC4N and ZFC4C (Figures 1E and 2A). In each complex, one SALL4 molecule binds to the central major groove of the dsDNA with both zinc fingers visible, whereas the other one binds to the end of the dsDNA with only ZFC4C visible. Given that ITC binding data suggest that SALL4 binds to the 12-mer dsDNA in a molecular ratio of 1:1 (Supplementary Table S1), binding of the second SALL4 to the dsDNA is likely due to the crystal packing, and the invisible ZFC4N might be due to its intrinsic flexibility. Therefore, our structural analysis focuses on the SALL4 molecule bound at the central major groove of the dsDNA. Upon binding to SALL4, the major groove of 12-mer DNA becomes narrower (16.7 Å vs. 20.0 Å) (Supplementary Figure S1C).

SALL4 wraps around the 12-mer DNA and interacts with it via the positively charged surface (Figures 1E-1F). ZFC4N and ZFC4C each belongs to Cys2-His2 (C2H2) finger motif that adopts a canonical β-β-α architecture (Figure 2A). Although the eight Zn2+-coordinating residues are conserved in SALL1-4, whereas the spacing between the last two histidines is altered in SALL2 (Figure 2A), further suggesting that C-terminal ZFC of SALL2 possesses distinct DNA binding property.

Structural basis for 4AATA7-specific recognition by SALL4

In the structure, the central 4AATA7 tetranucleotide is recognized by SALL4 via base-specific hydrogen bonding and Van der Waals interactions (Figure 2B). The side chain carboxyl and nitrogen groups of SALL4 Asn912 are hydrogen bonded to the N6 and N7 atoms of A5, respectively. The side chain carboxyl group of Asn912...
also forms two water-mediated hydrogen bonds with N6 atoms of A4 and A6', respectively (Figures 2B-2D). The Asn-Gua residue base pairing is similar to the Arg-Gua pair in the DNA-bound CXXC domain structures (9,21). The side chains of Ile887 and Thr909 make van der Waals interactions with the methyl group of T6, which also forms one water-mediated hydrogen bond with the Thr909 side chain (Figures 2B-2C). Furthermore, Gly911 makes Van der Waals interaction with methyl group of T7', allowing A7 to be favored in the complementary strand (Figures 2B and 2E). Collectively, above hydrogen bonding and van der Waals interactions render SALL4ZFC4 the ability to recognize the AATA motif within the 12-mer DNA.

In addition to the base-specific interactions, the SALL4ZFC4-DNA complex is further stabilized by extensive electrostatic interactions between DNA backbone and the basic residues of SALL4. The Arg905 and His916 side chains form hydrogen bonds with T3 (Figures 2B and 2D); the side chains of Lys896 and Arg905 make electrostatic interactions with A4 (Figures 2B and 2D); the Lys877 and His888 side chains form two hydrogen bonds with T6 (Figures 2B-2C); the side chains of Lys910 and Lys914 form are hydrogen bonded to the backbones of A8' and T7' (Figures 2B and 2E), respectively; Ser881 and Ser883 form several hydrogen bonds with the T10' backbone (Figures 2B and 2F).

Next we applied structure-guided mutagenesis to evaluate the roles of the SALL4 interfacial residues. While N912D abolished the binding, N912A reduced the DNA binding by > 55-fold (KDs: >400 μM vs. 6.9 μM). In contrast, N912Q binds to the DNA with affinity comparable to the wild type (KDs: 8.0 μM vs. 6.9 μM), underscoring the critical role of base-specific hydrogen bonds between Asn912 and A5. The double mutation I887A/T909A weakened the DNA binding affinity by > 10-fold (KDs: 75 μM vs. 6.9 μM), indicating the importance of the Van der Waals interactions between Ile887, Thr909, and Thymine (T6); the triple mutant R905A/K910A/K914A disrupted the DNA binding, indicating the essential role of electrostatic interactions between basic residues and DNA backbone (Supplementary Table S2). Collectively, mutagenesis and ITC binding experiments further pinpointed the key interactions at the protein-DNA interface.
SALL4ZFC4 disfavors T or G upstream of ApT

Given that A5 and T6 are engaged in most of base specific interactions, we sought to replace nucleotides flanking A5 to see how it could impact on its DNA binding. All nucleotide replacements were based on the 12-mer dsDNA (5'-GGTAATATTTCC12-3'). ITC binding assay demonstrated that T3C/A3'G and A4C/T4'G only slightly weakened the binding to 12-mer AT-rich DNA (K\textsubscript{D}: 9.0-11 μM vs. 6.9 μM), whereas A4T/T4'A and A4G/T4'C decreased the SALL4 binding affinity by ~2.7-5 fold (K\textsubscript{D}: 19-36 μM vs. 6.9 μM).

To understand why SALL4 favors AAT and CAT, but not TAT or GAT, we modelled the structures of SALL4 bound with 4TAT, 4GAT, and 4CAT, respectively (Figure 3). When A4 is replaced by a thymine, the distance between the methyl moiety of T4 and C\textbeta of Asn912 is 3.2 Å, which likely results in the repulsion of the Asn912 side chain and the impaired hydrogen bonds between Asn912 and A5 (Figures 3A-3B). In addition, A4T disrupts the water-mediated hydrogen bond between Asn912 and A4 (Figure 3B). In the modelled structure of SALL4 bound with 4GAT, N7 and O6 of G4, and carboxyl oxygen of Asn912, are all hydrogen bond acceptors, which disrupts the water-mediated hydrogen bond observed between Asn912 and A4 (Figure 3C). In contrast, A4C did not affect the hydrogen bond between Asn912 and A4, and also maintains the water-mediated hydrogen bond (Figure 3D). However, if C4 is methylated to mC4, mC4 would weaken the Asn912-A5 hydrogen bond as T4 does. Thus, our structural analysis and binding data further reveal that SALL4 prefers an 4AATA or a 4CATA motif within the 12-mer dsDNA. The AATA-specific recognition is achieved by the base-specific hydrogen bonds and the water-mediated hydrogen bonds, as well as the Thymine specific hydrophobic interactions.

To study whether the AATA recognition by SALL4ZFC4 also applies for dsDNAs of different lengths, we determined the 2.5 Å structure of SALL4ZFC4 with a 16-mer dsDNA containing two ATA motifs (Supplementary Table S2). In the structure, the two SALL4ZFC4 molecules recognize 8AATA11 and 5TATA8 within the 16-mer dsDNA, respectively, to form the complex in a 2:1 molar ratio (protein: DNA).
(Supplementary Figure S2A-S2E). The sequence-specific recognition mode is the same as observed in the 12-mer DNA complex (Supplementary Figure S2B-S2E). Consistently, the ITC binding assay also demonstrates that SALL4-ZFC4 binds to the 16-mer dsDNA with two \(K_D \)s in a range of 13-16 \(\mu M \). While N912Q mutant binds to the 16-mer DNA with \(K_D \)s similar to those of the wild type (\(K_D \): 16-19 \(\mu M \) vs. 13-16 \(\mu M \)), R905A/K910A/K914A mutant displays no binding towards the 16-mer dsDNA (Supplementary Table S1). Thus, we conclude that SALL4-ZFC4 prefers AATA over other motifs within AT-rich dsDNA even within the context of multimeric binding.

Structure of SALL3-ZFC4 with the 12-mer AT-rich dsDNA

To understand whether the above DNA recognition mode also applies for other SALL members, we determined the crystal structure of SALL3-ZFC4 with the same 12-mer AT-rich dsDNA in a 2.50 Å resolution (Supplementary Table S2). There is only one SALL3-ZFC4-DNA complex in an asymmetric unit. Similar to that of SALL4-ZFC4 with 12-mer dsDNA, SALL3-ZFC4 binds to the central major groove of the 12-mer DNA via its extensive positive charged surface (Figure 4A). The DNA-bound SALL3-ZFC4 structure is superimposed well with the two SALL4 complexes (Figure 4B), with the root-mean-square deviation (r.m.s.d.) in a range of 0.53-0.64 Å over 681 atoms, suggesting the conserved architecture of SALL complexes.

Extensive hydrogen bonding and Van der Waals interactions were found between SALL3-ZFC4 and DNA. SALL3 Asn1155, the counterpart of SALL4 Asn912, forms two base-specific hydrogen bonds with A5; Ile1130 and Thr1152 of SALL3, the counterparts of SALL4 Ile887 and Thr909, respectively, make Van der Waals interaction with T6, which forms a water-mediated hydrogen bond with Thr1152; Gly1154 makes additional Van der Waals interaction with T7" (Figure 4C). Overall, \(^4\)AATA\(^7\) recognition by SALL3-ZFC4 is the same as that by SALL4-ZFC4. In addition, the electrostatic interactions between DNA backbone phosphates and SALL3 residues, including Ser1124, Ser1126, His1131, Lys1139, Arg1148, Lys1153, Lys1157, and His1159, are also conserved in the SALL4 complex (Figure 4D). Given that the base-specific binding residues of SALL3 are conserved in SALL1 but not in SALL2, we reason that the preference for AATA-containing dsDNAs is conserved in ZFC4
domains of SALL1, SALL3, and SALL4.

SALL4ZFC1 recognizes AT-rich DNAs

Sequence alignment of SALL4 ZFC1 and ZFC4 shows that all SALL4ZFC4 residues involved in the recognition of AATA motif are conserved in SALL4ZFC1 except Ala882, which is replaced by an Asp (Asp394) in SALL4ZFC1 (Supplementary Figure S3A). We examined the DNA binding of SALL4ZFC1 (aa 378-453) by ITC. Binding data show that SALL4ZFC1 binds to the 12-mer AT-rich DNA with a K_D of 24 μM, and binds to the 16-mer AT-rich DNA with K_Ds in a range of 17-21 μM (Supplementary Table S1), weaker than that for SALL4ZFC4.

We further solved the structure of SALL4ZFC1 with the 16-mer AT-rich DNA at 2.72 Å resolution (Supplementary Table S2). There are three dsDNAs and six SALL4ZFC1 molecules in one asymmetric unit, with one dsDNA bound with two SALL4ZFC1 molecules (Figure 5A). In the structure, all six SALL4ZFC1 recognizes A-T base pair (A9-T9’ or A7’-T7) via its Asn424 (Figures 5B-5G). Asn424 of molecules A, D, and E recognizes A9 in the context of ApA (Figures 5B, 5E, and 5F), whereas Asn424 of molecules B, C, and F interacts with A7’ in the context of TpA (Figures 5C, 5D, and 5G). The lengths of hydrogen bonds between Asn424 and A7’ are in a range of 3.1-3.6 Å, longer than those observed between Asn424 and A9 (2.7-3.1Å) (Figures 5B-5G), suggesting that the hydrogen bonds are weakened by the upstream Thymine (T8’).

Next we superimposed the structure of DNA-bound structure of SALL4ZFC1 with that of SALL4ZFC4, and found that Ala882 of ZFC4 is spatially proximal to the phosphate group of A14’ due to the hydrogen bond between the DNA backbone and the main chain amide of Ser883 (Supplementary Figure S3A). In contrast, SALL4ZFC1 Asp394, the counterpart of SALL4ZFC4 Ala882, leads to charge repulsion with the DNA backbone phosphate, which would impair the hydrogen bond between A14’ and SALL4ZFC1 Ser395, the counterpart of SALL4ZFC4 Ser883 (Supplementary Figure S3B). Consistent with the structural analysis, we found that A882D of SALL4ZFC4 reduced the DNA binding affinity by > 6.5-fold (K_Ds: 47 μM vs. 6.9 μM) (Supplementary Figure S3C). Collectively, our structural data, complemented by
mutagenesis and binding experiments, reveals that SALL4^{ZFC1} also specifically recognizes AT-rich DNA, albeit with weaker affinity.

Targeting of SALL4 at AT-rich sites inhibits aberrant expression of differentiation prompting genes

In mouse ESCs, binding of SALL4 to AT-rich putative enhancer sequences prevents expression of differentiation prompting genes (14). To test whether loss of DNA binding in the SALL4^{ZFC4} Asn912 mutation has a biological significance, we generated Sall4^{-/-} mouse ESCs from Sall4^{-floxed} ESCs by infecting adenovirus-EGFP-Cre, which does not integrate into the genome. Then, we infected Sall4^{-/-} ESCs with lentivirus carrying either wild-type (WT) mouse Sall4 or mouse Sall4 N922D mutant (human SALL4 Asn912 corresponds to mouse SALL4 Asn922).

First, we examined Sall4 expression levels by qRT-PCR. Expression of transgene WT Sall4 and Sall4 N922D is approximately 1.8 and 0.9 fold, respectively, compared to Sall4 expression in control ESCs (Figure 6A). Then, we examined expression of several neural differentiation genes to which SALL4 is enriched. We also performed SALL4 CUT&RUN experiments in order to detect SALL4 enrichment. De novo motif analysis of SALL4 enriched sequences showed AT-rich motifs (Figure 6B), which is consistent with a recent SALL4 ChIP-seq result in mouse ESCs (14).

CUT&RUN experiments also showed enrichment of SALL4 near the Sox1 gene (Figure 6D). As previously shown (20), Sox1 expression is elevated in Sall4^{-/-} ESCs, compared to the control (Figure 6C). Both WT Sall4 and Sall4 N922D, introduced into Sall4^{-/-} ESCs, prevented aberrant expression of Sox1 (Figure 6C). SALL4 was also enriched in the region where Irx3, Irx5 and Irx6 are closely located on chromosome 8 (Figure 6H). Expression of Irx3 was elevated in Sall4^{-/-} ESCs. The WT Sall4 transgene repressed aberrant expression of Irx3, but Sall4 N922D failed to repress Irx3 expression (Figure 6E). Similarly, WT, not N922D Sall4 repressed aberrant expression of Irx5 (Figure 6F), and a similar trend was observed for Irx6 (Figure 6G). We found that both peaks near the Sox1 gene and 15 out of 17 peaks at the Irx3-Irx5-Irx6 region contain the AATA sequence, which was found in 55,995 of the 64,249 (87%) of the genome-wide SALL4 binding peaks. Inhibition of aberrant
expression of *Sox1* and *Irx* genes is consistent with the notion that ZFC4-dependent DNA binding of SALL4 contributes to repression of these gene expression. In addition, repression of *Sox1* by *Sall4 N992D* might be associated with the binding of SALL4 N922D to the AT-rich region via its ZFC1 domain, consistent with our structural and biochemical data.

Discussion

More than 700 Zinc fingers proteins in human genome belong to the C2H2-type, and ~400 of them were annotated as TFs (22,23). Uncovering the preferred motif of zinc finger TFs is important for understanding their roles in orchestrating spatiotemporal gene transcription. SALL family members are a subfamily of zinc finger proteins playing important roles in cell development and differentiation. Dysfunctional SALL proteins are associated with different types of cancers. In this study, we uncovered the conserved AATA-rich DNA recognition mode by SALL family members through presenting several structures of SALL proteins with respective DNA ligands. SALL proteins utilize a conserved Asn, such as Asn912 of SALL4 or Asn1155 of SALL3, to recognize the adenosine of A-T base pair, while hydrophobic residues of SALL proteins interact with the methyl moiety of the downstream thymine. In addition, the adenosine binding Asn also favors an adenosine at the upstream position. Overall these base-specific interactions confer SALL proteins the ability to interpret AT-rich DNAs.

Given that SALL4ZFC1 binds to AT-rich DNAs weaker than SALL4ZFC4, it might be insufficient to maintain the occupancy of SALL4 after the deletion of ZFC4, consistent with previous report that mutation or deletion of SALL4ZFC4 impairs the targeting of SALL4 at genome sites(14).

Comparison of SALL4-DNA structure with those of other AT-rich DNA complexes

It has been reported that transcriptional repressor MogR specifically recognizes AT-rich DNAs(24), which prompts us to compare it with the SALL4ZFC4 complex.
The DNA recognition modes in two complexes are quite different (Supplementary Figure S4). MogR specifically recognizes the AT-rich motif, but in a manner distinct from that between SALL4 and DNA ligands (Supplementary Figure S4). MogR binds to dsDNA as a dimer with the central AAAA tetranucleotide contacting both protomers. Arg140 of protomer A (Arg140A) inserts into the narrow minor groove of AAAA tetranucleotide by forming two hydrogen bonds with the T6-A6’ base pair. The other base-specific interactions are conferred by protomer B. Asn118B of protomer B forms one hydrogen bond with A6’; Ser114B and Gln117B form water-mediated hydrogen bonds with A5’ and T4, respectively; Val94B and Tyr121B make hydrophobic interactions with T3 and T4.(24). The AT-rich dsDNA recognition by MogR is likely minor-groove-specific (Supplementary Figure S4B), distinct from the major-groove-specific binding observed in the SALL4 complexes, which is mediated by the Asn-Adenosine pair (Supplementary Figure S4A).

Disease associated mutations

In contrast with many deletions in SALL4 that were known to result in Okihiro Syndrome. Only very few single mutations within ZFC4, including H888R, is reported to be associated with Okihiro Syndrome. Based on the Catalogue of Somatic Mutations in Cancer (COSMIC) database (https://cancer.sanger.ac.uk/cosmic), identified single mutations in SALL4ZFC1 and SALL4ZFC4 that likely have impact on protein stability and/or DNA binding affinity, including S396F and R431Q of SALL4ZFC1, and H888Q, R905Q, K914N, and H916Y of SALL4ZFC4 (Supplementary Figure S5A-S5B). S396F disrupts the intramolecular hydrogen bond, and might destabilize the protein, while R431Q of SALL4ZFC1 weakens the interaction with DNA backbone; R905Q and K914N would weaken the binding of SALL4ZFC4 with DNA backbone, whereas H888Q and H916Y not only disrupt the binding to Zn2+, but also abolish the hydrogen bond with DNA backbone. Consistently, our ITC assays show that while R905Q and K914N reduced the 12-mer dsDNA binding affinity by ~14-fold and ~6-fold, respectively, neither H888Q nor H916Y displays detectable DNA binding affinity (Supplementary Figure S5C-S5F, Supplementary Table S1). These disease-associated mutations indicate that impaired
DNA binding affinities of SALL4ZFC4 mutations is likely associated with human cancers.

The N-terminal 12 amino acid stretch of SALL4 interacts with the nucleosome remodeling deacetylase (NuRD) complex that creates repressive chromatin structure in ESCs\cite{25,26}. Our structural study illustrates module-specific roles of SALL4 in target sequence recognition by ZFC and recruiting NuRD. In this way our study not only uncovers the conserved DNA recognition mode by SALL family members, but also provides insights into a better understanding how SALL4 mutations result in human cancers via altering the expression profile of key regulators such as \textit{Sox1}.

In summary, our study not only provides mechanistic insight into the AT-rich DNA recognition by SALL4ZFC4 and SALL4ZFC1, but also uncovers that the binding of SALL4 at specific AT-rich genomic DNA regions influences cell differentiation and cell fate \textit{in vivo}.

Experimental procedures

Cloning, protein expression and purification

The sequence encoding the fragment of SALL4 (residues 856-930) was amplified by PCR from a complementary DNA library; Sequences encoding human SALL4ZFC1 (aa 378-453) and SALL3ZFC4 (aa 1102-1166) were synthesized by Genscript (Nanjing); the sequence encoding human SALL4548-1029, which spans ZFC2 and ZFC4, was synthesized by Sangon Biotech (Shanghai). All of them were cloned into pET28-MHL vector, and the cloned plasmid was transformed into \textit{E. coli} BL21 (DE3). Cells were grown in LB medium at 37 °C until the OD\textsubscript{600} reached \sim 0.8. The recombinant protein was overexpressed at 16 °C for 18h after induction by 0.2 mM (final concentration) β-D-1-thiogalactopyranoside (IPTG) and 40 μM ZnCl\textsubscript{2}. Cells were harvested by centrifuge at 3600 × g, 4 °C for 15 min and pellets were resuspended in a buffer containing 20 mM Tris-HCl, pH7.5, and 400 mM NaCl. Lysates were centrifuged at 10000 × g, 4 °C for 30 min and supernatants were collected.

Recombinant SALL4ZFC4 was purified by Ni-NTA column (GE healthcare), and eluted by 20 mM Tris-HCl, pH7.5, 400 mM NaCl and 500 mM imidazole. N-terminal
polyhistidine tags (His-tags) of the recombinant protein was cleaved by Tobacco etch virus (TEV) protease and dialyzed overnight with the buffer containing 20 mM Tris-HCl, pH 7.5, and 150 mM NaCl. SALL4ZFC4 was further purified by Superdex 75 gel filtration (GE Healthcare) and HitrapTM S HP column (GE healthcare). The purified protein was concentrated to 8 mg/ml in the buffer containing 20 mM Tris-HCl, pH 7.5, and 150 mM NaCl, and was stored at −80 °C before further use.

Expression and purification of SALL4ZFC1 and SALL3ZFC4 were performed in the same way as for SALL4ZFC4. Site-specific mutations were carried out by using two reverse and complement primers containing the mutation codon. Primer sequences used for cloning mutants are listed in Supplementary Table S3. All mutants were purified in the same way as for wild type proteins.

Isothermal titration calorimetry (ITC)

ITC experiments were performed on a MicroCal PEAQ-ITC calorimeter (Malvern Panalytical) at 25 °C by titrating 2 μl of protein (2 mM) into cell containing 40 μM double strand DNA, with a spacing time of 120 s and a reference power of 5 μCal s⁻¹. Control experiments were performed by titrating protein (1mM) into buffer only, and were subtracted during analysis. Binding isotherms were plotted, analyzed and fitted by MicroCal PEAQ-ITC Analysis software (Malvern Panalytical). The dissociation constants (KDs) were determined from a minimum of two experiments (mean ± SD). dsDNAs used for ITC are listed in Supplementary Table S4.

The mutant protein SALL4ZFC4 N912Q mutant is less stable under the condition of 20 mM Tris-HCl, 150 mM NaCl, pH 7.5, and its ITC experiments were carried out by titrating 2 μl of double strand DNA (0.7 mM) into cell containing 40 μM proteins. Representative ITC binding curves are shown in Supplementary Figure S6.

Crystallization, data collection and structure determination

All crystals were grown using the sitting drop vapor diffusion method at 18 °C. Before crystallization, protein is mixed with dsDNA ligand at a ratio of 1:1. Crystal of SALL4ZFC4 in complex with the 12-mer dsDNA (5’-GGTAATATTTCC-3’) was obtained by mixing 1.0 μl of complex with 1.0 μl of well solution containing 0.1 M BIS-TRIS, pH 6.5, and 25% (w/v) polyethylene glycol 3350 (PEG 3350). Crystal of
SALL4ZFC4 in complex with the 16-mer dsDNA (5’-GGAATATAATATTCC-3’) was obtained by mixing 1.0 μl of complex with 1.0 μl of well solution containing 0.1 M BIS-TRIS, pH 5.5, 0.2 M Sodium chloride, and 25% PEG 3350. Crystal of SALL4ZFC3 in complex with the 12-mer dsDNA (5’-GGTAATATTCC-3’) was obtained by mixing 1.0 μl of complex with 1.0 μl of well solution containing 0.1 M MES monohydrate, pH 6.5, 0.2 M Ammonium sulfate, and 30% w/v polyethylene glycol monomethyl ether 5000. Crystal of SALL4ZFC1 in complex with the 16-mer dsDNA (5’-GGAATATAATATTCC-3’) was obtained by mixing 1.0 μl of complex with 1.0 μl of well solution containing 0.1M HEPES, pH6.5, 10% PEG 6000, and 5% (v/v) 2-Methyl-2,4-pentanediol (MPD). Before flash-freezing crystals in liquid nitrogen, crystals were soaked in a cryoprotectant consisting of 85% reservoir solution plus 15% glycerol.

The diffraction data were collected on beam line BL17B and BL18U1 at Shanghai Synchrotron Facility (SSRF), and processed with HKL2000/3000 (27,28) or XDS (29). Although the dataset of SALL4ZFC4 with 12-mer DNA was collected at 0.978560 Å, zinc single-wavelength anomalous dispersion (Zn-SAD) phasing was successful owning to the good signal strength. The structure of SALL4ZFC4 with was solved by CRANK2 (30), with 6 Zn vs. ~1200 atoms. Then, the DNA was built manually by COOT (31), and the complex model was further refined by Phenix(32). The other complexes were solved by molecular replacement using Phaser(33) with previously solved SALL4ZFC4 complex as the search model. Then the models were built and refined manually by COOT(31), and were further refined by Phenix (32). The statistic details about data collection and structure refinement were summarized in Supplementary Table S2.

Mouse ESC culture

Sall4−/flox mouse ESCs were previously described (34). Cell are maintained in the 2i media (35). To generate Sall4−/− cells, Sall4−/flox ESCs were suspended by trypsinization and neutralization, then, infected with adenovirus EGFP-Cre (36). Independent clones were isolated, expanded, and the Sall4−/− genotype was confirmed by genomic PCR as previously described (34).
Wild type mouse *Sall4* was cloned in the pLV-EF1a-IRES-Puro vector (37). The *Sall4* N922D mutant was generated by site directed mutagenesis using Q5 High-Fidelity DNA Polymerase (New England Biolabs) and In-Fusion Snap Assembly (Takara Bio USA) following the manufacturer’s instructions. Lentiviruses were produced according to a standard procedure (38), and were concentrated using Lenti-X Concentrator (Takara Bio USA). Approximately, 1x 10^5 *Sall4*+/- mESCs were infected with lentivirus carrying WT or mutant *Sall4* and selected by 2μg/mL puromycin. Selected cells were expanded and used for experiments.

For qRT-PCR, total RNA was isolated using the Direct-zol RNA MicroPrep kit (Zymo Research) and cDNA was synthesized using iScript cDNA synthesis kit (BioRad) according to the manufacturers’ instructions. qPCR was performed using SYBR green master mix (ThermoFisher) and primers in Supplemental Table 5.

CUT&RUN experiments

CUT & RUN (39) was performed essentially as described in the online protocol (dx.doi.org/10.17504/protocols.io.zcpf2vn) using *Sall4*\textsubscript{floxfloxflox} or *Sall4*+/− mouse ESCs (10^5 cells per reaction) cultured in the 2i + LIF media (20). Anti-SALL4 antibody (SC-101147 (EE-30)) or normal rabbit IgG (SC-2025) were each used at a 1:300 dilution. EDTA was excluded from all buffers prior to MNase inactivation to avoid Zn+ chelation. Cell permeabilization and all subsequent steps were performed using buffers containing 0.02% digitonin. Recovered DNA fragments were end-repaired, A-tailed and ligated with xGen adapters (10005974, Integrated DNA Technologies) using the Kapa Hyper Prep Kit (07962312001, Roche) and barcoded during amplification using Kapa HotStart ReadyMix (7958927001, Roche). Libraries were sequenced using a 2 x 150 paired-end configuration on a HiSeq 4000 (Genewiz). Reads were trimmed using TrimGalore (0.6.0) and CutAdapt (1.18) and read quality was assessed with Fastqc (0.11.8). Trimmed reads were mapped with BWA MEM (0.7.17) using the mouse genome (GRCm38) as reference. Peaks were identified using MACS (2.1.1.20160309) using the --call-summits -g mm parameters. Peak lists from each replicate were merged using R (4.1.2) to find high confidence peaks present in both replicates. The 500 bp of sequence flanking the summit of each peak was used
for de novo motif analysis with MemeChip (v5.0.1) using -order 2 -meme-p 2 -meme-nmotifs 10 -psp-gen parameters and the DNase accessible regions from ENCODE dataset ENCF782QYA for the background model. Raw and processed data files are available in the Gene Expression Omnibus using accession GSE203303.

Data availability

The coordinates and structure factors files for the structures of SALL4ZFC4 with 12-mer dsDNA, SALL4ZFC4 with 16-mer dsDNA, SALL3ZFC4 with 12-mer dsDNA, and SALL4ZFC1 with 16-mer dsDNA, were deposited into Protein Data Bank under accession codes 7Y3I, 7Y3K, 7Y3L, and 7Y3M, respectively. Reviewers can access GSE203303 prior to publication by going to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE203303, and entering token kzktyequhtyhlaj into the box.

Acknowledgements

We thank the staff from the BL17B/BL18U1/BL19U1/BL19U2/BL01B beamline45 of National Facility for Protein Science in Shanghai at Shanghai Synchrotron Radiation Facility for assistance during data collection. We also thank Dr. Brian Hendrich and Dr. Ryuichi Nishinakamura for providing mouse ESCs. This work is supported by the National Natural Science Foundation of China (grant nos. 22137007 and 92053107). C.X. is supported by “the Fundamental Research Funds for the Central Universities”, the Major/Innovative Program of the Development Foundation of the Hefei Center for Physical Science and Technology (2021HSC-CIP014), and “the Thousand Young Talent program”. Y.K is supported by a grant from National Institutes of Health of USA (R01AR064195) and Grant-in-Aid of Artistry, Research and Scholarship of the University of Minnesota (#378836).

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.
References

Abbreviations and nomenclature

SALL, Spalt-like transcription factors; ZFC, zinc finger cluster; ESC, Embryonic stem cell; ITC, isothermal titration calorimetry

Figure legends

Figure 1. Structure of SALL4ZFC4 bound with the 12-mer dsDNA. (A) Domain architecture of human SALL4 containing ZFC1, ZFC2, and ZFC4, with the boundaries indicated. (B) ITC binding curves for SALL4ZFC4 binding to the 12-mer dsDNA (5'-GGTAATATTTCC-3'). (C) ITC binding curves for SALL4ZFC4 binding to the 12-mer dsDNA (5'-GCCAATATTGGC-3'). (D) ITC binding curves for SALL3ZFC4 binding to the 12-mer dsDNA (5'-GGTAATATTTCC-3'). (E) Crystal structure of SALL4ZFC4 with the 12-mer dsDNA (5'-GGTAATATTTCC-3'). The DNA is shown in grey cartoon except the central AATA base pair, which shown in cyan. Two zinc fingers of SALL4ZFC4, ZFC4N and ZFC4C, are shown in purple and salmon ribbon, respectively. SALL4ZFC4 residues involved in base-specific DNA recognition are shown in sticks. (F) Electrostatic surface of SALL4ZFC4 bound with the 12-mer dsDNA, with the DNA shown in the same orientation and color as shown in Fig. 1E.

Figure 2. SALL4ZFC4 selectively recognizes AT-rich dsDNA. (A) Sequence alignment
of human SALL family members, including SALL4 (Uniprot ID: Q9UJQ4), SALL1 (Uniprot ID: Q9NSC2), SALL2 (Uniprot ID: Q9Y467), and SALL3 (Uniprot ID: Q9BXA9). The secondary structure and DNA binding residues are indicated at the top of sequences, while Zn2+ binding residues are indicated at the bottom of sequences. The black dots indicate tenth positions. (B) Schematic of the detailed interactions between SALL4ZFC4 and DNA. Residues in ZFC4N and ZFC4C are colored in purple and salmon, respectively. Intermolecular hydrogen bonding and hydrophobic interactions are shown in red and grey arrows, respectively. (C)-(F) Detailed interactions between SALL4ZFC4 and (C) central ApT (A5-T5'/T6-A6'), (D) T3-A3'/A4-T4', (E) A7-T7'/T8-A8', (F) T9-A9'/A10-T10'. Nucleotides from two strands are shown in cyan and yellow sticks, respectively. The ZFC4N and ZFC4C residues involved in DNA binding are shown in purple and salmon, respectively.

Figure 3 SALL4ZFC4 Asn912 disfavored TpA and GpA dinucleotides. (A) In the DNA-bound SALL4ZFC4 structure, A5 is recognized by Ans912, which further stacks with upstream A4. (B) In the modeled structure, the A4 substituted by T4 leads to potential steric clash between Asn912 side chain and the methyl group of T4. (C) The A4 substituted by G4 disrupts the water-mediated hydrogen bond. (D) The A4 substituted by C4 maintains the Asn912-mediated base specific interactions.

Figure 4 SALL3ZFC4 specifically recognizes AT-rich dsDNA. (A) Structure of SALL3ZFC4 bound with the 12-mer dsDNA (5'-GGTAATATTTCC-3'), which is colored the same as in Fig. 1E. (B) Superposition of the structures of SALL3ZFC4 with the 12-mer dsDNA (cyan ribbon), SALL4ZFC4 with the 12-mer dsDNA (red ribbon), and SALL4ZFC4 with the 16-mer dsDNA (yellow ribbon). (C) Base specific interactions between SALL3ZFC4 and central 4AAT6, which are colored the same as in Fig. 1E. (D) Interactions between SALL3ZFC4 and DNA backbone. Protein and DNA are shown in ribbon and cartoon, respectively. SALL3 residues are colored the same as in Fig. 1e.

Figure 5 SALL4ZFC1 selectively binds to AT-rich dsDNA. (A) Structure of SALL4ZFC1 bound with the 16-mer dsDNA (5'-GGAATATAATTTCC-3'). Three dsDNAs are shown in cyan cartoon, while six SALL4ZFC1 molecules are shown in
cartoon with different colors. (B)-(G), all six SALL4ZFC1 molecules recognize central adenosine via Asn424. In (B), (E), and (F), Asn424 recognizes A9 in the context of ApA; In (C), (D), and (G), Asn424 recognizes A7' in the context of TpA. Asn424 is shown in sticks and all DNAs are shown in cyan sticks.

Figure 6 mSall4 N922D mutant partially rescues aberrant gene expression in Sall4−/− mouse ESCs. (A, C, E-G) Graphs showing relative expression levels of mSall4 (A), Sox1 (C), Irx3 (E), Irx5 (F) and Irx6 (G) in Sall4−/flox cells, Sall4−/− cells, Sall4−/− cells with WT mSall4 expression (WT) and Sall4−/− cells with Sall4 N922D (ND) mutant expression. *: p<0.05, **: p<0.01, ***: p<0.001 by One-Way ANOVA with post-hoc Tukey HSD test. Each replicate is shown as a dot, and the average plus/minus standard deviation is shown. (B) Top three motifs obtained by de novo motif analysis of SALL4-enriched sequences by CUT&RUN in mouse ESCs with P values shown under the motifs. (D, H) SALL4 CUT&RUN tracks of the Sox1 and Irx3-Irx5-Irx6 regions in Sall4−/− and Sall4flox/flox (F/F) mouse ESCs. In (H), genes other than Irx3-Irx5-Irx6 are not labeled for the simplicity. Mouse SALL4 Asn922 corresponds to human SALL4 Asn912.
Figure 1

A

SALL4

ZFC1

ZFC2

ZFC4

1067 aa

B

SALL4^{ZF4C}

- $K_d = 6.9 \pm 1.6 \mu M$

C

SALL4^{ZF4C}

- $K_d = 9.0 \pm 1.2 \mu M$

D

SALL3^{ZF4C}

- $K_d = 8.0 \pm 2.3 \mu M$

E

5'-GGTAATATTCC-3'

3'-CCATTATAAAGG-5'

F

5'-GCCAATATTGGC-3'

3'-CGGTTATAACCG-5'

G

5'-GGTAATATTCC-3'

3'-CCATTATAAAGG-5'

H

5'-GCCAATATTGGC-3'

3'-CGGTTATAACCG-5'

I

SALL4^{ZF4C}-AATA
Figure 2
N912-ApA

N912-TpA (model)

N912-GpA (model)

N912-CpA (model)

Figure 3
Figure 4
Figure 5
Figure 6
Author contributions

W.R. and C.X. designed the experiments. W.R. and T.K. performed the experiments. C.X. determined the crystal structure. All authors analyzed the data. W.R., Y.K., and C.X. wrote the manuscript. All authors approved the final version of the manuscript. Y.K. and C.X. supervised the project.
Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.