Phosphorylation-dependent interactions of myosin binding protein-C and troponin coordinate the myofilament response to Protein Kinase A

Ivanka R. Sevrieva, Saraswathi Ponnam, Ziqian Yan, Malcolm Irving, Thomas Kampourakis, Yin-Biao Sun

PII: S0021-9258(22)01210-8
DOI: https://doi.org/10.1016/j.jbc.2022.102767
Reference: JBC 102767

To appear in: Journal of Biological Chemistry

Received Date: 23 June 2022
Revised Date: 23 November 2022
Accepted Date: 24 November 2022

Please cite this article as: Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB, Phosphorylation-dependent interactions of myosin binding protein-C and troponin coordinate the myofilament response to Protein Kinase A, Journal of Biological Chemistry (2023), doi: https://doi.org/10.1016/j.jbc.2022.102767.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
Phosphorylation-dependent interactions of myosin binding protein-C and troponin coordinate the myofilament response to Protein Kinase A

Ivanka R. Sevrieva¹*, Saraswathi Ponnam¹, Ziqian Yan¹, Malcolm Irving¹, Thomas Kampourakis¹ and Yin-Biao Sun¹

¹Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King’s College London, London, SE1 1UL, United Kingdom

*Corresponding author: Ivanka Sevrieva (ivanka.r.sevrieva@kcl.ac.uk)

Running title: Phosphorylation of cMyBP-C and cTnI regulate LDA

Keywords: cardiac troponin, myosin binding protein-C, length-dependent activation, protein kinase A, phosphorylation

Abstract
Protein kinase A (PKA)-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca²⁺ sensitivity and maximum force on sarcomere length (SL), i.e., enhanced length-dependent activation (LDA). However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin binding protein-C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different sarcomere lengths. We found Ser22/23 bis-phosphorylation of cTnI was indispensable for the enhancement of LDA by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca²⁺-dependent manner. In addition, bis-phosphorylation at Ser22/Ser23 increased Ca²⁺ sensitivity at long sarcomere length in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bis-phosphorylation of cTnI increased Ca²⁺ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have
clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.

Introduction
Cardiac troponin (cTn) is the Ca\(^{2+}\)-dependent switch in the contractile machinery of heart muscle cells that regulates contraction and relaxation cycles. Ca\(^{2+}\) binding to troponin C (cTnC) initiates a series of conformational changes in the troponin complex that release inhibition on actin-myosin interactions. High-resolution crystal structures of troponin and recent advances in electron cryo-microscopy suggested a structural mechanism for thin filament regulation (1, 2). Ca\(^{2+}\)-free troponin is elongated, spanning seven actin subunits, and is latched between two tropomyosin strands. This not only restricts their movement, but the C-terminal tail of cardiac troponin I (cTnI) also directly blocks myosin-binding sites on actin. The N-terminal lobe of cTnC (NcTnC), containing the regulatory Ca\(^{2+}\) site, is highly dynamic (3). Upon Ca\(^{2+}\)-binding, it can bend towards the thin filament surface, to interact with the switch region or switch peptide of cTnI and insert itself between tropomyosin and the flanking regions of cTnI, lifting them away from actin. This rearrangement together with the movement of tropomyosin uncovers the binding sites for myosin heads to allow the formation of actin-myosin cross-bridges (2). Strong force-generating cross-bridges push the N-lobe, together with the C-terminus and inhibitory region of cTnI, further from actin (3). The cyclic ATP-driven interactions propel thin filaments towards the centre of the sarcomere during muscle contraction.

Although free calcium concentration is a primary factor controlling sarcomeric function, a number of mechanisms modulate contractile activity by altering the activation state of the thick filaments and mediating inter-filament communication (dual filament regulation) (4-7). This enables the heart to adapt rapidly to varying hemodynamic requirements. Within a heartbeat, it can augment its contractile force during ejection following an increase in filling to ensure that it pumps out the same volume it receives. This proportional relationship between stroke volume and ventricular end-diastolic volume is known as the Frank-Starling law of the heart. This law can be extrapolated from the length-tension dependency observed in isolated cardiac muscle cells (8). When heart muscle cells are stretched, they produce a more forceful contraction (9). This phenomenon is largely explained by a cellular mechanism (length-dependent activation or LDA), operating at the level of the myofilaments, that leads to higher Ca\(^{2+}\) sensitivity and maximally Ca\(^{2+}\)-activated force at longer sarcomere lengths (10). LDA is also thought to be mediated by dual filament regulation. At longer sarcomere length, the number of force-generating myosin heads is increased through a thick filament-mediated mechanism (11), whereas myofilament responsiveness to Ca\(^{2+}\) is thought to be enhanced via
structural changes in the thin filament (12-14). However, the signalling pathways and protein-protein interactions underlying these changes are unknown (14-16). Post-translational modifications in these proteins can modulate LDA (17-20), as can disease-causing mutations (21).

One of the most prominent signalling pathways in the heart is the β-adrenergic pathway, which is associated with adaptation to exercise and the “fight-or-flight” response. Sympathetic activation leads to the release of catecholamines (adrenaline and noradrenaline) that bind to mainly β1-adrenergic receptors and start a cascade of molecular events (22). The major physiological aspects are increased heartrate (chronotropy), increased contractility (positive inotropy) and faster relaxation (lusitropy). Myofilament length-dependent activation is also enhanced (15, 23). At the whole organ level, the contractility of the ventricles increases, and the heart can eject a greater volume of blood for a given end-diastolic volume to accommodate higher perfusion needs. In the cardiomyocyte, rising levels of cyclic adenosine monophosphate activate PKA, which phosphorylates multiple targets: proteins involved in excitation-contraction coupling (sarcolemmal L-type Ca2+ channel, phospholamban and ryanodine receptor) and myofilament proteins (cTnI, cMyBP-C and titin) (24-26). The functional consequences of PKA treatment in permeabilized cardiac myocyte preparations (Ca2+ desensitization, increased relaxation rate, cross-bridge kinetics and LDA) are due to phosphorylation of its myofilament targets. In particular, the individual roles of cTnI and cMyBP-C phosphorylation in response to PKA have been debated over the years, related to the difficulty in distinguishing their relative contributions. Although the controversy has not been resolved, some studies suggest that cTnI phosphorylation by PKA is necessary for reducing myofilament Ca2+ sensitivity, speeding up relaxation and enhancing LDA (15, 17, 27-32). However, the specific roles of mono- versus bis-phosphorylation at serines 22 and 23 are still unclear (in the literature, these residues are sometimes referred to as serines 23 and 24; the residue numbering used here omits the initial methionine, which is often not present in the mature protein).

The techniques that have been employed to isolate the impact of cTnI on cardiac function typically rely on transgenics, phospho-ablation (serine to alanine S-A substitutions), phospho-mimetics (serine to aspartic acid S-D substitutions) or incorporation of the slow skeletal TnI isoform (ssTnI), which lacks the cardiac-specific N-terminal extension, carrying the PKA phospho-sites. In the absence of more physiological interventions, these studies provided important information about PKA regulation. However, ssTnI differs from its cardiac counterpart not only in its N-terminus but also in a number of other residues that define isoform-specific functions (33, 34). Moreover, the pseudo-phosphorylation effects of
aspartates have not been examined systematically, although S-D substitutions in N-terminal fragments of cMyBP-C do not fully recapitulate the structural and functional effects of phosphorylating the equivalent serines using PKA (35). Consistent with this, S-D substitutions in the M-domain of C0-C2 N-terminal fragments of cMyBP-C had divergent effects on actin dynamics, which only partially mimicked the effects of genuine phosphorylation (36). Importantly, it has been shown that genuine mono-phosphorylation at serine 23 of cTnI is sufficient to decrease myofibrillar Ca\(^{2+}\) sensitivity, even though this effect had been previously attributed to bis-phosphorylation using S-A and S-D substitutions (37-39). It is worth noting that S-A substitutions may not be entirely silent mutations. Introducing changes in the canonical consensus sequence may affect phosphorylation efficiencies. An additional problem with some of the earlier studies was that before the advent of Phos-tagTM technology it was not always possible to distinguish between mono- and bis-phosphorylation. This led to some misidentification of the phospho-species (40, 41).

Several protein kinases have been shown to be able to mono-phosphorylate serine 23: PKA, PKC, PKD, PKG and most recently the cardiac myosin light chain kinase (cMLCK) (37, 42-44). PKA, PKC isoforms and PKG can also bis-phosphorylate cTnI at Ser22 and Ser23, and the relative proportion of each phospho-species is likely dependent on the strength of the stimulus and the balance between kinase and phosphatase activity. However, serine 23 is an exclusive site for PKD and cMLCK within the protein. In addition, a notable proportion of both mono-and bis-phosphorylated cTnI was identified in fresh transplant human hearts with normal cardiac function (45). Altogether, these findings suggest that phosphorylation of Ser22 and Ser23 may have distinct physiological roles.

The aim of the present work was to examine the impact of genuine Ser22/Ser23 bis-phosphorylation on calcium sensitivity and LDA, which is likely to be context-specific and linked to the phosphorylation status of other PKA targets. Similar to cTnI, phosphorylation of cMyBP-C by PKA has been proposed to control cardiac muscle LDA (46), and endogenous cMyBP-C is highly phosphorylated in demembranated ventricular trabeculae (47). We used a combination of methodologies: two-way modulation of cTnI phosphorylation by recombinant troponin exchange in demembranated rat heart trabeculae, modulation of the phosphorylation background using \textit{in situ} PKA and \(\lambda\)-protein phosphatase (\(\lambda\)PP) treatment, and direct measurement of the cTnI phosphorylation profiles in individual trabeculae in each protocol.

\textbf{Results}

To gain better mechanistic understanding of the functional effects of Ser22/Ser23 bis-phosphorylation, we measured structural changes in the thin filament in addition to isometric force during calcium titrations. We used polarized fluorescence from a bifunctional rhodamine
(BR) probe attached to the E helix in the C-lobe of cTnC (BR-cTnC-E, Fig. S1) because previous experiments had shown that this probe is sensitive to calcium, switch peptide and myosin binding but is also affected by sarcomere length increase (13, 48). Following whole troponin exchange, BR-cTnC-E was exchanged in a second step with 35-50% exchange efficiency (Fig. S2).

Modulation of cTnI and cMyBP-C phosphorylation levels

Rat cardiac troponin complex (cTn) was reconstituted in vitro, incubated with PKA to phosphorylate serines 22 and 23 of cTnI and purified to yield 1:1:1 Ser22/23 bis-phosphorylated protein complex cTn-2P (Figs. S3, S4 and S5). The non-phosphorylated complex (cTn-0P) was prepared by a similar method excluding the phosphorylation step. The troponin complexes were exchanged into demembranated rat ventricular trabeculae by overnight soak in relaxing buffer containing protein kinase/phosphatase inhibitors. The troponin exchange protocol is specific for cardiac troponin and does not change the abundance or phosphorylation level of other sarcomeric proteins (Fig. S6) and is therefore a tailored intervention to modulate cTnI phosphorylation at the PKA sites Ser22 and Ser23 in situ.

The trabeculae were either untreated and reconstituted with one of the troponin complexes (untreated, cTn-0P or untreated, cTn-2P) or pre-treated with a lambda protein phosphatase (λPP) to reduce myofilament phosphorylation background and then exchanged with one of the troponin complexes (λPP, cTn-0P and λPP, cTn-2P). Since λPP-treatment is a non-specific intervention, an additional control group of trabeculae was λPP-treated and then back-phosphorylated with the catalytic subunit of PKA to identify any effects of other PKA targets such as cMyBP-C. This group was reconstituted with bis-phosphorylated cTn overnight (λPP, PKA, cTn-2P).

We also determined cMyBP-C phosphorylation in untreated and λPP-treated demembranated heart samples (Fig. 1). The amount of cMyBP-C that could be extracted from single trabeculae was insufficient to characterise cMyBP-C phosphorylation. Therefore, we prepared rat cardiac myofibrils (CMFs) from the remaining heart tissue and subjected them to the same treatments as the trabeculae. cMyBP-C phosphorylation level was assessed using the intensity of the Pro-Q® Diamond phosphoprotein stain relative to the total SYPRO® Ruby stain (Fig. 1A). We also used the Western-blot signal from the phospho-specific antibody against Ser282-phosphorylated cMyBP-C divided by the signal from a phosphorylation-independent anti-cMyBP-C antibody (G-7, Fig. 1B). These intensities were normalized to those before λPP and PKA treatment (“Pre” in Fig. 1C). The basal level of cMyBP-C phosphorylation at the main
PKA site (Ser282) was high in our heart preparation (Fig. 1C). Incubation with \(\lambda\)PP reduced cMyBP-C phosphorylation, and PKA treatment restored it to the basal level.

The phosphorylation level of troponin I was measured in individual trabeculae, harvested after experiments from all five intervention groups, using Phos-tagTM-SDS-PAGE and Western-blotting against cTnI (Fig. 2A). Troponin I phosphorylation level was also measured in ventricular tissue samples treated with the same protocols (Fig. S7), because some trabeculae were too small to allow reliable measurement of the extent of cTnI phosphorylation. Phos-tagTM decreases the mobility of phosphoproteins, so that from top to bottom the major bands correspond to bis-phosphorylated cTnI, mono-phosphorylated cTnI and non-phosphorylated cTnI, respectively. The total cTnI phosphorylation (mols incorporated phosphate per mol cTnI, mol Pi/mol cTnI) is similar in trabeculae (Fig. 2B) and time-matched ventricular tissue samples (Fig. S7) in all five groups. The relative percentage of each species in the experimental trabeculae is also shown in Fig. 2C and Fig. 2D. The protocols used here produced a large increase in the fraction of bis-phosphorylated cTnI in trabeculae exchanged with cTn-2P compared to cTn-0P, although some non-phosphorylated and mono-phosphorylated cTnI species were present in all groups. cTnI degradation, detected below the non-phosphorylated band, was less than 10% for all groups except \(\lambda\)PP, cTn-0P (~16%). Troponin I bis-phosphorylation levels in \(\lambda\)PP-treated trabeculae that had been reconstituted with either non-phosphorylated or bis-phosphorylated troponin complexes (cTn-0P and cTn-2P) were almost identical to those in trabeculae that had not been treated with \(\lambda\)PP (Fig. 2D).

cTnI bis-phosphorylation increases myofilament Ca2+ sensitivity

In trabeculae exchanged with cTn-0P, stretch from sarcomere length 1.9 \(\mu\)m to sarcomere length 2.3 \(\mu\)m increased the Ca2+ sensitivity of force, as reported by pCa\textsubscript{50}, the negative logarithm of the calcium concentration resulting in half-maximal activation (Table 1, Fig. 3A, SL 1.9 \(\mu\)m solid black line and open black circles and SL 2.3 \(\mu\)m solid black line and closed black circles). This length-dependent effect on Ca2+ sensitivity was also observed in trabeculae exchanged with cTn-2P (Table 1, Fig. 3B, 1.9 \(\mu\)m solid green line and open green circles and 2.3 \(\mu\)m solid green line and closed green circles). In contrast to most previous reports (38, 39), we found that at short sarcomere length (1.9 \(\mu\)m) increasing cTnI bis-phosphorylation did not reduce the Ca2+ sensitivity of force (Table 1, Fig. 3B solid green line and open circles compared to the dashed black line). Untreated trabeculae reconstituted with cTn-2P had higher Ca2+ sensitivity at SL 2.3 \(\mu\)m compared to their cTn-0P counterparts, i.e., the force-pCa relation was shifted to the left with respect to that of the cTn-0P group (Fig. 3B, solid green line and closed circles compared to the dotted black line, Table 1). This led us to hypothesize that the functional role of bis-phosphorylation might be to enhance the length-dependent shift
in calcium sensitivity under specific conditions rather than to desensitize the myofilament to calcium.

The Ca2+ sensitizing effect of increasing sarcomere length was also seen in trabeculae treated with \(\lambda\)PP and reconstituted with cTn-0P (Fig. 3C, SL 1.9 \(\mu\)m solid red line and open red circles and SL 2.3 \(\mu\)m solid red line and closed red circles). Similarly, the length-dependent shift in the force-pCa curve was observed in \(\lambda\)PP-treated trabeculae exchanged with cTn-2P (Fig. 3D, SL 1.9 \(\mu\)m solid blue line and open blue circles and SL 2.3 \(\mu\)m solid blue line and closed blue circles). However, \(\lambda\)PP-treated trabeculae exchanged with cTn-2P had higher Ca2+ sensitivity at both short (SL 1.9 \(\mu\)m) and long sarcomere lengths (SL 2.3 \(\mu\)m) compared to the \(\lambda\)PP-treated, cTn-0P group (Fig. 3D, SL 1.9 \(\mu\)m solid blue line and open blue circles compared to the dashed red line, SL 2.3 \(\mu\)m solid blue line and closed blue circles compared to the dotted red line, Table 1).

Phosphorylation of both cTn and cMyBP-C controls length-dependent activation and cooperativity in cardiac muscle

In untreated, cTn-0P trabeculae, increasing sarcomere length from 1.9 to 2.3 \(\mu\)m not only significantly increased the Ca2+ sensitivity of force development but also the maximal calcium activated isometric force (Table 1). Exchange of cTn-2P into demembranated untreated trabeculae resulted in a significantly larger \(\Delta pCa_{50}\) due to sarcomere lengthening without affecting the maximal force at pCa 4.5 (Table 1). In intact heart muscle, the diastolic and systolic free intracellular calcium concentration [Ca2+] depends on stimulation frequency and the presence of \(\beta\)-adrenergic agonists and is typically in the range 70-250 nmol/L for diastole (pCa 6.6-7.2) and 0.5-1.5 \(\mu\)mol/L (pCa 5.8-6.2) for systole (49-54). At pCa 5.9, which is close to the free calcium concentration in systole, force at the longer sarcomere length was much higher in the cTn-2P group than in the cTn-0P group (Table 1).

The above experiments indicated that the shift in Ca2+ sensitivity associated with LDA (\(\Delta pCa_{50}\)) can be enhanced by cTnl bis-phosphorylation in demembranated trabeculae. We wanted to know whether this effect was influenced by the level of phosphorylation of other proteins, in particular cMyBP-C. Therefore, we treated trabeculae with \(\lambda\)PP, which dephosphorylates cMyBP-C, as described earlier. At both short and long sarcomere lengths, \(\lambda\)PP-treated trabeculae had similar maximum force as untreated trabeculae (Table 1). \(\Delta pCa_{50}\) for force in \(\lambda\)PP-treated trabecula exchanged with cTn-0P with low cTnl and cMyBP-C phosphorylation levels was not significantly different from that of the untreated cTn-0P group with highly phosphorylated cMyBP-C (Fig. 3C vs. Fig. 3A, Table 1). We conclude that LDA is not sensitive to the level of cMyBP-C phosphorylation in conditions in which cTnl is only 13-15% bis-phosphorylated.
Exchange of cTn-2P into \(\lambda \)PP-dephosphorylated trabeculae increased the Ca\(^{2+} \) sensitivity of force at the short and long sarcomere lengths to the same extent, so that \(\Delta pC_{50} \) was not enhanced compared to the \(\lambda \)PP, cTn-0P group (Fig. 3D, Table 1). These results suggest that cMyBP-C dephosphorylation blunts the effects of cTnI bis-phosphorylation on LDA.

To test for unspecific effects of incubation of demembranated myocardium with \(\lambda \)PP, we first dephosphorylated trabeculae from the same heart with \(\lambda \)PP, then phosphorylated in situ with PKA before exchanging overnight with cTn-2P. As mentioned earlier, this protocol restored the cMyBP-C phosphorylation level to that observed before \(\lambda \)PP treatment (Fig. 3E, Table 1). These results suggest that cMyBP-C dephosphorylation blunts the effects of cTnI bis-phosphorylation on LDA.

Reconstitution of untreated trabeculae with cTn-2P had no impact on the cooperativity of the force-pCa relation, as determined by the Hill coefficient \(n_H \), at either the short or long length compared to cTn-0P (Table 1). However, in the cTn-2P trabeculae \(n_H \) was reduced by stretching to the longer sarcomere length (Table 1). The relatively high values for \(n_H \) reported here are most likely due to the stepwise calcium titration protocol used (see experimental procedures). At both the short and long sarcomere lengths, \(\lambda \)PP-treated trabeculae had lower \(n_H \) compared to untreated trabeculae and there was a further decrease after increasing sarcomere length (Table 1). \(n_H \) was significantly lower in the \(\lambda \)PP, cTn-2P group compared to the \(\lambda \)PP, cTn-0P group at both the short and long sarcomere lengths and PKA treatment reversed this effect (Table 1). These results suggest that cTnI and cMyBP-C phosphorylation can regulate myofilament cooperativity, working together rather than independently.

Correlation of Ca\(^{2+} \) sensitivity and \(\Delta pC_{50} \) with cTnI bis-phosphorylation

The comparisons between the cTn-0P and cTn-2P groups reported above cannot be interpreted solely in terms of bis-phosphorylation, because the troponin exchange protocol results in mixed populations of non-phosphorylated, mono-phosphorylated, and bis-phosphorylated troponin I (Fig. 2D). Therefore, we looked at whether the increase in Ca\(^{2+} \) sensitivity of force and the sarcomere length-dependence of pCa\(_{50} \) (\(\Delta pC_{50} \)), which is often used as a measure of LDA, correlated with the measured percentage of bis-phosphorylated
cTnI in trabeculae (Fig. 4). We were also interested in any influence of PKA phosphorylation background on these relationships.

In trabeculae with the high basal level of cMyBP-C phosphorylation, the calcium sensitivity of force at the short sarcomere length was not significantly correlated with the fraction of bis-phosphorylated cTnI (r=0.290 and p=0.09, Fig. 4A). However, at the long sarcomere length, there was a significant correlation between the two variables (r=0.651 and p=0.0001, Fig. 4B). ΔpCa50 was also significantly correlated with the fraction of bis-phosphorylated cTnI (r=0.674 and p<0.0001, Fig. 4C), suggesting that cTnI bis-phosphorylation may be responsible for the enhanced LDA following PKA treatment.

In λPP-treated trabeculae, in which cMyBP-C was dephosphorylated, pCa50 was significantly correlated with the fraction of bis-phosphorylated cTnI at the short sarcomere length (r=0.508 and p=0.0262, Fig. 4D) but not at the long sarcomere length (r=0.365 and p=0.1493, Fig. 4E). In contrast with the clear effect seen with basal levels of cMyBP-C phosphorylation (Fig. 4C), there was no significant correlation between ΔpCa50 and cTnI bis-phosphorylation level when trabeculae were dephosphorylated by λPP (Fig. 4F), suggesting that the effect of bis-phosphorylated cTnI on LDA depends on the cMyBP-C phosphorylation background.

Structural changes in troponin
In the protocols described above, we also monitored the structural changes in the IT arm, a troponin domain comprising of the C-terminal lobe of cTnC (CcTnC) sandwiched between the first α-helix of cTnI and the second α-helix of cTnT, which forms a coiled-coil with the second cTnI α-helix (Fig. S1). We used a bifunctional rhodamine probe attached along the E helix of cTnC (BR-cTnC-E, Fig. S1), which has been shown to be sensitive to calcium and switch peptide binding and strong myosin cross-bridges (13, 47, 48, 55). Changes in the orientation of this probe correlate with the activation state of the thin filaments. Probe orientation is reported as the order parameter ⟨P2⟩, which describes the *in situ* orientation of the probe with respect to the trabecular or thin filament axis, where ⟨P2⟩ would be +1 if all the probes were parallel to the filament axis and -0.5 if they were all perpendicular (Fig. S1). The parameters extracted from the Hill fits of the ⟨P2⟩ data in Fig. 5 are summarized in Table 2.

Increasing sarcomere length increased ⟨P2⟩ at low and high calcium. This effect had the same direction as the ⟨P2⟩ change associated with switching off the thin filament, albeit not the same magnitude (Fig. 5, Table 2). It could be in part due to the better alignment of myofibrils at the long sarcomere length. The shift in ⟨P2⟩ was slightly bigger at diastolic calcium concentration (pCa7.0-pCa 6.4) than at maximal activation (pCa 4.5), leading to a small but reproducible
increase in the amplitude of structural change at the long sarcomere length in all experimental groups (Table 2).

Exchange of untreated trabeculae with cTn-2P decreased \(\langle P_2 \rangle \) at all \([\text{Ca}^{2+}]\) compared to trabeculae exchanged with cTn-0P (Fig. 5A vs. Fig. 5B, SL 1.9 \(\mu \text{m} \) dotted black line vs. dotted green line and SL 2.3 \(\mu \text{m} \) solid black line vs. solid green line). During calcium activation, there is a much larger decrease in \(\langle P_2 \rangle \), which is related to switching on the thin filament as mentioned earlier (48). In the \(\lambda \text{PP} \) set of experiments, the effect of cTn-2P on \(\langle P_2 \rangle \) was not statistically significant (Fig. 5C vs. Fig. 5D, SL 1.9 \(\mu \text{m} \) dotted red line vs. dotted blue line and SL 2.3 \(\mu \text{m} \) solid red line vs. solid blue line). Back-phosphorylation with PKA did not significantly change \(\langle P_2 \rangle \) compared to the \(\lambda \text{PP}, \) cTn-2P group (Fig. 5D vs. Fig. 5E, SL 1.9 \(\mu \text{m} \) dotted red line vs. dotted blue line and SL 2.3 \(\mu \text{m} \) solid red line vs. solid blue line).

\(n_H \) for \(\langle P_2 \rangle \) was generally less than that for force and in all cases decreased at longer sarcomere length (Table 2, Fig. S9). In untreated trabeculae, increasing cTnl bis-phosphorylation decreased cooperativity at the long sarcomere length, but in \(\lambda \text{PP} \)-treated trabeculae, cTn-2P exchange had a bigger effect on \(n_H \) for force than on that for \(\langle P_2 \rangle \) (Fig. S9), similar to the result for \(\text{pCa}_{50} \).

N-terminal domains of cMyBP-C bind cardiac troponin in a calcium and phosphorylation-sensitive manner

Myosin binding protein-C (MyBP-C) has been previously suggested to form inter-filament links in resting skeletal muscle (56, 57), and N-terminal domains of cardiac cMyBP-C (NcMyBP-C)
have been shown to bind to and modulate the regulatory state of cardiac thin filaments both in vitro and in situ (47, 58). Moreover, cMyBP-C and cTnI are both PKA targets and together mediate the effect of PKA on LDA. The binding sites for the C0 and C1 cMyBP-C domains on actin are close enough to the C-terminal regions of troponin I to be affected by allosteric rearrangements downstream of PKA phosphorylation (Fig. S10) (59). We also considered the possibility of a direct interaction between troponin and NcMyBP-C.

To test the hypothesis that the N-terminal domains of cMyBP-C may bind to troponin in heart muscle, we used Microscale Thermophoresis (MST) to characterise binding between Alexa647-labelled rat cardiac troponin complexes (either cTn-0P or cTn-2P) and N-terminal fragments of rat cMyBP-C encompassing domains C0, C1, m-motif and C2 (cC0C2), which were either non-phosphorylated (cC0C2-0P) or tris-phosphorylated by PKA (cC0C2-3P) (Fig. 6). We found that non-phosphorylated cC0C2 binds both non-phosphorylated cardiac troponin and bis-phosphorylated cardiac troponin with an estimated K_d of ~20 μmol/L in the presence of either low concentrations of Ca$^{2+}$ (pCa 7.4) or saturating calcium (pCa 3.0) (Fig. 6A and Fig. 6B inset bar plots). These values are close to previously reported dissociation constants for cC0C2 (C0C1mC2) and cC1C2 (C1mC2) for actin and isolated cardiac native thin filaments. cC0C2 was found to bind actin with a K_d of ~14 μmol/L (60), and two different studies reported cC1C2 binding native thin filaments with a K_d of ~10-20 μmol/L independent of calcium concentration (60, 61). At low [Ca$^{2+}$], tris-phosphorylation of cC0C2 by PKA reduced its affinity for both non-phosphorylated and bis-phosphorylated cTn complex by a factor of two, as indicated by an increase in K_d to ~40 μmol/L (Fig. 6A). The effect of phosphorylation on the cC0C2-cTn interaction was modified in the presence of saturating calcium, which decreased the affinity of PKA-phosphorylated cC0C2 to non-phosphorylated cTn (K_d ~67 μmol/L) (Fig. 6B). Calcium further weakened the interaction between cTn-2P and cC0C2-3P (K_d of ~141 μmol/L) (Fig. S11). Because the interaction between cTn and NcMyBP-C was sensitive to calcium, we hypothesized that C0C2 might directly bind to NcTnC, which contains the regulatory calcium binding site and also forms electrostatic interactions with the N-terminal extension of cTnI, carrying the PKA phospho-sites (62). In agreement with this hypothesis, unphosphorylated C0C2 binds NcTnC with an estimated K_d of ~5 μmol/L at saturating calcium (pCa 3.0), and phosphorylation of C0C2 (C0C2-3P) slightly increased the K_d to ~8 μmol/L (Fig. 6C). Taken together, these results suggest that NcMyBP-C might affect the activation of the thin filament via direct interaction with NcTnC thereby modulating the calcium-dependent activation of the troponin complex (Fig. 6D).
Discussion

Signalling through the β₁-adrenoreceptor is paramount for regulating heart structure and function. Most of the physiological effects (chronotropic, inotropic and lusitropic) are achieved via activation of the cAMP-dependent protein kinase PKA, which phosphorylates several key proteins inside the heart cell, including troponin I. Phosphorylation at both residues Ser22 and Ser23 has been widely regarded as a prerequisite for myofilament Ca²⁺ desensitization, which is a determinant of cardiac relaxation (lusitropy) (30, 63, 64). The underlying mechanism is understood to involve a shift in the equilibrium of NcTnC towards its closed state and a faster rate of calcium dissociation (38, 65, 66). This view is based on studies using different strategies to manipulate or mimic different levels of phosphorylation of troponin I. The most prominent ones are transgenics or protein replacement with cTnI carrying Ser/Ala substitutions, cTnI Ser/Asp substitutions or troponin I lacking the phosphorylatable N-terminus, dephosphorylation using a phosphatase vs. up-phosphorylation using PKA and the application of propranolol vs. isoprenaline.

In the present study, we replaced endogenous cTnI by either non-phosphorylated or genuinely Ser22/23 bis-phosphorylated cTnI to alter the level of cTnI phosphorylation in demembranated trabeculae. We combined this strategy with manipulation of the phosphorylation state of cMyBP-C by λ-PP and PKA treatment, which allowed us to look at the interaction between cTnI and cMyBP-C phosphorylation. The phosphorylation level of troponin I was measured directly in individual trabeculae after the experiments using Phos-tag™-SDS-PAGE and Western-blotting against cTnI, which is a key advantage over previous studies, where this was done in time-matched tissue samples. In addition, we demonstrated that our troponin exchange method did not change the phosphorylation status of other major sarcomeric proteins. While the reconstitution protocol itself can alter the contractile response of trabeculae, all groups were subjected to the same treatment, so any functional differences measured between cTnI-0P and cTnI-2P trabeculae are unlikely to be due to the exchange method. We were therefore able to specifically correlate cTnI bis-phosphorylation level with Ca²⁺ sensitivity and LDA in either a low or high cMyBP-C phosphorylation background. This scenario, where the phosphorylation level of one PKA target is varied independently of that of other PKA targets, may not be encountered in the healthy heart, but the results shed light on the mechanism by which PKA modulates heart function at the myofilament level. Contrary to the generally accepted dogma about desensitization, increasing cTnI bis-phosphorylation at high levels of cMyBP-C phosphorylation increases calcium sensitivity and decreases cooperativity at long sarcomere length. When cMyBP-C was dephosphorylated, these effects were apparent even at short sarcomere length and could be detrimental to normal heart muscle function.
Therefore, our results have important implications for the diseased heart, where these phosphorylation changes or their consequent functional effects may be uncoupled due to inherited mutations or haploinsufficiency (67, 68).

While others have also observed that increased cTnl phosphorylation did not always produce a rightward shift in the force-calcium relation at short sarcomere length (69), most studies reported a reduction in Ca\(^{2+}\) sensitivity at both short and long sarcomere lengths after PKA treatment (15, 70). This discrepancy with the present results may be related to crosstalk with other PKA targets and myofilament phospho-sites, difficulties in separating the effects of mono- and bis-phosphorylation of TnI at Ser22 and 23, species differences, heterologous experimental systems and the use of phospho-mimetics and phospho-ablation.

Sarcomeric protein phosphorylation patterns may also be related to the different protocols used in these studies. cTnl phosphorylation is not the sole determinant of myofilament Ca\(^{2+}\) sensitivity, which is impacted by phosphorylation background (71). Due to technical difficulties associated with independent modulation of protein phosphorylation levels, many previous studies did not isolate the effects of genuinely phosphorylated cTnl and cMyBP-C. cMyBP-C N-terminal regions have been shown to sensitize the myofilaments to calcium through interactions with actin and tropomyosin, and by shifting the position of tropomyosin to favour cross-bridge binding (58, 59, 72). PKA phosphorylation of serine residues in the m-domain of cMyBP-C abolishes the activating effect on the thin filament and this inhibition is most apparent for tris-phosphorylated N-terminal domains (61). There remains a significant gap of knowledge in the integrated function of genuine multi-site phosphorylation of cTnl and cMyBP-C, which future research should address.

“Basal” phosphorylation of myofilament proteins results from sympathetic stimulation before the animal’s death but also from residual kinase activity during preparation of the muscle samples. To quantify cTnl phosphorylation, older studies relied on measuring the incorporation of \(^{32}\)P, the relative band intensity from phospho-stains and a phospho-specific antibody against Ser22/23, which is now known to cross-react with mono-phosphorylated cTnl (37). These methods cannot distinguish between mono- and bis-phosphorylation at Ser22/23. There were early hints that mono-phosphorylated cTnl might significantly decrease Ca\(^{2+}\) sensitivity in skinned muscle preparations (64, 65), and a more recent report described a substantial Ca\(^{2+}\) desensitizing effect of mono-phosphorylation at Ser23 by PKD when basal phosphorylation had been abolished by treatment with \(\lambda\)PP (37). Moreover, beside PKD, cMLCK has been shown to also phosphorylate Ser23 of cTnl, confirming the functional importance of mono-phosphorylation (43) and raising further questions about the role of cTnl Ser22/23 bis-phosphorylation, which we aimed to address.
Phospho-ablation and phospho-mimetics have been used in some previous studies in an attempt to circumvent the problems of basal phosphorylation and multiple kinase/phosphatase targets (38, 39). In one study (38), the endogenous cTnI was extracted from skinned porcine heart muscle, which was then reconstituted with recombinantly generated mouse wild type or non-phosphorylatable cTnI (Ser22Ala, Ser23Ala or Ser22Ala/Ser23Ala). In that study, in situ treatment of skinned cardiac muscle with the catalytic subunit of PKA did not reduce Ca\(^{2+}\) sensitivity in the presence of the single alanine cTnI mutants. Only the wild type mouse cTnI containing both serines produced the characteristic Ca\(^{2+}\) desensitization upon PKA phosphorylation. However, the heterologous protocol with mouse proteins in porcine tissue experiments may complicate the interpretation. There are numerous amino acid mismatches between mouse and porcine cTnI, spread across the entire protein sequence. When cardiac troponin subunits from the same species were used in a homologous experimental system (rat proteins in rat cardiac papillary fibers), double alanine and double aspartate substitutions at Ser22 and Ser23 of cTnI had independent effects, unrelated to PKA, increasing cooperativity and depressing Ca\(^{2+}\)-activated maximal tension and ATPase activity (73). Therefore, introducing entirely “silent” phosphomimetic mutations at potential “structurally sensitive sites” may not be always possible (74).

Another study systematically determined the impact of all four combinations of alanine and aspartate substitutions at Ser22/Ser23 in human cardiomyocytes (39). Again, in contrast to the present results, the authors concluded that phosphorylation of both PKA sites was required to reduce myofilament Ca\(^{2+}\) sensitivity. That study differs from ours in both the preparation and the use of serine-to-aspartate substitutions. Aspartates are structurally distinct from phosphoserines (75). They differ in size and shape of the side chains and hydrated shell, the charge and the surrounding chemical environment, which could affect intra- and inter-molecular hydrogen bonds, salt bridges and ionic interactions. Moreover, we previously showed that aspartates are not functional substitutes for phosphoserines in cMyBP-C with different impact on thin filament regulation (76).

Muscle preparations from transgenic mice overexpressing the non-phosphorylatable, slow skeletal isoform of TnI or Ser22/23 phospho-ablated cardiac TnI had reduced desensitization in response to PKA, supporting the hypothesis that Ser22/23 cTnI phosphorylation reduces Ca\(^{2+}\) sensitivity (30, 77). However, replacing the cardiac troponin I isoform by the slow skeletal isoform has similar limitations as the use of heterologous proteins or amino acid substitutions. We conclude that findings from these types of transgenic study need to be considered more critically and verified by alternative methods.
We used dephosphorylation by a protein phosphatase and back-phosphorylation with PKA to control myofibrillar protein phosphorylation levels, an approach that has also been used in previous studies (37, 69). A negative correlation has been demonstrated between cTnl phosphorylation and Ca$^{2+}$ sensitivity when troponin exchange, phosphatase and PKA treatment was used to alter cTnl phosphorylation levels in donor human heart myofibrils and in vitro motility assays (69, 78). In vitro motility assays often use heterologous proteins, lack key sarcomeric components and cannot fully reproduce the functional response of a muscle cell. Moreover, cTnl is not the only target of \(\lambda \)PP and PKA, which complicates the relationship between Ca$^{2+}$ sensitivity and cTnl phosphorylation. Although \(\lambda \)PP and PKA had the same limitations in our study, we did not use them to control cTnl phosphorylation level, which was modulated separately and specifically via troponin exchange. In our study, \(\lambda \)PP and PKA were used to control the phosphorylation level of other myofilament targets in order to determine the context-specific effects of cTnl bis-phosphorylation. We propose that increasing bis-phosphorylation only increases calcium sensitivity when cMyBP-C phosphorylation is not increased simultaneously. When both cTnl and cMyBP-C are phosphorylated by PKA, there is a substantial body of evidence pointing to a desensitizing effect of PKA treatment on the myofilament response to calcium (79-81).

Replacement of the endogenous troponin in human cardiomyocytes with either non-phosphorylated human cardiac troponin (in donor samples) or bis-phosphorylated human cardiac troponin (in failing tissue) produced mixed populations of non-phosphorylated, monophosphorylated, and bis-phosphorylated cTnl, consistent with the present results (71). The overall effect of decreasing the proportion of bis-phosphorylated cTnl in donor cardiomyocytes was an increase in calcium sensitivity but the confounding effect of decreasing the proportion of mono-phosphorylated cTnl was not considered. We were also not able to eliminate the proportion of mono-phosphorylated cTnl, probably due to residual kinase and phosphatase activities and incomplete troponin exchange. However, the levels of mono-phosphorylation in our study were similar (20-30%) in the cTn-0P and cTn-2P groups, and therefore unlikely to be responsible for the functional effects. Both donor and failing heart groups with similar levels of cTnl mono-phosphorylation and higher levels of cTnl bis-phosphorylation exhibited a slight leftward shift of the force-pCa relation, albeit not statistically significant. The difference from our results may also stem from species-specific differences (human vs. rat). When skinned cardiac rat myocytes were exchanged with non-phosphorylated rat troponin, PKA treatment increased Ca$^{2+}$ sensitivity (82), as in the present study.

Although cTn-2P exchange had a significant effect on the pCa50 of force at long sarcomere length in untreated trabeculae, the effect on pCa50 of the structural change reported by the
troponin probe was small and not statistically significant. Similarly, in λPP-treated trabeculae, cTn-2P exchange influenced pCa_{50} of force but not that of \langle P_2 \rangle. This could be because the probe is on troponin C and not in troponin I, but it could also be a fundamental feature of the PKA mechanism and dual filament regulation. PKA phosphorylation of troponin I may be communicated to the thick filament to increase its activation state and LDA. Therefore, force would be a better indicator for such a mechanism because it depends on the activation states of both filaments.

In addition to the effects on Ca^{2+} sensitivity described above, increasing the proportion of bis-phosphorylated cTnl also affected the cooperativity of the force-pCa relations as described by the Hill coefficient \(n_H \). In trabeculae that had been non-specifically dephosphorylated with λPP, exchange with cTn-2P reduced \(n_H \) for force at both the short and long sarcomere lengths in comparison with the cTn-0P group. Back-phosphorylation with PKA increased \(n_H \) for force to the levels seen in the λPP-treated cTn-0P group, indicating that the effect is related to the mismatched phosphorylation levels of cTnl and other sarcomeric PKA targets. This result shows that cTnl bis-phosphorylation can have a detrimental impact on the force-calcium response when it is not coordinated with the phosphorylation status and action of its partners.

The activation of thin and thick filaments is intrinsically cooperative, and both filaments are likely to influence the steepness of the force-calcium relation as measured by \(n_H \) (6, 48). Troponin-tropomyosin interactions facilitate the spread of activation between adjacent regulatory units along the thin filament (2), whereas thick filament cooperativity may rely on the intermolecular myosin head-head interactions, which could propagate structural changes along its length (6, 83). Links between thick and thin filaments enhance cooperativity through interfilament signaling ensuring that activation is coordinated between the filament systems (84, 85). Therefore, interventions that affect interfilament communication by changing cross-bridge states or cMyBP-C N-terminal interactions would be expected to alter the level of cooperativity (86, 87). We hypothesize that the mismatched phosphorylation states of cTnl and cMyBP-C impair interfilament signaling leading to a reduction in the Hill coefficient for force. The impact of cTnl bis-phosphorylation on Ca^{2+} sensitivity and cooperativity in the absence of synchronised changes in cMyBP-C phosphorylation implies that the effects of PKA in the healthy heart must be mediated by coordinated changes in the phosphorylation states of both cTnl and cMyBP-C.

PKA treatment of permeabilized muscle preparations has been shown to enhance length-dependent activation but the contributions of cTnl and cMyBP-C phosphorylation have not been clearly defined (15). Our experiments show that when cMyBP-C is phosphorylated, incorporation of non-phosphorylated troponin resulted in a lower length-dependent shift in
calcium sensitivity. The relative percentage of bis-phosphorylated cTnI positively correlated with ΔpCa50 associated with LDA. When cMyBP-C phosphorylation level was reduced, however, cTnI bis-phosphorylation at Ser22 and Ser23 did not augment ΔpCa50. Moreover, in λPP-dephosphorylated trabeculae, the relative percentage of bis-phosphorylated cTnI no longer correlated with ΔpCa50. Back-phosphorylation with PKA restored cMyBP-C phosphorylation levels and increased ΔpCa50, suggesting that cTnI and cMyBP-C work together to upregulate LDA downstream of β-adrenergic signalling.

The conclusion that phosphorylation of cMyBP-C and cTnI enhances LDA through a shared mechanism is consistent with previous studies showing that modifications to just one of those proteins can block the PKA-dependent increase in LDA (46, 88, 89). These findings are based on phospho-ablation and knockout models, which have inherent limitations as discussed above. Other studies using phosphomimetics and phosphoablation have been interpreted in terms of independent effects of cTnI and cMyBP-C phosphorylation on LDA (18), or to imply that cMyBP-C is mainly responsible for the response to β-adrenergic stimulation (27), which highlights the need for more physiological experimental systems.

Our results are consistent with a molecular model in which PKA phosphorylation acts through both cTn and cMyBP-C on calcium sensitivity, cooperativity, and length-dependent activation in isolated myocardium. A direct interaction with troponin, the calcium sensor on the thin filament and subject to phosphorylation by the same kinase, might explain the coordinated responses of these two proteins to PKA phosphorylation.

Our MST data show that C0C2 can directly bind to the cardiac troponin core-complex in vitro. Such an interaction has already been reported (90) but here we provide context to its regulation by phosphorylation and calcium. N-terminal domains of cMyBP-C have been shown to diffuse along isolated thin filaments, scanning the filament for regulatory binding sites (84), which could be either actin sites or troponin based on their availability. In addition, cryo-EM structures show that there is an overlap between troponin, myosin and C0C1 binding sites on actin, so it is possible that phosphorylation, calcium and ligand competition determine their occupancy (2, 59, 91).

Although binding of NcMyBP-C to the thin filament is generally associated with an activating effect and an increase in its calcium sensitivity, the functional consequences of NcMyBP-C – cTn interactions could be different. NcMyBP-C also binds to NcTnC in vitro, which could either promote or interfere with cTnI switch peptide binding to NcTnC. This hypothesis could be tested in future experiments.
In the thick filament C-zone cMyBP-C is organized into nine stripes each containing three molecules, giving a total of 27 cMyBP-Cs per thick filament. In contrast, in the same region there are about ~40 available troponin molecules per thick filament and 7 times more actins. Considering the similar affinities of NcMyBP-C for actin and troponin and their stoichiometries, cMyBP-C might only bind a small fraction of cardiac troponins. However, only a fraction of thin filament regulatory units is activated during peak systole (7) and the activation signal is likely transmitted between troponins via structural changes in the tropomyosin chain. Moreover, the local effective concentration of NcMyBP-C and cardiac troponin are in the high micromolar range (61), which makes dissociation constants in the low micromolar range functionally significant.

Tris-phosphorylation of cMyBP-C not only weakens the interaction between NcMyBP-C and cardiac myosin, leading to a redistribution of the majority of NcMyBP-C towards the thin filament, but also weakens the interaction of NcMyBP-C with bis-phosphorylated cardiac troponin. In agreement, phosphorylation of isolated NcMyBP-C reduces binding (B_{max}) to isolated thin filaments (61). It follows that during these conditions NcMyBP-C primarily occupies actin binding sites on the thin filament because of the abovementioned stoichiometry considerations and the lower affinity for cTn-2P compared to actin.

This new phospho-regulated interaction between troponin and cMyBP-C gives an insight into the mechanism of their functional integration downstream of PKA. However, the molecular details of cMyBP-C interacting with cardiac myosin and thin filaments are currently unknown. Therefore, our findings should be treated as a starting point for further investigations.

There are several limitations in our study. λPP-treatment is not 100% efficient and is non-specific, affecting multiple sarcomeric components in trabeculae. We have previously shown that incubation with λPP increases the calcium sensitivity and decreases the cooperativity of the force-calcium relation but has no effect on the maximal calcium activated force of rat ventricular trabeculae (43). We assessed trabeculae and cardiac myofibril samples using ProQ/SYPRO to check which proteins were differentially modified by λPP and PKA (Fig. 1, Fig. S6). In our preparation, the cardiac regulatory light chain of myosin (cRLC) was not phosphorylated (see Fig. S6) (92), a result which may differ from that of other studies due to different animal strains and protocols. Hence, cRLC phosphorylation was not a factor in our experiments. In contrast to λPP, PKA is a specific enzyme and only increases the phosphorylation of its preferred targets including cMyBP-C and cTnI. The additional λPP, PKA control group, in combination with the specific cTnI exchange allowed us to distinguish between non-specific and specific functional effects.
While we did not measure the changes in titin phosphorylation, we were able to compare passive tension before and after PKA treatment. PKA phosphorylation of titin reduces passive tension (93, 94), which we observed in PKA back-phosphorylated trabeculae that were pre-treated with λ.PP (Table 1). We did not have the tools to study the effects of titin phosphorylation independently, but we expect it to change in the same direction as that of cMyBP-C in the above experiments. We cannot exclude the possibility that titin phosphorylation contributes to the changes observed alongside cMyBP-C, and a coordinated interplay between all three myofilament PKA targets (cTnI, cMyBP-C and titin) may control the response to PKA in vivo.

Another limitation of our study is that we examined steady state parameters in Ca^{2+} titrations. Although calcium sensitivities measured in steady state experiments with permeabilized muscle preparations do not reproduce the dynamic behaviour of the heart, they can be useful indicators for trends towards either increased or decreased relaxation (95). By looking at the structure and force parameters at the physiological diastolic (~pCa 7.0) and systolic calcium levels (~pCa 6.0) (54, 96), we can enhance our understanding of the PKA mechanism in simple steady-state conditions, so that we can later address more complex processes on the timescale of the heartbeat. The kinetics of heart muscle contraction and relaxation are impacted by many other sarcomeric and non-sarcomeric factors, which are poorly understood.

We did not use a sarcomere clamp method, so shortening in the central segment of the trabeculae during activation may have led to underestimation of the length-dependent changes in the measured parameters. However, we do not expect this to fundamentally change our results or conclusions, since the same limitation applied to all protocols. The temperature was lower (21-23°C) than physiological because our protocols were optimized for modulation of cTnI phosphorylation. It is difficult to increase the temperature to physiological values without compromising cTnI phosphorylation status or inflicting additional damage to the λ.PP-treated trabeculae.

In summary, the functional effects of PKA phosphorylation in demembranated trabeculae are highly coordinated between its major targets cTnI and cMyBP-C. This level of coordination might be enabled by direct interactions and competition for actin binding sites on thin filament, subject to regulation by PKA. When cTnI bis-phosphorylation is elevated at low levels of cMyBP-C phosphorylation, trabeculae show higher calcium sensitivity, depressed length-dependent shift in calcium sensitivity and depressed cooperativity. This could have pathological consequences for the heart, particularly in disease settings where cMyBP-C phosphorylation or phospho-regulated function is impaired.
Experimental procedures

Protein production and PKA phosphorylation
The rat cardiac troponin subunits were cloned, expressed, and purified separately. The whole troponin complex was reconstituted as previously described (43). As required, the complex was incubated with the catalytic subunit of PKA (Calbiochem, 539576) at a molar ratio ~1:100 (PKA:cTnI) overnight at 30 °C in a buffer containing 50 mmol/L Tris-HCl pH 8, 100 mmol/L NaCl, 5 mmol/L MgCl₂, 1 mmol/L CaCl₂, 5 mmol/L ATP and 1 mmol/L DTT. Subsequent mass spectrometric and Phos-tag™ immunoblot analysis showed that only Ser 22 and Ser 23 on cTnI were phosphorylated with ~100% efficiency (Fig. S3). Cardiac troponin was purified by running it through a Resource-Q column. The final concentrated product was subjected to further analysis by HPLC, ESI-MS and size exclusion-multi angle light scattering (SEC-MALS) (Fig. S4 and Fig. S5). The C0C2 fragments from rat cardiac MyBP-C were produced using the same methods described for C1mC2 fragments (47, 61).

Trabeculae preparation
All animals were treated in accordance with the guidelines approved by the UK Animal Scientific procedures Act (1986) and European Union Directive 2010/63/EU. Male Wistar rats (200-250 g) were sacrificed by cervical dislocation without the use of anesthetics (Schedule 1 procedure in accordance with UK Animal Scientific Procedure Act, 1986). Right ventricular trabeculae were dissected as previously described (48) but the dissection solution contained 50 mmol/L BDM and was kept ice-cold to prevent tissue damage and reduce hyperphosphorylation of myofilament proteins during the preparation. Calpeptin (25 µmol/L, Merck Milipore, 03-34-0051-5MG) was also supplemented to inhibit calpain activity during permeabilization in 1% Triton X-100. Demembranated trabeculae were stored in relaxing solution (97) containing 50% (v/v) glycerol, 1% (v/v) protease inhibitor cocktail (Sigma-Aldrich, P8340) and kinase inhibitors H-89 (50 µmol/L, Abcam, ab143787) and H7 (20 µmol/L, Abcam, ab142308) at −20°C for one week. Trabeculae to be dephosphorylated with lambda protein phosphatase (λ.PP) were preserved in 50% (v/v) glycerol storage relaxing buffer without kinase or phosphatase inhibitors. After λ.PP treatment, trabeculae were kept in the storage solution with all the above-mentioned inhibitors including 1% (v/v) phosphatase inhibitor cocktail 3 (Sigma-Aldrich, P0044).

Lambda phosphatase treatment and PKA back-phosphorylation
Trabeculae and time-matched tissue samples to be treated with λ.PP were split into three groups: λ.PP-treatment and non-phosphorylated cTn exchange (λ.PP, cTn-0P), λ.PP-treatment and bis-phosphorylated cTn exchange (λ.PP, cTn-2P) and finally λ.PP-treatment followed by
PKA back-phosphorylation and cTn-2P exchange (λPP, PKA, cTn-2P). For λPP dephosphorylation, the trabeculae were incubated two hours at 20°C in a buffer with the same composition as relaxing buffer (97) excluding K₂EGTA with additional 50 mmol/L BDM, 13 mmol/L MnCl₂ and 2000 U/ml λPP (New England BioLabs, P0753). After the λPP treatment, some tissue samples were harvested for gels by washing them two times in phosphate-buffered saline (1x PBS) and boiling in denaturing 1x sample buffer for 10 minutes (45 mmol/L Tris-HCl pH 6.8, 1% SDS, 10% glycerol, 1% β-mercaptoethanol, 0.01% bromphenol blue). The third group of trabeculae and muscles were washed in PKA buffer (relaxing solution supplemented with 50 mmol/L BDM, 1% (v/v) protease inhibitor cocktail, 25 µmol/L calpeptin and 1% (v/v) phosphatase inhibitor cocktail 3), followed by back-phosphorylation in PKA buffer containing 20 U/µl of the kinase for 2 hours at 20°C.

Troponin exchange
The trabeculae were exchanged with rat cTn (either 0P or 2P) by bathing them overnight at 4 °C in relaxing solution containing 1.5 mg/ml troponin, 50 mmol/L BDM, 1% (v/v) protease inhibitor cocktail and kinase inhibitors H-89 and H7 (50 µmol/L and 20 µmol/L, respectively). The exchange solution for λPP dephosphorylated trabeculae also contained 1% (v/v) phosphatase inhibitor cocktail 3 and calpeptin (25 µmol/L). The 2P cTn exchange solution for λPP dephosphorylated and PKA back-phosphorylated trabeculae contained 20 U/µl PKA, 50 mmol/L BDM, 1% (v/v) protease inhibitor cocktail, 1% (v/v) phosphatase inhibitor cocktail 3 and calpeptin (25 µmol/L). On the following morning, the troponin-reconstituted trabeculae were exchanged with BR-cTnC-E in a second step for 2.5 hours at 4 °C. The exchange solution contained: 0.5 mg/ml BR-cTnC-E, 50 mmol/L BDM and the same inhibitors as in the previous troponin solution. Whole troponin reconstitution was previously assessed as ~80% (43). BR-cTnC-E exchange efficiency is shown in Fig. S2, and the method was described in an earlier study (3).

Determination of cTnl phosphorylation level
After experiments, trabeculae were washed two times briefly in 1x PBS and dismounted from the experimental setup. Trabeculae and time-matched muscles were dissolved in 1x Laemmli sample buffer as previously described. Protein samples were run on 10% (v/v) acrylamide mini-PROTEAN™ or CRITERION™ (BIO-RAD) Phos-tag™-SDS-PAGE gels (containing 50 µmol/L Phos-tag™-reagent and 100 µmol/L MnCl₂) at constant current of 20 mA per gel. The western blot protocol was described earlier with some modifications (43). The proteins were blotted onto PVDF membranes for 1 h at 1 mA/cm² using a Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell (BIO-RAD). The membranes were blocked overnight in TBS containing 0.05% (v/v) Tween 20 (TBS-T) and 5% (w/v) semi-skimmed milk powder and probed with the following mouse monoclonal primary antibodies in TBS-T and 1% (w/v) semi-
skimmed milk powder for 2 hours at 4°C (working dilution, source, catalogue #): mouse anti-cTnI antibody [MF4] (1: 10,000, HyTest, 4T21) and mouse anti-cTnI antibody [84] (1: 5,000, HyTest, 4T21). Anti-cTnI [MF4] detects an epitope at the C-terminus of cTnI WRKNIDA (amino acids a.a. 190-196 in the human sequence and 191-197 in rat cTnI), which is identical in human and rat. In comparison, anti-cTnI [84] binds to residues VTKNITEIAD, part of the coiled coil region (human 117-126 and rat 118-127). The rationale for using both antibodies was to check for any major differences in phosphorylation levels resulting from C-terminally degraded cTnI. For immunoblotting using the polyclonal antibodies against phospho-cTnI (1:500 in TBS-T and 1% (w/v) BSA, Cell Signaling, 4004) and total cTnI (1:1000 in TBS-T and 1% (w/v) semi-skimmed milk powder, Cell Signaling, 4002), the membrane was blocked for one hour in TBS-T and 5% (w/v) of the corresponding blocking reagent before overnight incubation with the primary antibody at 4°C. Membranes were agitated for 30 minutes at 4°C in the secondary antibody solution: HRP-conjugated goat anti-mouse IgG (1:2000 in TBS-T and 1% (w/v) semi-skimmed milk powder, BIO-RAD, 103005) or HRP-conjugated goat anti-rabbit IgG (1:2000 in TBS-T and 1% (w/v) blocking reagent, BIO-RAD, 403005) as appropriate.

For phosphi-staining, samples were run on either 10% (v/v) acrylamide SDS-PAGE gels or 4-20% (v/v) gradient gels (BIO-RAD). The gels were stained with Pro-Q® Diamond phospho-protein stain and SYPRO® Ruby total protein stain according to the manufacturer’s instructions (Life Technologies).

Determination of cMyBP-C phosphorylation level

Cardiac myofibrils (CMFs) were prepared as previously described (86). The CMF pellet weights were measured after the last centrifugation step to determine the concentration in CMF buffer. The pellets were resuspended in CMF buffer and 50% (v/v) glycerol for storage at -20°C. Inhibitors were supplemented to all solutions at the same concentrations used for trabeculae. CMFs from each heart were split into three samples each: before treatment (PRE), \(\lambda \)PP sample and \(\lambda \)PP/PKA sample. The pellets were washed three times in \(\lambda \)PP buffer. CMFs were dephosphorylated using the same conditions as for trabeculae: 20 mg pellet in 1 ml phosphatase buffer containing 2000 U/ml \(\lambda \)PP and inhibitors for 2 hours at 20°C. The \(\lambda \)PP/PKA samples were washed in relaxing solution before back-phosphorylation for 2 hours at 4°C with 20 U/\(\mu l \) PKA as previously described for trabeculae. SDS-PAGE samples were prepared as before. For ProQ/SYPRO staining, the samples were run on 10% (v/v) acrylamide gel. For western blotting against cMyBP-C, the samples were run on a 6% (v/v) acrylamide gel. The transfer buffer contained 5% (v/v) methanol and Semi-Dry transfer was performed for 2 hours. BSA was used as a blocking agent for the phospho-specific primary antibody against S282
phosphorylated cMyBP-C. Primary incubation took place overnight at 4°C (1:2,000, ENZO Life Sciences, AL-215-057-R050). The antibody is expected to bind to residues 276-288 (G276AGRRTPSDHEDA288) of cMyBP-C phosphorylated at Ser282. The protocol for secondary antibody incubation and onwards was as previously described (HRP-conjugated goat anti-rabbit IgG, 1:2000 dilution, BIO-RAD, 403005). To detect total cMyBP-C, the membrane was stripped using Restore™ Plus stripping agent (Thermo Scientific). Stripping was done for 45 minutes at 20°C according to the provided instructions, followed by a wash and blocking in 5% (w/v) BSA, 1x TBS-T. Total cMyBP-C was detected with anti-cMyBP-C mouse monoclonal IgG [G-7]: 1:2,000 for 5 hours at 4°C (Santa Cruz Biotechnology, sc-137237). The secondary antibody was HRP-conjugated goat anti-mouse IgG (1:2000, BIO-RAD, 103005).

Microscale thermophoresis
Recombinant troponin complexes (either 0P or 2P) were labelled with Alexa647-NHS (ThermoScientific) at a stoichiometry 1:1 according to the manufacturer’s instructions. The reactions were stopped with 50 times molar excess Tris-HCl and cleaned of free dye using a Nap5 column. Dye incorporation efficiency (>80%) was confirmed by HPLC and using the Alexa647 extinction coefficient. For the cTnC N-lobe experiments (NcTnC), NcTnC was labelled with Alexa647-NHS using the same protocol. Recombinant rat cardiac C0C2 fragments (either 0P or PKA phosphorylated 3P) were exchanged in the corresponding MST buffer. The low-Ca²⁺ MST buffer contained 20 mmol/L MOPS, pH 7, 1 mmol/L K-EGTA, 100 μmol/L CaCl₂, 1 mmol/L MgCl₂, 50 mmol/L KCl, 1 mmol/L DTT, 0.05% (v/v) Tween 20. The high-Ca²⁺ MST buffer contained 1 mmol/L CaCl₂ in the absence of K-EGTA and MgCl₂ and was also used for the NcTnC experiments. 12 (1:1) dilutions were prepared, producing ligand C0C2 concentrations ranging from 0.0488 μM to 100 μM. The concentration of the Alexa647-labelled cTn was kept constant at 90 nmol/L and the concentration of Alexa647-labelled NcTnC was 50 nmol/L. After 20 min incubation, followed by centrifugation at maximum speed in a table-top centrifuge for 1 min, the samples were loaded into Monolith NT.115 [Premium] Capillaries (NanoTemper Technologies). The troponin complex MST measurements were performed using the Monolith NT.115 [NT.115Pico/NT.LabelFree] (NanoTemper Technologies) at 20 % LED power, 40% medium MST power and 30°C. The cTnC N-lobe experiments were performed at 20 % LED power, 80% MST power and 30°C. The same MST-on time was used for comparisons (MO.Affinity Analysis software version 2.2.4, NanoTemper Technologies). The experiment numbers represent independently pipetted measurements.

Fluorescence polarization experiments
From each preparation, trabeculae were split into either two groups (untreated trabeculae) or three groups (i.PP-treated trabeculae) to minimize the impact of animal-to-animal variations.
Two experiments were performed each day in a randomized order. Polarized fluorescence intensities and force were measured simultaneously as described previously at 20°C (48). In brief, trabeculae were illuminated from below with laser light polarized either parallel or perpendicular to the trabecular axis. Fluorescence emission from BR-cTnC-E in trabeculae was collected both in line with the illuminating beam and at 90° to both the illuminating beam and the trabecular axis. Each emitted beam was separated into parallel and perpendicular components, from which three independent orientation order parameters were calculated: \(\langle P_{2d} \rangle \) describing the amplitude of rapid probe wobble on the protein surface, \(\langle P_2 \rangle \) and \(\langle P_4 \rangle \) describing the distribution of angles \(\theta \) between the BR fluorescence dipole and the thin filament axis (98). The order parameter \(\langle P_2 \rangle \) is linearly related to populations of probe molecules in the muscle cell and takes values between +1 (parallel orientations) and -0.5 (perpendicular orientations).

The sarcomere length was measured by laser diffraction in relaxing solution and initial sarcomere length was adjusted to 1.9 \(\mu \)m. The composition of the experimental solutions was previously described (97). Each activation was preceded by a two-minute incubation in preactivating solution. Solutions with varying free \([Ca^{2+}]\) were prepared by mixing relaxing and activating solutions according to calculations using the MAXCHELATOR software (maxchelator.stanford.edu). For experiments in untreated trabeculae, calpeptin and kinase inhibitor H7 were supplemented at the concentrations given above. Additional phosphatase inhibitor cocktail 3 was supplemented to all \(\lambda \)PP-treated trabeculae. Trabeculae were activated by switching pCa solutions using a continuous titration protocol to limit damage to the trabeculae. Force was recorded once steady state was established. Trabeculae were relaxed after maximal activation. Trabeculae, in which force at maximal \([Ca^{2+}]\) declined by more than 15% were discarded. After the first titration, trabeculae were stretched to sarcomere length 2.3 \(\mu \)m in relaxing solution and the titration protocol was repeated.

Data analysis

The force-pCa and \(\langle P_2 \rangle \)-pCa relations were fitted for each trabecula using non-linear least-squares regression to a modified Hill equation:

\[
Y = Y_0 + \frac{(Y_{MAX} - Y_0)}{1 + 10^{n_H(pCa-pCa_{50})}}
\]

whereby, \(n_H \) is the Hill coefficient, \(Y_{MAX} \) is the maximal value and \(Y_0 \) is the minimal value of force or \(\langle P_2 \rangle \). \(pCa_{50} \) indicates the inverse log of the \([Ca^{2+}]\) required for 50% of the total change in \(Y \).

Correlations between cTnl phosphorylation level and \(Ca^{2+} \) sensitivity of force or length-dependent changes in force \(pCa_{50} \) were evaluated in SigmaPlot (version 14.0).
these parameters was tested using Pearson analysis. The data was plotted using Prism (version 8.2.1).

Unpaired Student t-test was used for comparisons between two groups (untreated trabeculae exchanged with cTn-0P vs. untreated trabeculae exchanged with cTn-2P) when homoscedasticity and normality assumptions were met. Mann-Whitney Rank Sum Test was used if Shapiro-Wilk normality or Brown-Forsythe equal variance tests failed. Many of the effects due to sarcomere length have been previously characterized by us and others and we had clearly defined hypotheses (10, 13, 99). Therefore, instead of using mixed design analysis, paired Student t-tests were performed for comparisons between SL 1.9 µm and 2.3 µm. Wilcoxon Signed Rank Test was used for nonparametric comparisons.

Unless otherwise specified, the λPP set of experiments were analyzed using one-way analysis on variance (ANOVA) versus the λPP-treated group exchanged with cTn-2P in combination with Holm-Sidak post-test, when assumptions of normality and homoscedasticity were satisfied. Alternatively, Kruskal-Wallis one-way analysis on ranks against the λPP-treated cTn-2P group was performed, followed by Dunn’s post-test. Within-group analysis between SL 1.9 µm and 2.3 µm was done as previously stated. All data were expressed as mean ± SD, with N referring to the number of animals and n representing the number of muscles. Statistical significance was set at p<0.05.

Data availability
All data are contained within the manuscript and supplemental information. Raw data can be obtained from the corresponding author upon reasonable request.

Supporting information
This article contains supporting information (1, 2, 59, 62, 91).

Acknowledgements
We are grateful to the British Heart Foundation for their financial support. We also thank Dr Andrea Knowles, Professor Metin Avkiran, Professor Brian Sykes and Professor Jonathan Kentish for their help and advice.

Author contributions
IS, YBS and TK designed research; IS performed research; SP and ZY contributed new reagents/analytic tools; IS analysed the data; and IS, TK and MI wrote the paper.

Funding and additional information
This study was funded by a senior basic science fellowship awarded to YBS (FS/15/1/31071) and a basic science intermediate fellowship awarded to TK (FS/16/3/31887).
Conflict of interests
The authors declare that they have no conflicts of interest with the contents of this article.

References

43. I. R. Sevrieva et al., Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. *J Biol Chem* 10.1074/jbc.RA119.011945 (2020).

50. A. Fabiato, Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. *J Gen Physiol* **78**, 457-497 (1981).

Abbreviations and nomenclature

cMyBP-C, cardiac myosin binding protein-C; NcMyBP-C, N-terminal domains of cardiac MyBP-C; cTn, cardiac troponin; cTnI, cardiac troponin I; ssTnI, slow skeletal cardiac troponin I; cTnC, cardiac troponin C; NcTnC, N-terminal lobe of cardiac troponin C; CcTnC, C-terminal lobe of cardiac troponin C; cTnT, cardiac troponin T; cTnI-0P, non-phosphorylated cardiac troponin I; cTn-2P, cardiac troponin containing Ser22 and Ser23 bis-phosphorylated cardiac troponin I; cTn-0P, non-phosphorylated cardiac troponin; PKA, protein kinase A; LDA, length-dependent activation; SL, sarcomere length; ATP, Adenosine 5′-triphosphate; cMLCK, cardiac myosin light chain kinase; λPP, λ-protein phosphatase; BR, bifunctional rhodamine; MST, Microscale Thermophoresis; cC0C2, and N-terminal fragments of cMyBP-C encompassing domains C0, C1, m-motif and C2; cC0C2-3P, cC0C2 tris-phosphorylated by PKA; a.a., amino acids; cRLC, cardiac regulatory light chain of myosin; CMFs, cardiac myofibrils.
Figure Legends

Figure 1. Effects of \(\lambda \)-PP- and PKA-treatment on myofilament protein phosphorylation levels. (A) Pro-Q Diamond phospho-protein (top) and SYPRO-Ruby total protein staining (bottom) of cardiac myofibrils (CMFs) isolated from three different hearts before (PRE), after \(\lambda \)-PP and after \(\lambda \)-PP/PKA-treatment. The position of cMyBP-C and cTnI are indicated by black and green arrows, respectively. (B) cMyBP-C phosphorylation levels were determined by Western-blot using phosphoserine 282-specific and total cMyBP-C antibodies. (C) Relative cMyBP-C phosphorylation levels determined by Pro-Q/SYPRO staining (left) and Western-blot (right) of samples before treatment (PRE) and after \(\lambda \)-PP- and \(\lambda \)-PP/PKA treatment. Bar plots are means ± SD. Comparisons with (PRE) were done using Brown-Forsythe and Welch ANOVA and Dunnett T3 test (\(\S \)p<0.05).

Figure 2. Modulation of cardiac troponin I phosphorylation in ventricular trabeculae by recombinant troponin exchange. (A) Example Phos-tag™-Western blots against cTnI from experimental ventricular trabeculae, either untreated or \(\lambda \)-PP-treated, followed by exchange with either non-phosphorylated or bis-phosphorylated recombinant rat troponin complex. Troponin I was detected with the mouse monoclonal antibody 84 against the central region (residues 118-127 in the rat cardiac sequence). (B) Densitometric analysis and plots of mol incorporated phosphate per mol cTnI (mol Pi/mol cTnI). (C) Densitometric analysis of cTnI phosphorylation levels from single trabeculae showing the relative percentages of cTnI species, summarized in (D). Bar plots are means ± SD. Statistics in (B) are Kruskal-Wallis test with Dunn’s multiple comparisons test against the \(\lambda \)-PP-treated cTn-2P group (ns not significant, \(\S \S \)p<0.01) and unpaired two-tailed t test for the untreated groups (****p<0.0001).

Figure 3. cTnI and cMyBP-C phosphorylation control cardiac length-dependent activation. Force-calcium titration of untreated (A and B) and \(\lambda \)-PP-treated trabeculae (C and D) exchanged with either non-phosphorylated (A and C) or bis-phosphorylated cTn complex (B and D) at short (1.9 \(\mu \)m, open symbols) and long sarcomere length (2.3 \(\mu \)m, closed symbols). The dotted and dashed lines in (B) and (D) represent the Hill fits shown in (A) and (C), respectively. (E) Force-calcium relation of \(\lambda \)-PP- and subsequently PKA-treated trabeculae exchanged with bis-phosphorylated cTn at short and long sarcomere length. (F) Summary plot showing the increase in calcium sensitivity (\(\Delta pCa_{50} \)) upon sarcomere length increase for all experimental groups. Means ± SD, (A) n=12-15, (B) n=11-14, (C) n=9, (D) n=8-10 and (E) n=9. Statistical significance of differences was assessed with Brown-Forsythe and Welch ANOVA, followed by Dunnett’s T3 multiple comparisons test: ns not significant, \(\S \)p<0.05 and \(\S \S \)p<0.01.

Figure 4. Pearson correlation analysis of force pCa_{50} and \(\Delta pCa_{50} \) vs. the percentage Ser22/23 bis-phosphorylated cTnI. (A), (B) and (C): data from trabeculae with high levels of cMyBP-C phosphorylation. (D), (E) and (F): data from \(\lambda \)-PP-treated trabeculae with low levels of cMyBP-C phosphorylation.
Figure 5. $\langle P_2 \rangle$-calcium titrations of untreated (A and B) and λPP-treated trabeculae (C and D) exchanged with either non-phosphorylated (A and C) or bis-phosphorylated cTn complex (B and D) at short (1.9 μm, open symbols) and long sarcomere length (2.3 μm, closed symbols). Dotted lines are Hill fits at short sarcomere length and solid lines are Hill fits at long sarcomere length. (E) $\langle P_2 \rangle$-calcium relation of λPP- and subsequently PKA-treated trabeculae exchanged with bis-phosphorylated cTn at short and long sarcomere length. (F) Plot of pCa$_{50}$ (means) of force (dark colours) and $\langle P_2 \rangle$ (light colours) at the two sarcomere lengths as indicated on the right. Means ± SD, (A) n=12-15, (B) n=11-14, (C) n=9, (D) n=8-10 and (E) n=9.

Figure 6. cMyBP-C binds cTn in a cTnI-phosphorylation and calcium-dependent manner. (A) Microscale thermophoresis curves for non-phosphorylated C0C2 (C0C2-0P) and PKA tris-phosphorylated C0C2 (C0C2-3P) binding to non-phosphorylated (cTn-0P) and cTnI bis-phosphorylated cTn (cTn-2P) at low Ca$^{2+}$ concentrations (~pCa 7.4). Left ΔF_{norm} (%): the MST signal change is expressed as the percentage change of the normalized fluorescence (ΔF_{norm}), whereby F_{norm} is defined as F_1/F_0 (fluorescence values before F_0 and after F_1 infrared laser activation) and the baseline F_{norm} (the mean F_{norm} of the unbound target) is subtracted from all data points of the same curve. Right normalized binding: the fraction bound is plotted against ligand concentration, whereby all ΔF_{norm} values of a curve are divided by the curve amplitude, resulting in normalized fraction bound. Inset bar plot of the dissociation constants (Kd). (B) Same as in (A), except at high Ca$^{2+}$ concentrations (pCa 3). (C) Normalized MST binding curves for C0C2 (black) and C0C2-3P (purple) titrated against Alexa647-labelled NcTnC. (D) Hypothetical model of the phosphorylation-dependent interaction of NcMyBP-C with cardiac troponin. Please see text for details. Means ± SD, n=3-5. Statistical significance of differences was assessed with one-way ANOVA, followed by Tukey’s post-hoc test (A) and Kruskal-Wallis test on ranks, followed by Dunn’s (B) §p<0.05, §§p<0.01, §§§p<0.001. (C) Two-tailed unpaired t-test *p<0.05.
Table 1. Summary of force-pCa parameters for untreated and λPP-treated rat ventricular trabeculae. N=number of hearts, n=number of experiments. Means ± SD. *p<0.05, **p<0.01 and ***p<0.001 in unpaired two-tailed comparisons between the untreated cTn-0P and cTn-2P groups. §p<0.05, §§p<0.01 and §§§p<0.001 in two-tailed comparisons of the λPP, cTn-0P and λPP, PKA, cTn-2P groups against the λPP, cTn-2P group. †p<0.05, ††p<0.01 and †††p<0.001 in paired comparisons between SL 1.9 µm and 2.3 µm. Statistics are described in more detail in the experimental procedures.

<table>
<thead>
<tr>
<th></th>
<th>F_{passive}</th>
<th>F_{max}</th>
<th>F_{pCa 5.9}</th>
<th>pCa_{0.50}</th>
<th>ΔpCa_{0.50}</th>
<th>n_{H}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mN/mm²)</td>
<td>(mN/mm²)</td>
<td>(mN/mm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-0P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>0.6 ± 1.1</td>
<td>34 ± 11</td>
<td>1 ± 1.2</td>
<td>5.72 ± 0.05</td>
<td>0.10 ± 0.03</td>
<td>11.5 ± 3.1</td>
</tr>
<tr>
<td>N=8, n=15</td>
<td>19 ± 13</td>
<td>66 ± 22</td>
<td>18 ± 8.8</td>
<td>5.82 ± 0.06</td>
<td></td>
<td>10.4 ± 3.5</td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-2P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>0.3 ± 0.2</td>
<td>36 ± 17</td>
<td>3 ± 4</td>
<td>5.75 ± 0.05</td>
<td>0.15 ± 0.04</td>
<td>10.6 ± 2.1</td>
</tr>
<tr>
<td>N=7, n=14</td>
<td>16 ± 11</td>
<td>73 ± 37</td>
<td>50 ± 34</td>
<td>5.90 ± 0.06</td>
<td></td>
<td>8.4 ± 2.7</td>
</tr>
<tr>
<td>λPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-0P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>2.7 ± 1.9</td>
<td>40 ± 18</td>
<td>4 ± 4§</td>
<td>5.77 ± 0.03§</td>
<td>0.10 ± 0.02</td>
<td>9.0 ± 2.2 §</td>
</tr>
<tr>
<td>N=7, n=9</td>
<td>21 ± 12</td>
<td>68 ± 23</td>
<td>27 ± 15††</td>
<td>5.88 ± 0.03††§§</td>
<td></td>
<td>7.1 ± 1.7 ††§§</td>
</tr>
<tr>
<td>λPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-2P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>2.5 ± 1.6</td>
<td>34 ± 10</td>
<td>9 ± 6</td>
<td>5.83 ± 0.05</td>
<td>0.11 ± 0.03</td>
<td>6.7 ± 1.4</td>
</tr>
<tr>
<td>N=7, n=10</td>
<td>23 ± 13††</td>
<td>68 ± 22††</td>
<td>41 ± 20††</td>
<td>5.94 ± 0.06††</td>
<td></td>
<td>4.3 ± 0.7††</td>
</tr>
<tr>
<td>λPP-PKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-2P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>1.2 ± 0.6§</td>
<td>42 ± 8</td>
<td>8 ± 5</td>
<td>5.82 ± 0.04</td>
<td>0.15 ± 0.02§§</td>
<td>8.5 ± 2.3</td>
</tr>
<tr>
<td>N=6, n=9</td>
<td>28 ± 15††</td>
<td>73 ± 16††</td>
<td>49 ± 15††</td>
<td>5.97 ± 0.03††</td>
<td></td>
<td>6.0 ± 1.4††</td>
</tr>
</tbody>
</table>
Table 2. Summary of $\langle P_2 \rangle$-pCa parameters for untreated and λPP-treated rat ventricular trabeculae. A is the amplitude of structural change or the difference between the top and bottom of the curve (maximum $\langle P_2 \rangle$ value at maximal calcium concentration and the minimum $\langle P_2 \rangle$ value at pCa5.9-pCa6.4). N=number of hearts, n=number of experiments. Means ± SD. *p<0.05, **p<0.01 and ***p<0.001 in unpaired two-tailed comparisons between the untreated cTn-0P and cTn-2P groups. §p<0.05, §§p<0.01 and §§§p<0.001 in two-tailed comparisons of the λPP, cTn-0P and λPP, PKA, cTn-2P groups against the λPP, cTn-2P group. †p<0.05, ††p<0.01 and †††p<0.001 in paired comparisons between SL 1.9 µm and 2.3 µm. The statistics are described in more detail in the experimental procedures.

<table>
<thead>
<tr>
<th></th>
<th>(P2) 9.0</th>
<th>(P2)$_{\text{min}}$</th>
<th>(P2)$_{\text{max}}$</th>
<th>A</th>
<th>pCa$_{50}$</th>
<th>ΔpCa$_{50}$</th>
<th>n$_H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-0P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>0.19 ± 0.03</td>
<td>0.12 ± 0.02</td>
<td>0.21 ± 0.03</td>
<td>0.09 ± 0.02</td>
<td>5.72 ± 0.04</td>
<td>0.060 ± 0.017</td>
<td>9.0 ± 2.1</td>
</tr>
<tr>
<td>N=8, n=15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 2.3 µm</td>
<td>0.22±0.02</td>
<td>0.13 ± 0.02</td>
<td>0.24 ± 0.03</td>
<td>0.11 ± 0.01</td>
<td>5.78 ± 0.05</td>
<td>0.064 ± 0.028</td>
<td>7.2 ± 1.7</td>
</tr>
<tr>
<td>N=8, n=12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-2P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>0.17 ± 0.03</td>
<td>0.10 ± 0.01</td>
<td>0.19 ± 0.03</td>
<td>0.09 ± 0.03</td>
<td>5.75 ± 0.04</td>
<td>0.064 ± 0.028</td>
<td>9.7 ± 1.9</td>
</tr>
<tr>
<td>N=7, n=14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 2.3 µm</td>
<td>0.19 ± 0.03</td>
<td>0.11 ± 0.01</td>
<td>0.21 ± 0.03</td>
<td>0.11 ± 0.02</td>
<td>5.81 ± 0.05</td>
<td>0.064 ± 0.028</td>
<td>5.3 ± 1.1</td>
</tr>
<tr>
<td>N=6, n=11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-0P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>0.22 ± 0.04</td>
<td>0.14 ± 0.02</td>
<td>0.24 ± 0.04</td>
<td>0.10 ± 0.02</td>
<td>5.79 ± 0.04</td>
<td>0.05 ± 0.03</td>
<td>7.0 ± 1.4</td>
</tr>
<tr>
<td>N=7, n=9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 2.3 µm</td>
<td>0.25 ± 0.03</td>
<td>0.15 ± 0.02</td>
<td>0.26 ± 0.03</td>
<td>0.12 ± 0.01</td>
<td>5.84 ± 0.02</td>
<td>0.05 ± 0.03</td>
<td>5.7 ± 1.0</td>
</tr>
<tr>
<td>N=7, n=9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-2P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>0.21 ± 0.04</td>
<td>0.13 ± 0.02</td>
<td>0.23 ± 0.04</td>
<td>0.10 ± 0.03</td>
<td>5.81 ± 0.03</td>
<td>0.06 ± 0.03</td>
<td>5.9 ± 1.7</td>
</tr>
<tr>
<td>N=7, n=10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 2.3 µm</td>
<td>0.24 ± 0.02</td>
<td>0.13 ± 0.01</td>
<td>0.25 ± 0.02</td>
<td>0.11 ± 0.02</td>
<td>5.86 ± 0.04</td>
<td>0.06 ± 0.03</td>
<td>4.6 ± 1.0</td>
</tr>
<tr>
<td>N=7, n=8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cTn-2P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 1.9 µm</td>
<td>0.23 ± 0.03</td>
<td>0.12 ± 0.02</td>
<td>0.25 ± 0.03</td>
<td>0.12 ± 0.02</td>
<td>5.80 ± 0.03</td>
<td>0.08 ± 0.02</td>
<td>7.5 ± 2.0</td>
</tr>
<tr>
<td>N=6, n=9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 2.3 µm</td>
<td>0.25 ± 0.03</td>
<td>0.13 ± 0.01</td>
<td>0.26 ± 0.03</td>
<td>0.13 ± 0.02</td>
<td>5.88 ± 0.02</td>
<td>0.08 ± 0.02</td>
<td>5.0 ± 1.0</td>
</tr>
</tbody>
</table>
Ivanka Sevrieva: designed research, performed research, analyzed data, wrote manuscript
Saraswathi Ponnam: contributed new reagents/analytic tools
Ziqian Yan: contributed new reagents/analytic tools
Malcolm Irving: wrote manuscript
Thomas Kampourakis: designed research, wrote manuscript
Yin-Biao Sun: designed research
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: