Abstract
Keywords
Introduction

- Cai W.
- Ryan U.
- Xiao L.
- Feng Y.
Newman TE, Juergens AL. Filariasis. [Updated 2022 May 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556012/
Aminoacyl-tRNA synthetase (aaRSs) as antiparasitic drug targets



Inhibitors against parasite aminoacyl-tRNA synthetases
Alanyl-tRNA synthetase (AlaRS)
aaRSs | Inhibitor(s) | Parasite | Binding mechanism | Reference |
---|---|---|---|---|
AlaRS | A3; A5 | Plasmodium falciparum | Active site # | Khan et al., 2011 |
Natural marine product library (1881C, 2059D and 2096D) | Leishmania major Trypanosoma cruzi | Active site # | Kelly et al., 2020 | |
ArgRS | hemin | Plasmodium falciparum | Not known | Jain et al., 2016 |
AsnRS | Variolin B | Brugia malayi | Active site # | Sukuru et al., 2006 |
Natural product extracts (L-aspartate-B-hydroxomate | Brugia malayi | Pre-transfer editing site # | Danel et al., 2011 | |
TAM B (from Streptomyces sp. 17944 extracts) | Brugia malayi | Pre-transfer editing site # | Yu et al., 2011 | |
WS936D (from Streptomyces sp. 9078 extracts) | Brugia malayi | Pre-transfer editing site # | Yu et al., 2012 | |
Adipostatins A-D (from Streptomyces sp. 4875 extracts) | Brugia malayi | Pre-transfer editing site # | Rateb et al., 2015 | |
IleRS | Mupirocin | Plasmodium falciparum | Active site | Istvan et al., 2011 |
Thiaisoleucine | Plasmodium falciparum | Active site # | Istvan et al., 2011 | |
NSC70422 (Ile-AMP analog) | Trypanosoma brucei | Active site # | Cestari and Stuart 2013 | |
HisRS | 15 fragments | Trypanosoma cruzi | Auxiliary site | Koh et al., 2015 |
LeuRS | Benzoxaborole derivatives | Trypanosoma brucei | Post-transfer editing site | Ding et al., 2011 |
2-Pyrrolinone derivatives | Trypanosoma brucei | Active site (predicted; 3D model of synthetic active site) | Zhao et al., 2012 | |
N-(4-sulfamoylphenyl)thioureas derivatives | Trypanosoma brucei | Active site (predicted; 3D model of synthetic active site) | Zhang et al., 2013 | |
3,5-dicaffeoylquinic acid and derivatives | Giardia lamblia | Active site # | Zhang et al., 2012 | |
AN2690 | Leishmania donovani | Active site # | Minhas et al., 2018, Tandon et al., 2020 | |
Benzoxaborole derivatives (AN6426, AN8432) | Plasmodium falciparum | Editing active site | Sonoiki et al., 2016 | |
Benzoxaborole derivative (AN6426) | Cryptosporidium parvum | Editing active site | Palencia et al., 2016 | |
Toxoplasma gondii | Editing active site | Palencia et al., 2016 | ||
series of α-phenoxy-N sulfonylphenyl acetamides (Compound 28g) | Trypanosoma brucei | Active site (predicted; 3D model of synthetic active site) | Xin et al., 2020 | |
Amides (Compound 74 and 91) | Trypanosoma brucei | Active site (predicted; 3D model of synthetic active site) | Li et al., 2021 | |
LysRS | Cladosporin | Plasmodium falciparum | Active site | Khan et al., 2013 |
Compound 5 | Plasmodium falciparum | Active site | Baragana et al., 2019 | |
Cryptosporidium parvum | Active site | |||
ASP3026 (anaplastic lymphoma kinase inhibitor) | Plasmodium falciparum | Active site | Zhou et al., 2020 | |
Cladosporin derivatives, CL-2 | Plasmodium falciparum | Active site | Babbar et al., 2021a | |
Cladosporin derivatives, Cla-B, Cla-C | Plasmodium falciparum | Active site | Babbar et al., 2021b | |
LysRS2 Apicoplast | M-26, M-37 | Plasmodium falciparum | Active site # | Hoen et al., 2013 |
MetRS | Aminoquinolone derivatives (Compound 1) | Trypanosoma brucei | Active site (predicted model) | Shibata et al., 2011 |
Urea-based inhibitor series (Compound 2 and 26) | Trypanosoma brucei | Active site (predicted model) | Shibata et al., 2012 | |
Series of urea-based inhibitors (UBIs) | Trypanosoma brucei | Active site | Koh et al., 2014 | |
MSMLR library of small molecules: 12 compounds | Trypanosoma brucei | Active site # | Pedro-Rosa et al., 2015 | |
a fluro-imidazopyridine (Compound-1717) | Giardia intestinalis Giardia lamblia | Not known | Ranade et al., 2015 Michaels et al., 2020 | |
REP3123 and REP8839, C1, C2, C3 | Plasmodium falciparum | Active site (predicted; in silico) | Hussain et al., 2015 | |
Ursolic acid | antileishmanial antitrypanosomal | Active site (predicted; in silico) | Labib et al., 2016 | |
imidazopyridine-containing compounds (2093, 2114, 2259) | Cryptosporidium parvum Cryptosporidium hominis | Active site # | Buckner et al., 2019 | |
Compound 1 and 26 | Trypanosoma brucei | Active site | Zhang et al., 2020 | |
DDD806905 | Leishmania major | Allosteric ligand binding site | Torrie et al., 2020 | |
PheRS | Bicyclic azetidines BRD7929, BRD8494 | Cryptosporidium parvum | Active site and an auxiliary site | Funkhouser-Jones et al., 2020 |
Bicyclic azetidine (BRD7929) | Cryptosporidium parvum | Active site # | Vinayak et al., 2020 | |
Bicyclic azetidine (BRD1389) | Plasmodium vivax | Active site | Sharma et al., 2020 | |
Bicyclic azetidine (BRD7929) | Toxoplasma gondii | Active site | Radke et al., 2022 | |
Plasmodium falciparum | Active site | Sharma et al., 2022 | ||
ProRS | Halofuginone | Plasmodium falciparum | Active site | Keller et al., 2012, Zhou et al., 2013 |
Halofuginol (derivative of halofuginone) | Plasmodium falciparum Plasmodium berghei | Active site | Herman et al., 2015 | |
Halofuginone | Toxoplasma gondii | Active site | Jain et al., 2015 | |
Febrifugine and Halofuginone derivatives | Plasmodium falciparum | Active site | Jain et al., 2017 | |
1-(pyridin-4-yl) pyrrolidin-2-one derivatives | Plasmodium falciparum | Okaniwa et al., 2021 | ||
Double drugging: halofuginone and ATP analog L95 | Toxoplasma gondii | Active site | Yogavel et al., 2022 | |
ThrRS | Borrelidin | Plasmodium falciparum | Active site # | Otoguro et al., 2003 |
Plasmodium yoelii | Active site # | |||
Borrelidin analogs | Plasmodium falciparum | Active site # | Suguwara et al., 2013 | |
T1-T11 | Plasmodium falciparum | Active site # | Khan et al., 2011 | |
Borrelidin | Trypanosoma brucei | Active site # | Kalidas et al., 2014 | |
Borrelidin | Leishmania donovani | Active site # | Chadha et al., 2018 | |
Natural marine product library (1438C, 1758C, 2059D and 2096B) | Leishmania major | Active site # | Kelly et al., 2020 | |
TrpRS apicoplast | indolmycin | Plasmodium falciparum | Active site # | Pasaje et al., 2016 |
TyrRS | Fisetin | Leishmania major Leishmania donovani | Active site | Larson et al., 2011 Anand et al., 2016 |
ML901 | Plasmodium falciparum | Active site | Xie et al., 2022 |

Arginyl-tRNA synthetase (ArgRS)
Asparaginyl-tRNA synthetase (AsnRS)
- Sukuru S.C.
- Crepin T.
- Milev Y.
- Marsh L.C.
- Hill J.B.
- Anderson R.J.
- Morris J.C.
- Rohatgi A.
- O'Mahony G.
- Grøtli M.
- Danel F.
- Page M.G.
- Härtlein M.
- Cusack S.
- Kron M.A.
- Kuhn L.A.
- Sukuru S.C.
- Crepin T.
- Milev Y.
- Marsh L.C.
- Hill J.B.
- Anderson R.J.
- Morris J.C.
- Rohatgi A.
- O'Mahony G.
- Grøtli M.
- Danel F.
- Page M.G.
- Härtlein M.
- Cusack S.
- Kron M.A.
- Kuhn L.A.
Histidyl-tRNA synthetase (HisRS)
- Merritt E.A.
- Arakaki T.L.
- Gillespie J.R.
- Larson E.T.
- Kelley A.
- Mueller N.
- Napuli A.J.
- Kim J.
- Zhang L.
- Verlinde C.L.
- Fan E.
- Zucker F.
- Buckner F.S.
- van Voorhis W.C.
- Hol W.G.
- Merritt E.A.
- Arakaki T.L.
- Gillespie J.R.
- Larson E.T.
- Kelley A.
- Mueller N.
- Napuli A.J.
- Kim J.
- Zhang L.
- Verlinde C.L.
- Fan E.
- Zucker F.
- Buckner F.S.
- van Voorhis W.C.
- Hol W.G.
- Koh C.Y.
- Siddaramaiah L.K.
- Ranade R.M.
- Nguyen J.
- Jian T.
- Zhang Z.
- Gillespie J.R.
- Buckner F.S.
- Verlinde C.L.
- Fan E.
- Hol W.G.
- Koh C.Y.
- Siddaramaiah L.K.
- Ranade R.M.
- Nguyen J.
- Jian T.
- Zhang Z.
- Gillespie J.R.
- Buckner F.S.
- Verlinde C.L.
- Fan E.
- Hol W.G.
Isoleucyl-tRNA synthetase (IleRS)
Leucyl-tRNA synthetase (LRS)
- Sonoiki E.
- Palencia A.
- Guo D.
- Ahyong V.
- Dong C.
- Li X.
- Hernandez V.S.
- Zhang Y.K.
- Choi W.
- Gut J.
- Legac J.
- Cooper R.
- Alley M.R.
- Freund Y.R.
- DeRisi J.
- Cusack S.
- Rosenthal P.J.
- Palencia A.
- Liu R.J.
- Lukarska M.
- Gut J.
- Bougdour A.
- Touquet B.
- Wang E.D.
- Li X.
- Alley M.R.
- Freund Y.R.
- Rosenthal P.J.
- Hakimi M.A.
- Cusack S.
- Palencia A.
- Liu R.J.
- Lukarska M.
- Gut J.
- Bougdour A.
- Touquet B.
- Wang E.D.
- Li X.
- Alley M.R.
- Freund Y.R.
- Rosenthal P.J.
- Hakimi M.A.
- Cusack S.
Lysyl-tRNA synthetase (LysRS)
- Hoepfner D.
- McNamara C.W.
- Lim C.S.
- Studer C.
- Riedl R.
- Aust T.
- McCormack S.L.
- Plouffe D.M.
- Meister S.
- Schuierer S.
- Plikat U.
- Hartmann N.
- Staedtler F.
- Cotesta S.
- Schmitt E.K.
- Petersen F.
- Supek F.
- Glynne R.J.
- Tallarico J.A.
- Porter J.A.
- Fishman M.C.
- Bodenreider C.
- Diagana T.T.
- Movva N.R.
- Winzeler E.A.
Methionyl-tRNA synthetase (MetRS)
- Shibata S.
- Gillespie J.R.
- Kelley A.M.
- Napuli A.J.
- Zhang Z.
- Kovzun K.V.
- Pefley R.M.
- Lam J.
- Zucker F.H.
- Van Voorhis W.C.
- Merritt E.A.
- Hol W.G.
- Verlinde C.L.
- Fan E.
- Buckner F.S.
- Shibata S.
- Gillespie J.R.
- Kelley A.M.
- Napuli A.J.
- Zhang Z.
- Kovzun K.V.
- Pefley R.M.
- Lam J.
- Zucker F.H.
- Van Voorhis W.C.
- Merritt E.A.
- Hol W.G.
- Verlinde C.L.
- Fan E.
- Buckner F.S.
- Larson E.T.
- Kim J.E.
- Zucker F.H.
- Kelley A.
- Mueller N.
- Napuli A.J.
- Verlinde C.L.
- Fan E.
- Buckner F.S.
- Van Voorhis W.C.
- Merritt E.A.
- Hol W.G.
- Koh C.Y.
- Kim J.E.
- Wetzel A.B.
- de van der Schueren W.J.
- Shibata S.
- Ranade R.M.
- Liu J.
- Zhang Z.
- Gillespie J.R.
- Buckner F.S.
- Verlinde C.L.
- Fan E.
- Hol W.G.
- Koh C.Y.
- Kim J.E.
- Wetzel A.B.
- de van der Schueren W.J.
- Shibata S.
- Ranade R.M.
- Liu J.
- Zhang Z.
- Gillespie J.R.
- Buckner F.S.
- Verlinde C.L.
- Fan E.
- Hol W.G.
- Koh C.Y.
- Kim J.E.
- Wetzel A.B.
- de van der Schueren W.J.
- Shibata S.
- Ranade R.M.
- Liu J.
- Zhang Z.
- Gillespie J.R.
- Buckner F.S.
- Verlinde C.L.
- Fan E.
- Hol W.G.
- Zhang Z.
- Barros-Álvarez X.
- Gillespie J.R.
- Ranade R.M.
- Huang W.
- Shibata S.
- Molasky N.M.R.
- Faghih O.
- Mushtaq A.
- Choy R.K.M.
- de Hostos E.
- Hol W.G.J.
- Verlinde C.L.M.J.
- Buckner F.S.
- Fan E.
- Larson E.T.
- Kim J.E.
- Zucker F.H.
- Kelley A.
- Mueller N.
- Napuli A.J.
- Verlinde C.L.
- Fan E.
- Buckner F.S.
- Van Voorhis W.C.
- Merritt E.A.
- Hol W.G.
- Zhang Z.
- Barros-Álvarez X.
- Gillespie J.R.
- Ranade R.M.
- Huang W.
- Shibata S.
- Molasky N.M.R.
- Faghih O.
- Mushtaq A.
- Choy R.K.M.
- de Hostos E.
- Hol W.G.J.
- Verlinde C.L.M.J.
- Buckner F.S.
- Fan E.
- Pedró-Rosa L.
- Buckner F.S.
- Ranade R.M.
- Eberhart C.
- Madoux F.
- Gillespie J.R.
- Koh C.Y.
- Brown S.
- Lohse J.
- Verlinde C.L.
- Fan E.
- Bannister T.
- Scampavia L.
- Hol W.G.
- Spicer T.
- Hodder P.
- Pedró-Rosa L.
- Buckner F.S.
- Ranade R.M.
- Eberhart C.
- Madoux F.
- Gillespie J.R.
- Koh C.Y.
- Brown S.
- Lohse J.
- Verlinde C.L.
- Fan E.
- Bannister T.
- Scampavia L.
- Hol W.G.
- Spicer T.
- Hodder P.
- Buckner F.S.
- Ranade R.M.
- Gillespie J.R.
- Shibata S.
- Hulverson M.A.
- Zhang Z.
- Huang W.
- Choi R.
- Verlinde C.L.M.J.
- Hol W.G.J.
- Ochida A.
- Akao Y.
- Choy R.K.M.
- Van Voorhis W.C.
- Arnold S.L.M.
- Jumani R.S.
- Huston C.D.
- Fan E.
- Buckner F.S.
- Ranade R.M.
- Gillespie J.R.
- Shibata S.
- Hulverson M.A.
- Zhang Z.
- Huang W.
- Choi R.
- Verlinde C.L.M.J.
- Hol W.G.J.
- Ochida A.
- Akao Y.
- Choy R.K.M.
- Van Voorhis W.C.
- Arnold S.L.M.
- Jumani R.S.
- Huston C.D.
- Fan E.
- Michaels S.A.
- Shih H.W.
- Zhang B.
- Navaluna E.D.
- Zhang Z.
- Ranade R.M.
- Gillespie J.R.
- Merritt E.A.
- Fan E.
- Buckner F.S.
- Paredez A.R.
- Ojo K.K.
- Buckner F.S.
- Ranade R.M.
- Gillespie J.R.
- Shibata S.
- Hulverson M.A.
- Zhang Z.
- Huang W.
- Choi R.
- Verlinde C.L.M.J.
- Hol W.G.J.
- Ochida A.
- Akao Y.
- Choy R.K.M.
- Van Voorhis W.C.
- Arnold S.L.M.
- Jumani R.S.
- Huston C.D.
- Fan E.
- Torrie L.S.
- Robinson D.A.
- Thomas M.G.
- Hobrath J.V.
- Shepherd S.M.
- Post J.M.
- Ko E.J.
- Ferreira R.A.
- Mackenzie C.J.
- Wrobel K.
- Edwards D.P.
- Gilbert I.H.
- Gray D.W.
- Fairlamb A.H.
- De Rycker M.
Phenylalanyl-tRNA synthetase (FRS)
- Vinayak S.
- Jumani R.S.
- Miller P.
- Hasan M.M.
- McLeod B.I.
- Tandel J.
- Stebbins E.E.
- Teixeira J.E.
- Borrel J.
- Gonse A.
- Zhang M.
- Yu X.
- Wernimont A.
- Walpole C.
- Eckley S.
- Love M.S.
- McNamara C.W.
- Sharma M.
- Sharma A.
- Scherer C.A.
- Kato N.
- Schreiber S.L.
- Melillo B.
- Striepen B.
- Huston C.D.
- Comer E.
- Vinayak S.
- Jumani R.S.
- Miller P.
- Hasan M.M.
- McLeod B.I.
- Tandel J.
- Stebbins E.E.
- Teixeira J.E.
- Borrel J.
- Gonse A.
- Zhang M.
- Yu X.
- Wernimont A.
- Walpole C.
- Eckley S.
- Love M.S.
- McNamara C.W.
- Sharma M.
- Sharma A.
- Scherer C.A.
- Kato N.
- Schreiber S.L.
- Melillo B.
- Striepen B.
- Huston C.D.
- Comer E.
Prolyl-tRNA synthetase (PRS)
- Herman J.D.
- Pepper L.R.
- Cortese J.F.
- Estiu G.
- Galinsky K.
- Zuzarte-Luis V.
- Derbyshire E.R.
- Ribacke U.
- Lukens A.K.
- Santos S.A.
- Patel V.
- Clish C.B.
- Sullivan Jr., W.J.
- Zhou H.
- Bopp S.E.
- Schimmel P.
- Lindquist S.
- Clardy J.
- Mota M.M.
- Keller T.L.
- Whitman M.
- Wiest O.
- Wirth D.F.
- Mazitschek R.
- Jain V.
- Yogavel M.
- Kikuchi H.
- Oshima Y.
- Hariguchi N.
- Matsumoto M.
- Goel P.
- Touquet B.
- Jumani R.S.
- Tacchini-Cottier F.
- Harlos K.
- Huston C.D.
- Hakimi M.A.
- Sharma A.
- Herman J.D.
- Pepper L.R.
- Cortese J.F.
- Estiu G.
- Galinsky K.
- Zuzarte-Luis V.
- Derbyshire E.R.
- Ribacke U.
- Lukens A.K.
- Santos S.A.
- Patel V.
- Clish C.B.
- Sullivan Jr., W.J.
- Zhou H.
- Bopp S.E.
- Schimmel P.
- Lindquist S.
- Clardy J.
- Mota M.M.
- Keller T.L.
- Whitman M.
- Wiest O.
- Wirth D.F.
- Mazitschek R.
- Okaniwa M.
- Shibata A.
- Ochida A.
- Akao Y.
- White K.L.
- Shackleford D.M.
- Duffy S.
- Lucantoni L.
- Dey S.
- Striepen J.
- Yeo T.
- Mok S.
- Aguiar A.C.C.
- Sturm A.
- Crespo B.
- Sanz L.M.
- Churchyard A.
- Baum J.
- Pereira D.B.
- Guido R.V.C.
- Dechering K.J.
- Wittlin S.
- Uhlemann A.C.
- Fidock D.A.
- Niles J.C.
- Avery V.M.
- Charman S.A.
- Laleu B.
- Okaniwa M.
- Shibata A.
- Ochida A.
- Akao Y.
- White K.L.
- Shackleford D.M.
- Duffy S.
- Lucantoni L.
- Dey S.
- Striepen J.
- Yeo T.
- Mok S.
- Aguiar A.C.C.
- Sturm A.
- Crespo B.
- Sanz L.M.
- Churchyard A.
- Baum J.
- Pereira D.B.
- Guido R.V.C.
- Dechering K.J.
- Wittlin S.
- Uhlemann A.C.
- Fidock D.A.
- Niles J.C.
- Avery V.M.
- Charman S.A.
- Laleu B.
Threonyl-tRNA synthetase (ThrRS)
- Otoguro K.
- Ui H.
- Ishiyama A.
- Kobayashi M.
- Togashi H.
- Takahashi Y.
- Masuma R.
- Tanaka H.
- Tomoda H.
- Yamada H.
- Omura S.
- Otoguro K.
- Ui H.
- Ishiyama A.
- Kobayashi M.
- Togashi H.
- Takahashi Y.
- Masuma R.
- Tanaka H.
- Tomoda H.
- Yamada H.
- Omura S.
Tryptophanyl-tRNA synthetase (TrpRS)
Tyrosyl-tRNA synthetase (TyrRS)
- Larson E.T.
- Kim J.E.
- Castaneda L.J.
- Napuli A.J.
- Zhang Z.
- Fan E.
- Zucker F.H.
- Verlinde C.L.
- Buckner F.S.
- Van Voorhis W.C.
- Hol W.G.
- Merritt E.A.
- Larson E.T.
- Kim J.E.
- Castaneda L.J.
- Napuli A.J.
- Zhang Z.
- Fan E.
- Zucker F.H.
- Verlinde C.L.
- Buckner F.S.
- Van Voorhis W.C.
- Hol W.G.
- Merritt E.A.
- Barros-Álvarez X.
- Kerchner K.M.
- Koh C.Y.
- Turley S.
- Pardon E.
- Steyaert J.
- Ranade R.M.
- Gillespie J.R.
- Zhang Z.
- Verlinde C.L.M.J.
- Fan E.
- Buckner F.S.
- Hol W.G.J.
- Xie S.C.
- Metcalfe R.D.
- Dunn E.
- Morton C.J.
- Huang S.C.
- Puhalovich T.
- Du Y.
- Wittlin S.
- Nie S.
- Luth M.R.
- Ma L.
- Kim M.S.
- Pasaje C.F.A.
- Kumpornsin K.
- Giannangelo C.
- Houghton F.J.
- Churchyard A.
- Famodimu M.T.
- Barry D.C.
- Gillett D.L.
- Dey S.
- Kosasih C.C.
- Newman W.
- Niles J.C.
- Lee M.C.S.
- Baum J.
- Ottilie S.
- Winzeler E.A.
- Creek D.J.
- Williamson N.
- Parker M.W.
- Brand S.
- Langston S.P.
- Dick L.R.
- Griffin M.D.W.
- Gould A.E.
- Tilley L.
- Xie S.C.
- Metcalfe R.D.
- Dunn E.
- Morton C.J.
- Huang S.C.
- Puhalovich T.
- Du Y.
- Wittlin S.
- Nie S.
- Luth M.R.
- Ma L.
- Kim M.S.
- Pasaje C.F.A.
- Kumpornsin K.
- Giannangelo C.
- Houghton F.J.
- Churchyard A.
- Famodimu M.T.
- Barry D.C.
- Gillett D.L.
- Dey S.
- Kosasih C.C.
- Newman W.
- Niles J.C.
- Lee M.C.S.
- Baum J.
- Ottilie S.
- Winzeler E.A.
- Creek D.J.
- Williamson N.
- Parker M.W.
- Brand S.
- Langston S.P.
- Dick L.R.
- Griffin M.D.W.
- Gould A.E.
- Tilley L.
Other structurally and functionally characterized aaRSs
Aspartyl-tRNA synthetase (AspRS)
Glutamyl-tRNA synthetase (GluRS)
Cysteinyl-tRNA synthetase (CysRS)
Concluding remarks
Conflict of interest
Acknowledgments
REFERENCES
- Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response.Front Immunol. 2019;
- Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites.Int J Parasitol Drugs Drug Resist. 2013 Nov 11; 4: 1-13
- Recent advances in understanding apicomplexan parasites.F1000Research. 2016; 5: 1369
- J.P. Toxoplasmosis of Animals and Humans.Parasites Vectors. 2010; 3: 112
- A hundred-year retrospective on cryptosporidiosis.Trends Parasitol. 2008 Apr; 24: 184-189
- Review of “Trypanosomes and Trypanosomiasis” by Stefan Magez and Magdalena Radwanska (Editors).Parasites Vectors. 2013; 6: 365
- A Review of Leishmaniasis: Current Knowledge and Future Directions.Curr Trop Med Rep. 2021; 8: 121-132
- Zoonotic giardiasis: an update.Parasitol Res. 2021 Dec; 120 (Epub 2021 Oct 8. PMID: 34623485): 4199-4218https://doi.org/10.1007/s00436-021-07325-2
Newman TE, Juergens AL. Filariasis. [Updated 2022 May 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556012/
- Aminoacyl-tRNA synthetases.Curr Opin Struct Biol. 1997 Dec; 7: 881-889
- Aminoacyl-tRNA synthetases.RNA. 2020 Aug; 26: 910-936
- Aminoacyl-tRNA synthetases as therapeutic targets.Nat Rev Drug Discov. 2019; 18: 629-650
- The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis.Nat. Rev. Mol. Cell Biol. 2018; 19: 45-58
- Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review.Bioorg Chem. 2021 May; 110104806
- Structural Basis for the Recognition of Isoleucyl-Adenylate and an Antibiotic, Mupirocin, by Isoleucyl-TRNA Synthetase.J. Biol. Chem. 2001; 276: 47387-47393
- An Antifungal Agent Inhibits an Aminoacyl-TRNA Synthetase by Trapping TRNA in the Editing Site.Science. 2007; 316: 1759-1761
- Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum.Int J Parasitol. 2012 Feb; 42: 177-186
- Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P.falciparum. Sci Rep. 2011; 1: 188
- Molecular basis of alanine discrimination in editing site.Proc Natl Acad Sci U S A. 2005 Aug 16; 102: 11669-11674
- Targeting tRNA-synthetase interactions towards novel therapeutic discovery against eukaryotic pathogens.PLoS Negl Trop Dis. 2020 Feb 27; 14e0007983
- Function-first" lead discovery: mode of action profiling of natural product libraries using image-based screening.Chem Biol. 2013; 20 (pmid:23438757): 285-295
- Dimerization of Arginyl-tRNA Synthetase by Free Heme Drives Its Inactivation in Plasmodium falciparum.Structure. 2016 Sep 6; 24: 1476-1487
- Expression, localization and alternative function of cytoplasmic asparaginyl-tRNA synthetase in Brugia malayi.Mol Biochem Parasitol. 2003 Jun; 129: 33-39
- Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase.Mol Biochem Parasitol. 2012 Sep; 185: 66-69
- Brugia malayi asparaginyl-transfer RNA synthetase induces chemotaxis of human leukocytes and activates G-protein-coupled receptors CXCR1 and CXCR2.J Infect Dis. 2006 Apr 15; 193: 1164-1171
- A hybrid structural model of the complete Brugia malayi cytoplasmic asparaginyl-tRNA synthetase.J Mol Biol. 2011 Jan 28; 405: 1056-1069
- Discovering new classes of Brugia malayi asparaginyl-tRNA synthetase inhibitors and relating specificity to conformational change.J Comput Aided Mol Des. 2006 Mar; 20: 159-178
- Asparaginyl-tRNA synthetase pre-transfer editing assay.Curr Drug Discov Technol. 2011 Mar; 8: 66-75
- Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase.Org Lett. 2011 Apr 15; 13: 2034-2037
- New WS9326A congeners from Streptomyces sp. 9078 inhibiting Brugia malayi asparaginyl-tRNA synthetase.Org Lett. 2012 Sep 21; 14: 4946-4949
- Adipostatins A-D from Streptomyces sp. 4875 inhibiting Brugia malayi asparaginyl-tRNA synthetase and killing adult Brugia malayi parasites.J Antibiot (Tokyo). 2015 Aug; 68: 540-542
- Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs.J Mol Biol. 2010 Mar 26; 397: 481-494
- A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens.Acta Crystallogr D Biol Crystallogr. 2015 Aug; 71: 1684-1698
- Fragment-based cocktail crystallography by the medical structural genomics of pathogenic protozoa consortium.Curr Top Med Chem. 2009; 9: 1678-1687
- Validation of isoleucine utilization targets in Plasmodium falciparum.Proc Natl Acad Sci U S A. 2011 Jan 25; 108: 1627-1632
- Inhibition of isoleucyl-tRNA synthetase as a potential treatment for human African Trypanosomiasis.J Biol Chem. 2013 May 17; 288: 14256-14263
- Design, synthesis, and structure-activity relationship of Trypanosoma brucei leucyl-tRNA synthetase inhibitors as antitrypanosomal agents.J Med Chem. 2011 Mar 10; 54: 1276-1287
- Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Leishmania donovani leucyl-tRNA synthetase.J Biosci. 2020; 45: 63
- Leishmania donovani Parasites Are Inhibited by the Benzoxaborole AN2690 Targeting Leucyl-tRNA Synthetase.Antimicrob Agents Chemother. 2018 Aug 27; 62 (18): e00079
- Identification of Trypanosoma brucei leucyl-tRNA synthetase inhibitors by pharmacophore- and docking-based virtual screening and synthesis.Bioorg Med Chem. 2012 Feb 1; 20: 1240-1250
- Discovery of N-(4-sulfamoylphenyl)thioureas as Trypanosoma brucei leucyl-tRNA synthetase inhibitors.Org Biomol Chem. 2013 Aug 28; 11: 5310-5324
- 3,5-Dicaffeoylquinic acid isolated from Artemisia argyi and its ester derivatives exert anti-leucyl-tRNA synthetase of Giardia lamblia (GlLeuRS) and potential anti-giardial effects.Fitoterapia. 2012 Oct; 83: 1281-1285
- Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.Antimicrob Agents Chemother. 2016 Jul 22; 60: 4886-4895
- Cryptosporidium and Toxoplasma Parasites Are Inhibited by a Benzoxaborole Targeting Leucyl-tRNA Synthetase.Antimicrob Agents Chemother. 2016 Sep 23; 60: 5817-5827
- Design and synthesis of α-phenoxy-N-sulfonylphenyl acetamides as Trypanosoma brucei Leucyl-tRNA synthetase inhibitors.Eur J Med Chem. 2020 Jan 1; 185111827
- Design and synthesis of N-(3-sulfamoylphenyl)amides as Trypanosoma brucei leucyl-tRNA synthetase inhibitors.Eur J Med Chem. 2021 May 5; 217113319
- Selective and specific inhibition of the plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin.Cell Host Microbe. 2012 Jun 14; 11: 654-663
- Crystal structures of Entamoeba histolytica lysyl-tRNA synthetase reveal conformational changes upon lysine binding and a specific helix bundle domain.FEBS Lett. 2014 Nov 28; 588: 4478-4486
- Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development.Acta Crystallogr D Biol Crystallogr. 2013 May; 69: 785-795
- Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin.J Struct Funct Genomics. 2014 Jun; 15: 63-71
- Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from Plasmodium falciparum.Chembiochem. 2013 Mar 4; 14: 499-509
- Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis.Proc Natl Acad Sci U S A. 2019 Apr 2; 116: 7015-7020
- Genetic Validation of Leishmania donovani Lysyl-tRNA Synthetase Shows that It Is Indispensable for Parasite Growth and Infectivity.mSphere. 2017 Aug 30; 2 (17): e00340
- Design, Synthesis, and Structural Analysis of Cladosporin-Based Inhibitors of Malaria Parasites.ACS Infect Dis. 2021 Jun 11; 7: 1777-1794
- Inhibition of Plasmodium falciparum Lysyl-tRNA Synthetase via a Piperidine-Ring Scaffold Inspired Cladosporin Analogues.Chembiochem. 2021 Jul 15; 22: 2468-2477
- Inhibition of Plasmodium falciparum Lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor.Nucleic Acids Res. 2020 Nov 18; 48: 11566-11576
- Selective inhibitors of methionyl-tRNA synthetase have potent activity against Trypanosoma brucei Infection in Mice.Antimicrob Agents Chemother. 2011 May; 55: 1982-1989
- Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate.Biochimie. 2011 Mar; 93: 570-582
- Urea-based inhibitors of Trypanosoma brucei methionyl-tRNA synthetase: selectivity and in vivo characterization.J Med Chem. 2012 Jul 26; 55: 6342-6351
- Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness.PLoS Negl Trop Dis. 2014 Apr 17; 8e2775
- Structure-guided discovery of selective methionyl-tRNA synthetase inhibitors with potent activity against Trypanosoma brucei.RSC Med Chem. 2020 May 18; 11: 885-895
- Identification of potent inhibitors of the Trypanosoma brucei methionyl-tRNA synthetase via high-throughput orthogonal screening.J Biomol Screen. 2015 Jan; 20: 122-130
- Ursolic Acid, a Natural Pentacylcic Triterpene from Ochrosia elliptica and Its Role in The Management of Certain Neglected Tropical Diseases.Pharmacogn Mag. 2016 Oct-Dec; 12: 319-325
- Design, Synthesis, and Evaluation of Novel Anti-Trypanosomal Compounds.Tetrahedron. 2020 Apr 17; 76131086
- Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.Antimicrob Agents Chemother. 2015 Apr; 59: 1856-1867
- Optimization of Methionyl tRNA-Synthetase Inhibitors for Treatment of Cryptosporidium Infection.Antimicrob Agents Chemother. 2019 Mar 27; 63 (18): e02061
- Inhibitors of methionyl-tRNA synthetase have potent activity against Giardia intestinalis trophozoites.Antimicrob Agents Chemother. 2015; 59: 7128-7131
- Methionyl-tRNA synthetase inhibitor has potent in vivo activity in a novel Giardia lamblia luciferase murine infection model.J Antimicrob Chemother. 2020 May 1; 75: 1218-1227
- Discovery of an Allosteric Binding Site in Kinetoplastid Methionyl-tRNA Synthetase.ACS Infect Dis. 2020 May 8; 6: 1044-1057
- Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase.Sci Transl Med. 2020 Sep 30; 12eaba8412
- Defining Stage-Specific Activity of Potent New Inhibitors of Cryptosporidium parvum Growth In Vitro.mBio. 2020 Mar 3; 11 (20): e00052
- Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase.Nat Commun. 2022 Jan 24; 13: 459
- Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.Biochem J. 2015 Feb 1; 465: 459-469
- Inhibition of Plasmodium falciparum phenylalanine tRNA synthetase provides opportunity for antimalarial drug development.Structure. 2022 Apr 15; S0969-2126 (3): 00098
- Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines.Nat Commun. 2021 Jan 12; 12: 343
- The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs.Sci Transl Med. 2015 May 20; 7: 288ra77
- Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase.Nat Chem Biol. 2012; 8: 311-317
- Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis.Structure. 2015 May 5; 23: 819-829
- Conformational heterogeneity in apo and drug-bound structures of Toxoplasma gondii prolyl-tRNA synthetase.Acta Crystallogr F Struct Biol Commun. 2019 Nov 1; 75: 714-724
- Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase.J Struct Funct Genomics. 2014 Dec; 15: 181-190
- Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis.Structure. 2017 Oct 3; 25: 1495-1505.e6
- Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development.PLoS Pathog. 2022 Mar 25; 18e1010363
- Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as Plasmodium Cytoplasmic Prolyl-tRNA Synthetase Inhibitors.ACS Infect Dis. 2021 Jun 11; 7: 1680-1689
- Borrelidin, a potent antimalarial: stage-specific inhibition profile of synchronized cultures of Plasmodium falciparum.J Antibiot (Tokyo). 2011 May; 64: 381-384
- Insights into the preclinical treatment of blood-stage malaria by the antibiotic borrelidin.Br J Pharmacol. 2013 Jun; 169: 645-658
- In vitro and in vivo antimalarial activities of a non-glycosidic 18-membered macrolide antibiotic, borrelidin, against drug-resistant strains of Plasmodia.J Antibiot (Tokyo). 2003 Aug; 56: 727-729
- Borrelidin analogues with antimalarial activity: design, synthesis and biological evaluation against Plasmodium falciparum parasites.Bioorg Med Chem Lett. 2013 Apr 15; 23: 2302-2305
- Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei.Eukaryot Cell. 2014 Apr; 13: 504-516
- Genetic manipulation of Leishmania donovani threonyl tRNA synthetase facilitates its exploration as a potential therapeutic target.PLoS Negl Trop Dis. 2018 Jun 13; 12e0006575
- Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei.Proc Natl Acad Sci U S A. 2006 May 2; 103: 6847-6852
- The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs.J Struct Biol. 2010 Aug; 171: 238-243
- Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.Mol Biochem Parasitol. 2011 May; 177: 20-28
- An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase.PLoS One. 2013 Jun 12; 8e66224
- Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design.Mol Biochem Parasitol. 2013 May; 189: 26-32
- Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum.Sci Rep. 2016 Jun 9; 627531
- The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer.J Mol Biol. 2011 Jun 3; 409: 159-176
- Twin Attributes of Tyrosyl-tRNA Synthetase of Leishmania donovani: A HOUSEKEEPING PROTEIN TRANSLATION ENZYME AND A MIMIC OF HOST CHEMOKINE.J Biol Chem. 2016 Aug 19; 291: 17754-17771
- Leishmania donovani tyrosyl-tRNA synthetase structure in complex with a tyrosyl adenylate analog and comparisons with human and protozoan counterparts.Biochimie. 2017 Jul; 138: 124-136
- A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum.BMC Genomics. 2009 Dec 31; 10: 644
- Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy.Science. 2022 Jun 3; 376: 1074-1079
- Crystal structure of the aspartyl-tRNA synthetase from Entamoeba histolytica.Mol Biochem Parasitol. 2010 Feb; 169: 95-100
- Dual targeting of a tRNAAsp requires two different aspartyl-tRNA synthetases in Trypanosoma brucei.J Biol Chem. 2009 Jun 12; 284: 16210-16217
- Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum.J Biol Chem. 2009 Jul 10; 284: 18893-18903
- Babesia bovis: a bipartite signal directs the glutamyl-tRNA synthetase to the apicoplast.Exp Parasitol. 2012 Jun; 131: 261-266
- A nondiscriminating glutamyl-tRNA synthetase in the plasmodium apicoplast: the first enzyme in an indirect aminoacylation pathway.J Biol Chem. 2013 Nov 8; 288: 32539-32552
- Repurposing of Potent Drug Candidates for Multiparasite Targeting.Trends Parasitol. 2017 Mar; 33: 158-161
Article info
Publication history
Publication stage
In Press Accepted ManuscriptFootnotes
Author contributions
A.S. conceptualization; J.G. writing-original draft; J.G. and A.S. writing-review & editing
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy