Advertisement

The role of glycans in the mechanobiology of cancer

  • Anurag Purushothaman
    Correspondence
    For correspondence: Anurag Purushothaman.
    Affiliations
    Department of Biomedical Engineering, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
    Search for articles by this author
  • Mohammad Mohajeri
    Affiliations
    Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA
    Search for articles by this author
  • Tanmay P. Lele
    Correspondence
    For correspondence: Tanmay P Lele.
    Affiliations
    Department of Biomedical Engineering, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA

    Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA

    Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA

    Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
    Search for articles by this author
Open AccessPublished:January 20, 2023DOI:https://doi.org/10.1016/j.jbc.2023.102935

      Abstract

      Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix (ECM) also commonly occur in cancer. Cancer cells sense and respond to ECM stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer- associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.

      Key words

      Abbreviations:

      TME (tumor microenvironment), CAFs (cancer-associated fibroblasts), ECM (extracellular matrix), EMT (epithelial to mesenchymal transition), UDP-GlcNAc (Uridine diphosphate N- acetylglucosamine), HBP (hexosamine biosynthetic pathway), HSPG (heparan sulfate proteoglycan), Lrp4 (lipoprotein-related receptor-4), Musk (muscle-specific kinase), YAP (Yes-associated protein), VEGFR2 (Vascular endothelial growth factor receptor 2), FAK (focal adhesion kinase), AGE (Advanced glycation end product), CSPG (Chondroitin sulfate proteoglycan), GAG (glycosaminoglycan), RAGE (receptor for advanced glycation end-products), CTGF (connective tissue growth factor), HGF (hepatocyte growth factor), TAZ (transcriptional co-activator with PDZ-binding motif), GlcNAc (N-acetylglucosamine), HDAC2 (Histone deacetylase 2), RUNX1 (runt-related transcription factor 1), SLRPs (small leucine rich proteoglycans), HA (hyaluronan)
      A tumor is a growing population of aberrant somatic cells. Over the course of tumorigenesis, the properties of the tumor microenvironment (TME) change dramatically. The progression of many solid cancers involves the recruitment of several different cell types to the TME, such as endothelial cells that form ‘leaky’ blood vessels (
      • Lugano R.
      • Ramachandran M.
      • Dimberg A.
      Tumor angiogenesis: causes, consequences, challenges and opportunities.
      ), cancer-associated fibroblasts (CAFs) and mesenchymal stromal cells that secrete extracellular matrix (ECM) proteins such as collagen and glycans such as hyaluronan (
      • Sahai E.
      • Astsaturov I.
      • Cukierman E.
      • DeNardo D.G.
      • Egeblad M.
      • Evans R.M.
      • Fearon D.
      • Greten F.R.
      • Hingorani S.R.
      • Hunter T.
      • Hynes R.O.
      • Jain R.K.
      • Janowitz T.
      • Jorgensen C.
      • Kimmelman A.C.
      • Kolonin M.G.
      • Maki R.G.
      • Powers R.S.
      • Puré E.
      • Ramirez D.C.
      • Scherz-Shouval R.
      • Sherman M.H.
      • Stewart S.
      • Tlsty T.D.
      • Tuveson D.A.
      • Watt F.M.
      • Weaver V.
      • Weeraratna A.T.
      • Werb Z.
      A framework for advancing our understanding of cancer-associated fibroblasts.
      ,
      • Ponten F.
      • Ren Z.
      • Nister M.
      • Westermark B.
      • Ponten J.
      Epithelial-stromal interactions in basal cell cancer: the PDGF system.
      ,
      • Kay E.J.
      • Paterson K.
      • Riera-Domingo C.
      • Sumpton D.
      • Dabritz J.H.M.
      • Tardito S.
      • Boldrini C.
      • Hernandez-Fernaud J.R.
      • Athineos D.
      • Dhayade S.
      • Stepanova E.
      • Gjerga E.
      • Neilson L.J.
      • Lilla S.
      • Hedley A.
      • Koulouras G.
      • McGregor G.
      • Jamieson C.
      • Johnson R.M.
      • Park M.
      • Kirschner K.
      • Miller C.
      • Kamphorst J.J.
      • Loayza-Puch F.
      • Saez-Rodriguez J.
      • Mazzone M.
      • Blyth K.
      • Zagnoni M.
      • Zanivan S.
      Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix.
      ), and immune cells which secrete different cytokines, proteases and reactive oxygen species (
      • Gonzalez H.
      • Hagerling C.
      • Werb Z.
      Roles of the immune system in cancer: from tumor initiation to metastatic progression.
      ,
      • Chen Y.
      • Li P.
      • Peng Y.
      • Xie X.
      • Zhang Y.
      • Jiang Y.
      • Li T.
      • Qin X.
      • Li S.
      • Yang H.
      • Wu C.
      • Zheng C.
      • Zhu J.
      • You F.
      • Liu Y.
      Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells.
      ,
      • Zhou H.
      • Wang M.
      • Zhang Y.
      • Su Q.
      • Xie Z.
      • Chen X.
      • Yan R.
      • Li P.
      • Li T.
      • Qin X.
      • Yang H.
      • Wu C.
      • You F.
      • Li S.
      • Liu Y.
      Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis.
      ). These changes alter not only the biochemical composition of the TME, but also the mechanical stiffness of the ECM. Increased collagen secretion results in the assembly of higher concentration of collagen fibrils which result in a mechanically stiff ECM. In addition, non-enzymatic glycation of collagen and resulting accumulation of advanced glycation end products (AGEs) can increase stiffness of collagen independently of its concentration, by increasing the crosslinks between collagen fibrils (
      • Bordeleau F.
      • Mason B.N.
      • Lollis E.M.
      • Mazzola M.
      • Zanotelli M.R.
      • Somasegar S.
      • Califano J.P.
      • Montague C.
      • LaValley D.J.
      • Huynh J.
      • Mencia-Trinchant N.
      • Negron Abril Y.L.
      • Hassane D.C.
      • Bonassar L.J.
      • Butcher J.T.
      • Weiss R.S.
      • Reinhart-King C.A.
      Matrix stiffening promotes a tumor vasculature phenotype.
      ). Such mechanical changes are common across different types of solid tumors, and are responsible for the presentation of solid tumors as stiff lumps within the tissue (
      • Nia H.T.
      • Munn L.L.
      • Jain R.K.
      Physical traits of cancer.
      ). Stiffening of the ECM, whether due to increased matrix deposition or due to increased matrix crosslinking, can enhance cancer cell growth, disrupt tissue structure and polarity and promote cell migration (
      • Bordeleau F.
      • Mason B.N.
      • Lollis E.M.
      • Mazzola M.
      • Zanotelli M.R.
      • Somasegar S.
      • Califano J.P.
      • Montague C.
      • LaValley D.J.
      • Huynh J.
      • Mencia-Trinchant N.
      • Negron Abril Y.L.
      • Hassane D.C.
      • Bonassar L.J.
      • Butcher J.T.
      • Weiss R.S.
      • Reinhart-King C.A.
      Matrix stiffening promotes a tumor vasculature phenotype.
      ,
      • Paszek M.J.
      • Zahir N.
      • Johnson K.R.
      • Lakins J.N.
      • Rozenberg G.I.
      • Gefen A.
      • Reinhart-King C.A.
      • Margulies S.S.
      • Dembo M.
      • Boettiger D.
      • Hammer D.A.
      • Weaver V.M.
      Tensional homeostasis and the malignant phenotype.
      ,
      • Stowers R.S.
      • Shcherbina A.
      • Israeli J.
      • Gruber J.J.
      • Chang J.
      • Nam S.
      • Rabiee A.
      • Teruel M.N.
      • Snyder M.P.
      • Kundaje A.
      • Chaudhuri O.
      Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility.
      ,
      • Pathak A.
      • Kumar S.
      Independent regulation of tumor cell migration by matrix stiffness and confinement.
      ,
      • Zhang J.
      • Reinhart-King C.A.
      Targeting Tissue Stiffness in Metastasis: Mechanomedicine Improves Cancer Therapy.
      ,
      • Irianto J.
      • Pfeifer C.R.
      • Xia Y.
      • Discher D.E.
      SnapShot: Mechanosensing Matrix.
      ,
      • Carey S.P.
      • Martin K.E.
      • Reinhart-King C.A.
      Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype.
      ,
      • Acerbi I.
      • Cassereau L.
      • Dean I.
      • Shi Q.
      • Au A.
      • Park C.
      • Chen Y.Y.
      • Liphardt J.
      • Hwang E.S.
      • Weaver V.M.
      Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.
      ,
      • Northey J.J.
      • Barrett A.S.
      • Acerbi I.
      • Hayward M.K.
      • Talamantes S.
      • Dean I.S.
      • Mouw J.K.
      • Ponik S.M.
      • Lakins J.N.
      • Huang P.J.
      • Wu J.
      • Shi Q.
      • Samson S.
      • Keely P.J.
      • Mukhtar R.A.
      • Liphardt J.T.
      • Shepherd J.A.
      • Hwang E.S.
      • Chen Y.Y.
      • Hansen K.C.
      • Littlepage L.E.
      • Weaver V.M.
      Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217.
      ,
      • Shen Y.
      • Wang X.
      • Lu J.
      • Salfenmoser M.
      • Wirsik N.M.
      • Schleussner N.
      • Imle A.
      • Freire Valls A.
      • Radhakrishnan P.
      • Liang J.
      • Wang G.
      • Muley T.
      • Schneider M.
      • Ruiz de Almodovar C.
      • Diz-Munoz A.
      • Schmidt T.
      Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer.
      ,
      • Mason B.N.
      • Starchenko A.
      • Williams R.M.
      • Bonassar L.J.
      • Reinhart-King C.A.
      Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior.
      ,
      • Rowe M.M.
      • Wang W.
      • Taufalele P.V.
      • Reinhart-King C.A.
      AGE-breaker ALT711 reverses glycation-mediated cancer cell migration.
      ).
      Cells can sense mechanical cues from their microenvironment, a process termed mechano-sensing, and adapt to these cues through changes in signaling pathways and gene expression, a process termed mechanotransduction (
      • Ingber D.E.
      Cellular mechanotransduction: putting all the pieces together again.
      ). The simplest and robust canonical response of cells to ECM stiffening is increased cell spreading. Cell spreading is mediated by transmembrane integrin receptors, which preferentially cluster on stiff ECM compared to soft ECM, to form focal adhesions. Integrin clustering and focal adhesion formation is reciprocally coupled with the activation of signaling pathways including the Rho/Rho kinase (ROCK) pathway, PI3 kinase signaling, and YAP signaling (
      • Paszek M.J.
      • Zahir N.
      • Johnson K.R.
      • Lakins J.N.
      • Rozenberg G.I.
      • Gefen A.
      • Reinhart-King C.A.
      • Margulies S.S.
      • Dembo M.
      • Boettiger D.
      • Hammer D.A.
      • Weaver V.M.
      Tensional homeostasis and the malignant phenotype.
      ,
      • Samuel M.S.
      • Lopez J.I.
      • McGhee E.J.
      • Croft D.R.
      • Strachan D.
      • Timpson P.
      • Munro J.
      • Schroder E.
      • Zhou J.
      • Brunton V.G.
      • Barker N.
      • Clevers H.
      • Sansom O.J.
      • Anderson K.I.
      • Weaver V.M.
      • Olson M.F.
      Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth.
      ,
      • Friedland J.C.
      • Lee M.H.
      • Boettiger D.
      Mechanically activated integrin switch controls alpha5beta1 function.
      ,
      • Levental K.R.
      • Yu H.
      • Kass L.
      • Lakins J.N.
      • Egeblad M.
      • Erler J.T.
      • Fong S.F.
      • Csiszar K.
      • Giaccia A.
      • Weninger W.
      • Yamauchi M.
      • Gasser D.L.
      • Weaver V.M.
      Matrix crosslinking forces tumor progression by enhancing integrin signaling.
      ,
      • Jain R.K.
      • Martin J.D.
      • Stylianopoulos T.
      The role of mechanical forces in tumor growth and therapy.
      ) that in turn impact cell migration, traction force generation and cell proliferation.
      Glycans have recently emerged as important mediators and/or modulators of mechano-transduction. The term ‘glycan’ refers to carbohydrate-based polymers that either exist as free molecules such as hyaluronan, or covalently bound to lipids or proteins. Protein-bound glycans fall into two classes, glycoproteins, and proteoglycans (
      • Cosgun Z.C.
      • Fels B.
      • Kusche-Vihrog K.
      Nanomechanics of the Endothelial Glycocalyx: From Structure to Function.
      ,
      • Kanyo N.
      • Kovacs K.D.
      • Saftics A.
      • Szekacs I.
      • Peter B.
      • Santa-Maria A.R.
      • Walter F.R.
      • Der A.
      • Deli M.A.
      • Horvath R.
      Glycocalyx regulates the strength and kinetics of cancer cell adhesion revealed by biophysical models based on high resolution label-free optical data.
      ). Glycoproteins are proteins that carry one or more branched glycan chains bound to either asparagine residues (via nitrogen linkages to form N-linked glycans) or serine/threonine residues (via oxygen linkages to form O-linked glycans) of the polypeptide (Fig. 1). The N- and O-linked glycans on glycoproteins can become further modified by terminal glycan motifs containing fucose (Lewis antigens) or sialic acids (
      • Stowell S.R.
      • Ju T.
      • Cummings R.D.
      Protein glycosylation in cancer.
      ) catalyzed by fucosyltransferases (
      • Carvalho A.S.
      • Harduin-Lepers A.
      • Magalhaes A.
      • Machado E.
      • Mendes N.
      • Costa L.T.
      • Matthiesen R.
      • Almeida R.
      • Costa J.
      • Reis C.A.
      Differential expression of alpha-2,3-sialyltransferases and alpha-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells.
      ) and sialyltransferases (
      • Li Y.
      • Chen X.
      Sialic acid metabolism and sialyltransferases: natural functions and applications.
      ) respectively. Proteoglycans consist of a core protein covalently bound to one or more glycan chains called glycosaminoglycans (such as chondroitin sulfate or heparan sulfate chains). Glycolipids consist of glycan chains bound to a lipid ceramide (glycosphingolipid), where the first sugar bound to the ceramide can be either glucose (glucosylceramide) or galactose (galactosylceramide) (Fig 1). Most of the glycoproteins/proteoglycans or glycolipids are either bound to the cell membrane or shed/secreted by the cells to become a part of the extracellular matrix (
      • Piperigkou Z.
      • Mohr B.
      • Karamanos N.
      • Gotte M.
      Shed proteoglycans in tumor stroma.
      ).
      Figure thumbnail gr1
      Figure 1Schematic representation of different glycans involved in cancer progression. Glycans exist as either free forms or are attached to various proteins or lipids on cell surface. Glycosphingolipids consist of the lipid ceramide linked to a variable series of sugars that can be further modified with terminal sialic acids. Glycoproteins carry one or more branched glycan chains attached to either asparagine residues (via nitrogen linkages to form N-linked glycans) or serine/threonine residues (via oxygen linkages to form O-linked glycans) of the polypeptide. N-glycans share a common pentasaccharide core which is extended by high mannose, or both mannose and GlcNAc residues (hybrid) or complex types containing branched structures containing two or more antennae. O-Glycans are initiated by GalNAc with elongated GlcNAc containing glycans. Both N- and O-glycans are further modified by terminal sialic acid residues. Some glycoproteins called the glycosylphosphatidylinositol (GPI)-anchored proteins are anchored in the outer leaflet of the plasma membrane by a glycan linked to phosphatidylinositol. Glycosaminoglycans are linear polysaccharides consisting of repeating disaccharide units that exists as either free sugar chains (such as hyaluronan) or mostly found attached to proteoglycans (such as heparan sulfate or chondroitin sulfate chains). Sugars are represented by colored geometric symbols.
      Changes in glycan structure and content in tumors are a hallmark of cancer progression (
      • Costa A.F.
      • Campos D.
      • Reis C.A.
      • Gomes C.
      Targeting Glycosylation: A New Road for Cancer Drug Discovery.
      ). This review focuses on the role of glycans in mediating cellular sensing of and response to changes in the mechanical stiffness of the tumor ECM, as well as in modulating the mechanical properties of the tumor ECM.

      Mechanobiological pathways in cancer

      Mechanotransduction pathways are complex, involving a range of molecular players and mechanisms of action. Cells adhere to the ECM through transmembrane integrin receptors whose extracellular domains bind to the ECM (
      • Hynes R.O.
      Integrins: bidirectional, allosteric signaling machines.
      ), and whose intracellular domains associate with cytosolic proteins like talin, resulting in the assembly of a focal adhesion complex (
      • Ingber D.E.
      Cellular mechanotransduction: putting all the pieces together again.
      ). Proteins in the adhesion like talin, zyxin, vinculin and alpha-actinin can bind to the F-actin network (
      • Geiger T.
      • Zaidel-Bar R.
      Opening the floodgates: proteomics and the integrin adhesome.
      ). The focal adhesion can thus transmit forces generated in the cytoplasm by myosin-dependent contraction of F-actin filaments (
      • Elosegui-Artola A.
      • Oria R.
      • Chen Y.
      • Kosmalska A.
      • Perez-Gonzalez C.
      • Castro N.
      • Zhu C.
      • Trepat X.
      • Roca-Cusachs P.
      Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity.
      ,
      • Chan C.E.
      • Odde D.J.
      Traction dynamics of filopodia on compliant substrates.
      ,
      • Kumar S.
      • Maxwell I.Z.
      • Heisterkamp A.
      • Polte T.R.
      • Lele T.P.
      • Salanga M.
      • Mazur E.
      • Ingber D.E.
      Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.
      ), through integrins, to the ECM, resulting in a traction stress on the ECM (
      • Dembo M.
      • Wang Y.L.
      Stresses at the cell-to-substrate interface during locomotion of fibroblasts.
      ,
      • Munevar S.
      • Wang Y.
      • Dembo M.
      Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts.
      ,
      • Tan J.L.
      • Tien J.
      • Pirone D.M.
      • Gray D.S.
      • Bhadriraju K.
      • Chen C.S.
      Cells lying on a bed of microneedles: an approach to isolate mechanical force.
      ). The traction allows cells to maintain adhesion to the ECM as well as to move. Importantly, these integrin-mediated sites of adhesion are also key protein hubs that transmit externally applied mechanical force across the cell membrane (
      • Wang N.
      • Butler J.P.
      • Ingber D.E.
      Mechanotransduction across the cell surface and through the cytoskeleton.
      ), and are sites of transduction of the mechanical force into biochemical signaling which ultimately impacts gene expression (
      • Ingber D.E.
      Cellular mechanotransduction: putting all the pieces together again.
      ).
      For a cell that is adherent to the ECM, a mechanical change, such as a mechanical stretch of the ECM, causes transmission of force through the integrin receptors, through talin and other linker proteins, to the cytoskeleton. The force can unfold talin and other proteins in the adhesion (
      • Yao M.
      • Goult B.T.
      • Klapholz B.
      • Hu X.
      • Toseland C.P.
      • Guo Y.
      • Cong P.
      • Sheetz M.P.
      • Yan J.
      The mechanical response of talin.
      ,
      • Klapholz B.
      • Brown N.H.
      Talin - the master of integrin adhesions.
      ), exposing cryptic binding sites for F-actin and structural proteins like vinculin, resulting in a higher local concentration of proteins localized to the adhesion including enzymes like focal adhesion kinase (FAK), and increased numbers of bonds with the actomyosin cytoskeleton. This remodeling response results in stronger adhesion, which is a classical adaptive response of cells to external mechanical force. The adaptive response, which can be triggered cell-wide (
      • Ingber D.E.
      Mechanosensation through integrins: cells act locally but think globally.
      ), can in turn cause higher traction on the ECM, and remodel the ECM itself, through force-dependent unfolding of ECM proteins (
      • Erickson H.P.
      Stretching fibronectin.
      ). Force applied to integrin receptors activate the small GTPase Rho signaling pathway, further stimulating actomyosin force generation, by activating its effector mDia1 which promotes actin filament polymerization (
      • Riveline D.
      • Zamir E.
      • Balaban N.Q.
      • Schwarz U.S.
      • Ishizaki T.
      • Narumiya S.
      • Kam Z.
      • Geiger B.
      • Bershadsky A.D.
      Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism.
      ,
      • Matthews B.D.
      • Overby D.R.
      • Mannix R.
      • Ingber D.E.
      Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels.
      ). Local force application to integrins can activate other enzymes like Src kinase and their downstream signaling (
      • Wang Y.
      • Botvinick E.L.
      • Zhao Y.
      • Berns M.W.
      • Usami S.
      • Tsien R.Y.
      • Chien S.
      Visualizing the mechanical activation of Src.
      ). Forces applied to integrins can also modulate signaling pathways through the activation of different ion channels in the plasma membrane (
      • Matthews B.D.
      • Thodeti C.K.
      • Tytell J.D.
      • Mammoto A.
      • Overby D.R.
      • Ingber D.E.
      Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins.
      ).
      The ECM-integrin-cytoskeleton linkage is key to sensing and transduction of changes in the mechanical stiffness of the ECM into intracellular responses (
      • Engler A.J.
      • Sen S.
      • Sweeney H.L.
      • Discher D.E.
      Matrix elasticity directs stem cell lineage specification.
      ,
      • Discher D.E.
      • Janmey P.
      • Wang Y.L.
      Tissue cells feel and respond to the stiffness of their substrate.
      ). Cell migration, proliferation, differentiation, and tissue structure are profoundly altered on soft ECM compared with stiff ECM (
      • Paszek M.J.
      • Zahir N.
      • Johnson K.R.
      • Lakins J.N.
      • Rozenberg G.I.
      • Gefen A.
      • Reinhart-King C.A.
      • Margulies S.S.
      • Dembo M.
      • Boettiger D.
      • Hammer D.A.
      • Weaver V.M.
      Tensional homeostasis and the malignant phenotype.
      ,
      • Discher D.E.
      • Janmey P.
      • Wang Y.L.
      Tissue cells feel and respond to the stiffness of their substrate.
      ). Adhesions and traction forces are small on soft ECM compared to stiff ECM, resulting in lower cell spreading on soft substrates (
      • Engler A.J.
      • Sen S.
      • Sweeney H.L.
      • Discher D.E.
      Matrix elasticity directs stem cell lineage specification.
      ,
      • Pelham Jr., R.J.
      • Wang Y.
      Cell locomotion and focal adhesions are regulated by substrate flexibility.
      ).The decrease in cell spreading on soft ECM correlates with rounded nuclear morphologies on soft ECM (
      • Lovett D.B.
      • Shekhar N.
      • Nickerson J.A.
      • Roux K.J.
      • Lele T.P.
      Modulation of Nuclear Shape by Substrate Rigidity.
      ), and a lack of translocation of Yes-associated protein(YAP)/ transcriptional co-activator with PDZ-binding motif (TAZ), transcriptional regulators of the hippo signaling pathway, to the nucleus (
      • Dupont S.
      Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction.
      ,
      • Dupont S.
      • Morsut L.
      • Aragona M.
      • Enzo E.
      • Giulitti S.
      • Cordenonsi M.
      • Zanconato F.
      • Le Digabel J.
      • Forcato M.
      • Bicciato S.
      • Elvassore N.
      • Piccolo S.
      Role of YAP/TAZ in mechanotransduction.
      ). YAP/ TAZ get phosphorylated upon activation of the hippo pathway, and are retained in the cytoplasm, while inactivation of the hippo dephosphorylates YAP/TAZ and causes their nuclear translocation where they induce gene expression (
      • Mohri Z.
      • Del Rio Hernandez A.
      • Krams R.
      The emerging role of YAP/TAZ in mechanotransduction.
      ). Interestingly, the sensitivity of YAP/TAZ translocation to ECM stiffness, is independent of the hippo pathway. In fact, diverse mechanical stimuli impact YAP/TAZ translocation to the nucleus (
      • Gaspar P.
      • Tapon N.
      Sensing the local environment: actin architecture and Hippo signalling.
      ,
      • Panciera T.
      • Azzolin L.
      • Cordenonsi M.
      • Piccolo S.
      Mechanobiology of YAP and TAZ in physiology and disease.
      ), highlighting its importance as a mechanotransduction pathway.

      Altered glycan expression and cancer progression

      The concentrations as well as the compositions of the different types of glycans are significantly altered in cancer (Fig. 1) and are specific to the type of cancer. Altered glycan composition and concentration impacts cancer cell adhesion, signaling, migration/invasion, tumor angiogenesis, drug resistance, epithelial to mesenchymal transition (EMT) and cancer metastasis (see reviews on this topic (
      • Buffone A.
      • Weaver V.M.
      Don't sugarcoat it: How glycocalyx composition influences cancer progression.
      ,
      • Pinho S.S.
      • Reis C.A.
      Glycosylation in cancer: mechanisms and clinical implications.
      ,
      • Kang H.
      • Wu Q.
      • Sun A.
      • Liu X.
      • Fan Y.
      • Deng X.
      Cancer Cell Glycocalyx and Its Significance in Cancer Progression.
      ,
      • Fuster M.M.
      • Esko J.D.
      The sweet and sour of cancer: glycans as novel therapeutic targets.
      ,
      • Nardy A.F.
      • Freire-de-Lima L.
      • Freire-de-Lima C.G.
      • Morrot A.
      The Sweet Side of Immune Evasion: Role of Glycans in the Mechanisms of Cancer Progression.
      ,
      • Dube D.H.
      • Bertozzi C.R.
      Glycans in cancer and inflammation--potential for therapeutics and diagnostics.
      )). Changes in glycation can serve as diagnostic biomarkers for some cancers (
      • Reis C.A.
      • Osorio H.
      • Silva L.
      • Gomes C.
      • David L.
      Alterations in glycosylation as biomarkers for cancer detection.
      ,
      • Sato Y.
      • Nakata K.
      • Kato Y.
      • Shima M.
      • Ishii N.
      • Koji T.
      • Taketa K.
      • Endo Y.
      • Nagataki S.
      Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein.
      ). Important proteoglycans that are upregulated in cancer include syndecans (
      • Sayyad M.R.
      • Puchalapalli M.
      • Vergara N.G.
      • Wangensteen S.M.
      • Moore M.
      • Mu L.
      • Edwards C.
      • Anderson A.
      • Kall S.
      • Sullivan M.
      • Dozmorov M.
      • Singh J.
      • Idowu M.O.
      • Koblinski J.E.
      Syndecan-1 facilitates breast cancer metastasis to the brain.
      ,
      • Teixeira F.
      • Gotte M.
      Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation.
      ), glypicans (
      • Li N.
      • Gao W.
      • Zhang Y.F.
      • Ho M.
      Glypicans as Cancer Therapeutic Targets.
      ), perlecans (
      • Elgundi Z.
      • Papanicolaou M.
      • Major G.
      • Cox T.R.
      • Melrose J.
      • Whitelock J.M.
      • Farrugia B.L.
      Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan.
      ,
      • Cohen I.R.
      • Murdoch A.D.
      • Naso M.F.
      • Marchetti D.
      • Berd D.
      • Iozzo R.V.
      Abnormal expression of perlecan proteoglycan in metastatic melanomas.
      ,
      • Grindel B.
      • Li Q.
      • Arnold R.
      • Petros J.
      • Zayzafoon M.
      • Muldoon M.
      • Stave J.
      • Chung L.W.
      • Farach-Carson M.C.
      Correction: Perlecan/HSPG2 and matrilysin/MMP-7 as indices of tissue invasion: tissue localization and circulating perlecan fragments in a cohort of 288 radical prostatectomy patients.
      ), agrins (
      • Kang H.
      • Wu Q.
      • Sun A.
      • Liu X.
      • Fan Y.
      • Deng X.
      Cancer Cell Glycocalyx and Its Significance in Cancer Progression.
      ,
      • Zhang Q.J.
      • Wan L.
      • Xu H.F.
      High expression of agrin is associated with tumor progression and poor prognosis in hepatocellular carcinoma.
      ,
      • Njah K.
      • Chakraborty S.
      • Qiu B.
      • Arumugam S.
      • Raju A.
      • Pobbati A.V.
      • Lakshmanan M.
      • Tergaonkar V.
      • Thibault G.
      • Wang X.
      • Hong W.
      A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis.
      ,
      • Rivera C.
      • Zandonadi F.S.
      • Sanchez-Romero C.
      • Soares C.D.
      • Granato D.C.
      • Gonzalez-Arriagada W.A.
      • Paes Leme A.F.
      Agrin has a pathological role in the progression of oral cancer.
      ,
      • Han L.
      • Shi H.
      • Ma S.
      • Luo Y.
      • Sun W.
      • Li S.
      • Zhang N.
      • Jiang X.
      • Gao Y.
      • Huang Z.
      • Xie C.
      • Gong Y.
      Agrin Promotes Non-Small Cell Lung Cancer Progression and Stimulates Regulatory T Cells via Increasing IL-6 Secretion Through PI3K/AKT Pathway.
      ,
      • Wang Z.Q.
      • Sun X.L.
      • Wang Y.L.
      • Miao Y.L.
      Agrin promotes the proliferation, invasion and migration of rectal cancer cells via the WNT signaling pathway to contribute to rectal cancer progression.
      ), small leucine rich proteoglycans (SLRPs) such as biglycans (
      • Appunni S.
      • Anand V.
      • Khandelwal M.
      • Gupta N.
      • Rubens M.
      • Sharma A.
      Small Leucine Rich Proteoglycans (decorin, biglycan and lumican) in cancer.
      ,
      • Maishi N.
      • Ohba Y.
      • Akiyama K.
      • Ohga N.
      • Hamada J.
      • Nagao-Kitamoto H.
      • Alam M.T.
      • Yamamoto K.
      • Kawamoto T.
      • Inoue N.
      • Taketomi A.
      • Shindoh M.
      • Hida Y.
      • Hida K.
      Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan.
      ), lumicans (
      • Wang X.
      • Zhou Q.
      • Yu Z.
      • Wu X.
      • Chen X.
      • Li J.
      • Li C.
      • Yan M.
      • Zhu Z.
      • Liu B.
      • Su L.
      Cancer-associated fibroblast-derived Lumican promotes gastric cancer progression via the integrin beta1-FAK signaling pathway.
      ,
      • de Wit M.
      • Carvalho B.
      • Delis-van Diemen P.M.
      • van Alphen C.
      • Belien J.A.M.
      • Meijer G.A.
      • Fijneman R.J.A.
      Lumican and versican protein expression are associated with colorectal adenoma-to-carcinoma progression.
      ,
      • Cappellesso R.
      • Millioni R.
      • Arrigoni G.
      • Simonato F.
      • Caroccia B.
      • Iori E.
      • Guzzardo V.
      • Ventura L.
      • Tessari P.
      • Fassina A.
      Lumican is overexpressed in lung adenocarcinoma pleural effusions.
      ,
      • Chen L.
      • Zhang Y.
      • Zuo Y.
      • Ma F.
      • Song H.
      Lumican expression in gastric cancer and its association with biological behavior and prognosis.
      ) and decorin (
      • Neill T.
      • Schaefer L.
      • Iozzo R.V.
      Oncosuppressive functions of decorin.
      ). In addition, high levels of the glycosaminoglycan (GAG) hyaluronan in the ECM are common in many cancers (
      • Caon I.
      • Bartolini B.
      • Parnigoni A.
      • Carava E.
      • Moretto P.
      • Viola M.
      • Karousou E.
      • Vigetti D.
      • Passi A.
      Revisiting the hallmarks of cancer: The role of hyaluronan.
      ,
      • Karalis T.
      • Skandalis S.S.
      Hyaluronan network: a driving force in cancer progression.
      ). Abnormally high N- and O-linked glycosylaton of glycoproteins contribute to the development and progression of cancer (
      • Pinho S.S.
      • Reis C.A.
      Glycosylation in cancer: mechanisms and clinical implications.
      ). Increased fucosylation or sialyation of glycoproteins, and increased glycation of lipids, can both promote cancer progression (
      • van de Wall S.
      • Santegoets K.C.M.
      • van Houtum E.J.H.
      • Bull C.
      • Adema G.J.
      Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment.
      ,
      • Daniotti J.L.
      • Vilcaes A.A.
      • Torres Demichelis V.
      • Ruggiero F.M.
      • Rodriguez-Walker M.
      Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches.
      ).
      The increased glycation of proteins and lipids in cancer is broadly due to increased expression of specific glycosyltransferases, which are enzymes responsible for the initiation and elongation of glycan chains. An additional mechanism that may contribute to increased glycation is synthesis of UDP-GlcNAc by the nutrient-sensing hexosamine biosynthetic pathway (HBP) (
      • de Queiroz R.M.
      • Oliveira I.A.
      • Piva B.
      • Bouchuid Catao F.
      • da Costa Rodrigues B.
      • da Costa Pascoal A.
      • Diaz B.L.
      • Todeschini A.R.
      • Caarls M.B.
      • Dias W.B.
      Hexosamine Biosynthetic Pathway and Glycosylation Regulate Cell Migration in Melanoma Cells.
      ). HBP is known to be overactivated in cancer cells compared to normal cells (
      • Ying H.
      • Kimmelman A.C.
      • Lyssiotis C.A.
      • Hua S.
      • Chu G.C.
      • Fletcher-Sananikone E.
      • Locasale J.W.
      • Son J.
      • Zhang H.
      • Coloff J.L.
      • Yan H.
      • Wang W.
      • Chen S.
      • Viale A.
      • Zheng H.
      • Paik J.H.
      • Lim C.
      • Guimaraes A.R.
      • Martin E.S.
      • Chang J.
      • Hezel A.F.
      • Perry S.R.
      • Hu J.
      • Gan B.
      • Xiao Y.
      • Asara J.M.
      • Weissleder R.
      • Wang Y.A.
      • Chin L.
      • Cantley L.C.
      • DePinho R.A.
      Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism.
      ), and the end product UDP-GlcNAc is the key substrate that is used for synthesis of glycans, including O-GlcNAcylation which is a single sugar conjugation (
      • Akella N.M.
      • Ciraku L.
      • Reginato M.J.
      Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer.
      ). O-GlcNAcylation is a dynamic and reversible post-translational glycosylation that involves the addition of an N-acetylglucosamine (GlcNAc) from the precursor UDP-GlcNAc to the serine or threonine residues of a variety of cytoplasmic or nuclear proteins. A wide range of processes such as enzyme activity, protein stability, activation of survival signals and chemoresistance in cancer are regulated by O-GlcNAcylation (
      • Liu Y.
      • Cao Y.
      • Pan X.
      • Shi M.
      • Wu Q.
      • Huang T.
      • Jiang H.
      • Li W.
      • Zhang J.
      O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance.
      ).

      Impact of glycans on mechanobiological pathways in cancer

      Recent studies have shown that glycation of proteins can modulate pathways that mediate cellular response to mechanical cues from the ECM (Table 1) (
      • Buffone A.
      • Weaver V.M.
      Don't sugarcoat it: How glycocalyx composition influences cancer progression.
      ,
      • Kang H.
      • Wu Q.
      • Sun A.
      • Liu X.
      • Fan Y.
      • Deng X.
      Cancer Cell Glycocalyx and Its Significance in Cancer Progression.
      ). Below we discuss the role of different classes of glycans in modulating tumor cell response to mechanical changes in the ECM. We focus on the role of proteoglycans because most studies of the role of glycans in cancer mechanobiology have been performed in the context of proteoglycans.
      Table 1Glycans regulated mechanical properties and cancer types
      Glycan typeMechanical propertiesReferencesCancer type
      SialylationIncreases integrin tension, enhance maturation of focal adhesions, and spreading and migration of cancer cells(
      • Rao T.C.
      • Beggs R.R.
      • Ankenbauer K.E.
      • Hwang J.
      • Ma V.P.
      • Salaita K.
      • Bellis S.L.
      • Mattheyses A.L.
      ST6Gal-I-mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion.
      )
      Ovarian
      MucinsPromote integrin clustering, activates focal adhesion kinases(
      • Paszek M.J.
      • DuFort C.C.
      • Rossier O.
      • Bainer R.
      • Mouw J.K.
      • Godula K.
      • Hudak J.E.
      • Lakins J.N.
      • Wijekoon A.C.
      • Cassereau L.
      • Rubashkin M.G.
      • Magbanua M.J.
      • Thorn K.S.
      • Davidson M.W.
      • Rugo H.S.
      • Park J.W.
      • Hammer D.A.
      • Giannone G.
      • Bertozzi C.R.
      • Weaver V.M.
      The cancer glycocalyx mechanically primes integrin-mediated growth and survival.
      ,
      • Woods E.C.
      • Kai F.
      • Barnes J.M.
      • Pedram K.
      • Pickup M.W.
      • Hollander M.J.
      • Weaver V.M.
      • Bertozzi C.R.
      A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression.
      )
      Breast, glioma
      HyaluronanPromotes ECM stiffening, supports accumulation of mechanical forces in tumor tissues(
      • Miroshnikova Y.A.
      • Mouw J.K.
      • Barnes J.M.
      • Pickup M.W.
      • Lakins J.N.
      • Kim Y.
      • Lobo K.
      • Persson A.I.
      • Reis G.F.
      • McKnight T.R.
      • Holland E.C.
      • Phillips J.J.
      • Weaver V.M.
      Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression.
      ,
      • Voutouri C.
      • Stylianopoulos T.
      Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness.
      ,
      • Pogoda K.
      • Bucki R.
      • Byfield F.J.
      • Cruz K.
      • Lee T.
      • Marcinkiewicz C.
      • Janmey P.A.
      Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells.
      ,
      • Wang C.
      • Tong X.
      • Yang F.
      Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
      ,
      • Nijenhuis N.
      • Mizuno D.
      • Spaan J.A.
      • Schmidt C.F.
      High-resolution microrheology in the pericellular matrix of prostate cancer cells.
      )
      Glioma, breast, prostate
      AgrinPromotes ECM stiffening, activates YAP/TAZ pathway, stabilizes focal adhesion complexes(
      • Njah K.
      • Chakraborty S.
      • Qiu B.
      • Arumugam S.
      • Raju A.
      • Pobbati A.V.
      • Lakshmanan M.
      • Tergaonkar V.
      • Thibault G.
      • Wang X.
      • Hong W.
      A Role of Agrin in Maintaining the Stability of Vascular Endothelial Growth Factor Receptor-2 during Tumor Angiogenesis.
      ,
      • Chakraborty S.
      • Lakshmanan M.
      • Swa H.L.
      • Chen J.
      • Zhang X.
      • Ong Y.S.
      • Loo L.S.
      • Akincilar S.C.
      • Gunaratne J.
      • Tergaonkar V.
      • Hui K.M.
      • Hong W.
      An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma.
      ,
      • Chakraborty S.
      • Njah K.
      • Pobbati A.V.
      • Lim Y.B.
      • Raju A.
      • Lakshmanan M.
      • Tergaonkar V.
      • Lim C.T.
      • Hong W.
      Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway.
      )
      Liver
      SyndecansCytoplasmic domain binds to PDZ domain containing proteins such as syntenin-1 and recruits signaling and cytoskeletal proteins to the plasma membrane, promotes cytoskeletal rearrangements, cell-ECM interactions, migration, and metastasis.(
      • Grootjans J.J.
      • Zimmermann P.
      • Reekmans G.
      • Smets A.
      • Degeest G.
      • Durr J.
      • David G.
      Syntenin, a PDZ protein that binds syndecan cytoplasmic domains.
      ,
      • Tkachenko E.
      • Elfenbein A.
      • Tirziu D.
      • Simons M.
      Syndecan-4 clustering induces cell migration in a PDZ-dependent manner.
      ,
      • Kashyap R.
      • Roucourt B.
      • Lembo F.
      • Fares J.
      • Carcavilla A.M.
      • Restouin A.
      • Zimmermann P.
      • Ghossoub R.
      Syntenin controls migration, growth, proliferation, and cell cycle progression in cancer cells.
      ,
      • Morgan M.R.
      • Hamidi H.
      • Bass M.D.
      • Warwood S.
      • Ballestrem C.
      • Humphries M.J.
      Syndecan-4 phosphorylation is a control point for integrin recycling.
      ,
      • Bass M.D.
      • Humphries M.J.
      Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling.
      ,
      • Cheng B.
      • Montmasson M.
      • Terradot L.
      • Rousselle P.
      Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins.
      )
      Breast, lymphoma, myeloma, pancreatic, lung, glioma, ovarian
      Syndecan-4Enhances syntenin-1 binding, coordinates focal adhesion dynamics, promotes formation of stress fibers and mechanosignaling(
      • Chronopoulos A.
      • Thorpe S.D.
      • Cortes E.
      • Lachowski D.
      • Rice A.J.
      • Mykuliak V.V.
      • Rog T.
      • Lee D.A.
      • Hytonen V.P.
      • Del Rio Hernandez A.E.
      Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway.
      ,
      • Woods A.
      • Couchman J.R.
      Syndecan-4 and focal adhesion function.
      ,
      • Okina E.
      • Grossi A.
      • Gopal S.
      • Multhaupt H.A.
      • Couchman J.R.
      Alpha-actinin interactions with syndecan-4 are integral to fibroblast-matrix adhesion and regulate cytoskeletal architecture.
      ) (
      • Keller-Pinter A.
      • Gyulai-Nagy S.
      • Becsky D.
      • Dux L.
      • Rovo L.
      Syndecan-4 in Tumor Cell Motility.
      ,
      • Onyeisi J.O.S.
      • Lopes C.C.
      • Gotte M.
      Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer.
      )
      Breast, glioma osteosarcoma, liver, kidney
      Syndecan-1Promotes formation of signaling complexes in cooperation with αVβ3, αVβ5, and α4β1 integrins, promotes ECM assembly and cancer cell spreading and migration, mediates flow stress induced changes in cell shape(
      • Beauvais D.M.
      • Ell B.J.
      • McWhorter A.R.
      • Rapraeger A.C.
      Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor.
      ,
      • Jung O.
      • Trapp-Stamborski V.
      • Purushothaman A.
      • Jin H.
      • Wang H.
      • Sanderson R.D.
      • Rapraeger A.C.
      Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins.
      ,
      • Beauvais D.M.
      • Rapraeger A.C.
      Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation.
      ,
      • Wang H.
      • Jin H.
      • Rapraeger A.C.
      Syndecan-1 and Syndecan-4 Capture Epidermal Growth Factor Receptor Family Members and the alpha3beta1 Integrin Via Binding Sites in Their Ectodomains: NOVEL SYNSTATINS PREVENT KINASE CAPTURE AND INHIBIT alpha6beta4-INTEGRIN-DEPENDENT EPITHELIAL CELL MOTILITY.
      ,
      • Yang N.
      • Mosher R.
      • Seo S.
      • Beebe D.
      • Friedl A.
      Syndecan-1 in breast cancer stroma fibroblasts regulates extracellular matrix fiber organization and carcinoma cell motility.
      ,
      • Ebong E.E.
      • Lopez-Quintero S.V.
      • Rizzo V.
      • Spray D.C.
      • Tarbell J.M.
      Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1.
      ,
      • Afratis N.
      • Gialeli C.
      • Nikitovic D.
      • Tsegenidis T.
      • Karousou E.
      • Theocharis A.D.
      • Pavao M.S.
      • Tzanakakis G.N.
      • Karamanos N.K.
      Glycosaminoglycans: key players in cancer cell biology and treatment.
      ,
      • Beauvais D.M.
      • Rapraeger A.C.
      Syndecan-1-mediated cell spreading requires signaling by alphavbeta3 integrins in human breast carcinoma cells.
      ,
      • Beauvais D.M.
      • Burbach B.J.
      • Rapraeger A.C.
      The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells.
      )
      Myeloma, breast
      GlypicanMediates flow shear stress-induced nitric oxide synthase activation(
      • Ebong E.E.
      • Lopez-Quintero S.V.
      • Rizzo V.
      • Spray D.C.
      • Tarbell J.M.
      Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1.
      )
      Vascular endothelium
      DecorinCollagen fibril formation(
      • Chen D.N.
      • Smith L.R.
      • Khandekar G.
      • Patel P.
      • Yu C.K.
      • Zhang K.H.
      • Chen C.S.
      • Han L.
      • Wells R.G.
      Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization.
      )
      BiglycanPromotes the formation of a denser collagen architecture, increase tissue stiffness, upregulates β1 integrin expression, promotes cancer cell invasion(
      • Andrlova H.
      • Mastroianni J.
      • Madl J.
      • Kern J.S.
      • Melchinger W.
      • Dierbach H.
      • Wernet F.
      • Follo M.
      • Technau-Hafsi K.
      • Has C.
      • Rao Mittapalli V.
      • Idzko M.
      • Herr R.
      • Brummer T.
      • Ungefroren H.
      • Busch H.
      • Boerries M.
      • Narr A.
      • Ihorst G.
      • Vennin C.
      • Schmitt-Graeff A.
      • Minguet S.
      • Timpson P.
      • Duyster J.
      • Meiss F.
      • Romer W.
      • Zeiser R.
      Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin-beta1 expression.
      )
      Melanoma
      AggrecanPrevents ECM stiffening in cartilage and aortic tissues(
      • Yasmin
      • Maskari R.A.
      • McEniery C.M.
      • Cleary S.E.
      • Li Y.
      • Siew K.
      • Figg N.L.
      • Khir A.W.
      • Cockcroft J.R.
      • Wilkinson I.B.
      • O'Shaughnessy K.M.
      The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness.
      ,
      • Nia H.T.
      • Han L.
      • Bozchalooi I.S.
      • Roughley P.
      • Youcef-Toumi K.
      • Grodzinsky A.J.
      • Ortiz C.
      Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.
      )
      SerglycinPromotes FAK and YAP signaling(
      • Zhang Z.
      • Qiu N.
      • Yin J.
      • Zhang J.
      • Liu H.
      • Guo W.
      • Liu M.
      • Liu T.
      • Chen D.
      • Luo K.
      • Li H.
      • He Z.
      • Liu J.
      • Zheng G.
      SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression.
      )
      Breast
      AGEsPromotes collagen stiffening(
      • Bordeleau F.
      • Mason B.N.
      • Lollis E.M.
      • Mazzola M.
      • Zanotelli M.R.
      • Somasegar S.
      • Califano J.P.
      • Montague C.
      • LaValley D.J.
      • Huynh J.
      • Mencia-Trinchant N.
      • Negron Abril Y.L.
      • Hassane D.C.
      • Bonassar L.J.
      • Butcher J.T.
      • Weiss R.S.
      • Reinhart-King C.A.
      Matrix stiffening promotes a tumor vasculature phenotype.
      ,
      • Mason B.N.
      • Starchenko A.
      • Williams R.M.
      • Bonassar L.J.
      • Reinhart-King C.A.
      Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior.
      ,
      • Levental K.R.
      • Yu H.
      • Kass L.
      • Lakins J.N.
      • Egeblad M.
      • Erler J.T.
      • Fong S.F.
      • Csiszar K.
      • Giaccia A.
      • Weninger W.
      • Yamauchi M.
      • Gasser D.L.
      • Weaver V.M.
      Matrix crosslinking forces tumor progression by enhancing integrin signaling.
      ,
      • Reddy G.K.
      AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats.
      ,
      • Rodriguez-Teja M.
      • Gronau J.H.
      • Breit C.
      • Zhang Y.Z.
      • Minamidate A.
      • Caley M.P.
      • McCarthy A.
      • Cox T.R.
      • Erler J.T.
      • Gaughan L.
      • Darby S.
      • Robson C.
      • Mauri F.
      • Waxman J.
      • Sturge J.
      AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival.
      ,
      • Lu P.
      • Weaver V.M.
      • Werb Z.
      The extracellular matrix: a dynamic niche in cancer progression.
      )
      Prostate, breast

      Proteoglycans

      Agrin

      Agrin is a heparan sulfate proteoglycan (HSPG), expressed either as a cell membrane proteoglycan or secreted into the ECM (
      • Burgess R.W.
      • Skarnes W.C.
      • Sanes J.R.
      Agrin isoforms with distinct amino termini: differential expression, localization, and function.
      ,
      • Neumann F.R.
      • Bittcher G.
      • Annies M.
      • Schumacher B.
      • Kroger S.
      • Ruegg M.A.
      An alternative amino-terminus expressed in the central nervous system converts agrin to a type II transmembrane protein.
      ). Agrin, which is expressed by several tissues, is known to cluster acetylcholine receptors in the neuromuscular junctions. It binds to lipoprotein-related receptor-4 (Lrp4) and mediates muscle-specific kinase (MuSK) signaling in neuromuscular junctions. A few studies have implicated a role for agrin in cancer. Agrin expression is elevated in oral squamous cell carcinoma and promotes tumor aggressiveness (
      • Rivera C.
      • Zandonadi F.S.
      • Sanchez-Romero C.
      • Soares C.D.
      • Granato D.C.
      • Gonzalez-Arriagada W.A.
      • Paes Leme A.F.
      Agrin has a pathological role in the progression of oral cancer.
      ). Agrin is overexpressed and secreted by hepatocellular carcinoma cells (
      • Chakraborty S.
      • Lakshmanan M.
      • Swa H.L.
      • Chen J.
      • Zhang X.
      • Ong Y.S.
      • Loo L.S.
      • Akincilar S.C.
      • Gunaratne J.
      • Tergaonkar V.
      • Hui K.M.
      • Hong W.
      An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma.
      ), activating the Lrp4/Musk signaling pathway and promoting the assembly of cell-ECM adhesions (
      • Chakraborty S.
      • Lakshmanan M.
      • Swa H.L.
      • Chen J.
      • Zhang X.
      • Ong Y.S.
      • Loo L.S.
      • Akincilar S.C.
      • Gunaratne J.
      • Tergaonkar V.
      • Hui K.M.
      • Hong W.
      An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma.
      ). Knockdown of agrin impairs adhesion assembly, similar to the effect of myosin inhibition (
      • Chakraborty S.
      • Lakshmanan M.
      • Swa H.L.
      • Chen J.
      • Zhang X.
      • Ong Y.S.
      • Loo L.S.
      • Akincilar S.C.
      • Gunaratne J.
      • Tergaonkar V.
      • Hui K.M.
      • Hong W.
      An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma.
      ). This suggests that agrin may promote actomyosin force dependent assembly of cell-substrate adhesions, which is a crucial component of the cellular response mechanisms to mechanical cues from the ECM (
      • Chan C.E.
      • Odde D.J.
      Traction dynamics of filopodia on compliant substrates.
      ,
      • Discher D.E.
      • Janmey P.
      • Wang Y.L.
      Tissue cells feel and respond to the stiffness of their substrate.
      ). Indeed, agrin levels are higher in cells cultured on stiff 2D collagen coated polyacrylamide hydrogels than in cells cultured on soft 2D polyacrylamide hydrogels (
      • Chakraborty S.
      • Njah K.
      • Pobbati A.V.
      • Lim Y.B.
      • Raju A.
      • Lakshmanan M.
      • Tergaonkar V.
      • Lim C.T.
      • Hong W.
      Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway.
      ). Knockdown of agrin prevents the nuclear translocation of YAP on stiff ECM, while addition of recombinant agrin causes the translocation of YAP to the nucleus even on soft ECM (
      • Chakraborty S.
      • Njah K.
      • Pobbati A.V.
      • Lim Y.B.
      • Raju A.
      • Lakshmanan M.
      • Tergaonkar V.
      • Lim C.T.
      • Hong W.
      Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway.
      ). Overall, the HSPG agrin is required for cancer cell response to mechanical stiffness of the ECM in hepatocellular carcinoma cells.

      Syndecans

      Syndecans are a four-member family of transmembrane proteoglycans that predominantly carry heparan sulfate GAG chains. Almost all cells, except for erythrocytes, express at least one member of the syndecan family (
      • Kim C.W.
      • Goldberger O.A.
      • Gallo R.L.
      • Bernfield M.
      Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns.
      ). A marked alteration of syndecan expression occurs in cancer with syndecans acting either as a tumor suppressor or promoter depending upon the cancer types. Loss of syndecan-1 expression in most epithelial tumors such as cervical, lung, head and neck, squamous cell and esophageal cancers is associated with tumor progression and reduced patient survival (
      • Inki P.
      • Larjava H.
      • Haapasalmi K.
      • Miettinen H.M.
      • Grenman R.
      • Jalkanen M.
      Expression of syndecan-1 is induced by differentiation and suppressed by malignant transformation of human keratinocytes.
      ,
      • Klatka J.
      Syndecan-1 expression in laryngeal cancer.
      ,
      • Mikami S.
      • Ohashi K.
      • Usui Y.
      • Nemoto T.
      • Katsube K.
      • Yanagishita M.
      • Nakajima M.
      • Nakamura K.
      • Koike M.
      Loss of syndecan-1 and increased expression of heparanase in invasive esophageal carcinomas.
      ,
      • Nackaerts K.
      • Verbeken E.
      • Deneffe G.
      • Vanderschueren B.
      • Demedts M.
      • David G.
      Heparan sulfate proteoglycan expression in human lung-cancer cells.
      ), suggestive of a tumor suppressive role for syndecan-1. In contrast, increased syndecan-1 expression in breast, pancreatic, ovarian, thyroid, and endometrial tumors is associated with tumor progression and poor prognosis (
      • Theocharis A.D.
      • Karamanos N.K.
      Proteoglycans remodeling in cancer: Underlying molecular mechanisms.
      ). Importantly, both the core protein and the heparan sulfate chains of cell-surface or shed syndecans contribute to cancer progression (
      • Szarvas T.
      • Reis H.
      • Kramer G.
      • Shariat S.F.
      • Vom Dorp F.
      • Tschirdewahn S.
      • Schmid K.W.
      • Kovalszky I.
      • Rubben H.
      Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer.
      ,
      • Szarvas T.
      • Reis H.
      • Vom Dorp F.
      • Tschirdewahn S.
      • Niedworok C.
      • Nyirady P.
      • Schmid K.W.
      • Rubben H.
      • Kovalszky I.
      Soluble syndecan-1 (SDC1) serum level as an independent pre-operative predictor of cancer-specific survival in prostate cancer.
      ,
      • Szatmari T.
      • Otvos R.
      • Hjerpe A.
      • Dobra K.
      Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication.
      ).
      There is evidence that syndecan-4, a member of the four-member family of transmembrane HSPGs, can act as a transmitter of mechanical force in fibroblasts and pancreatic stellate cells (
      • Bellin R.M.
      • Kubicek J.D.
      • Frigault M.J.
      • Kamien A.J.
      • Steward Jr., R.L.
      • Barnes H.M.
      • Digiacomo M.B.
      • Duncan L.J.
      • Edgerly C.K.
      • Morse E.M.
      • Park C.Y.
      • Fredberg J.J.
      • Cheng C.M.
      • LeDuc P.R.
      Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches.
      ,
      • Chronopoulos A.
      • Thorpe S.D.
      • Cortes E.
      • Lachowski D.
      • Rice A.J.
      • Mykuliak V.V.
      • Rog T.
      • Lee D.A.
      • Hytonen V.P.
      • Del Rio Hernandez A.E.
      Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway.
      ). When pulsatile forces were applied to magnetic beads coated with a fragment of fibronectin that binds heparan on syndecan-4, or to beads coated with antibodies toward the core protein of syndecan-4, there was a reduction in bead displacement upon sustained force application, suggesting a mechanical stiffening response. This is similar to the stiffening response upon force application to integrins. Application of force to syndecan-4 altered the conformation of its cytoplasmic domain, promoting the binding of α-actinin, a scaffold protein that localizes to cell-ECM adhesions and also binds to F-actin (
      • Chronopoulos A.
      • Thorpe S.D.
      • Cortes E.
      • Lachowski D.
      • Rice A.J.
      • Mykuliak V.V.
      • Rog T.
      • Lee D.A.
      • Hytonen V.P.
      • Del Rio Hernandez A.E.
      Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway.
      ). This linkage is likely responsible for the local mechanical stiffening response. Importantly, force application to syndecan-4 triggered the diffusion of PIP3 lipid second messengers, which in turn activated β1 integrins cell-wide by binding to kindlin-2 and promoting RhoA mediated actomyosin contractility (
      • Chronopoulos A.
      • Thorpe S.D.
      • Cortes E.
      • Lachowski D.
      • Rice A.J.
      • Mykuliak V.V.
      • Rog T.
      • Lee D.A.
      • Hytonen V.P.
      • Del Rio Hernandez A.E.
      Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway.
      ). The promotion of adhesion assembly by mechanical activation of syndecan-4 is consistent with another report that syndecan-4 is required for assembly of focal adhesions and stress fibers in fibroblasts (
      • Woods A.
      • Couchman J.R.
      Syndecan-4 and focal adhesion function.
      ,
      • Saoncella S.
      • Echtermeyer F.
      • Denhez F.
      • Nowlen J.K.
      • Mosher D.F.
      • Robinson S.D.
      • Hynes R.O.
      • Goetinck P.F.
      Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers.
      ), and that syndecan-4 null mouse fibroblasts have reduced focal adhesions and matrix contraction abilities (
      • Okina E.
      • Grossi A.
      • Gopal S.
      • Multhaupt H.A.
      • Couchman J.R.
      Alpha-actinin interactions with syndecan-4 are integral to fibroblast-matrix adhesion and regulate cytoskeletal architecture.
      ). A similar requirement for syndecan-4 has been reported in melanoma cells for contractility-dependent mechanosignaling (
      • Fiore V.F.
      • Ju L.
      • Chen Y.
      • Zhu C.
      • Barker T.H.
      Dynamic catch of a Thy-1-alpha5beta1+syndecan-4 trimolecular complex.
      ). Additionally, the extracellular core protein domains of syndecans 1 and 4 can bind to different integrin receptors - αvβ5, αvβ3, α3β1 and α4β1- forming diverse combinations (
      • Beauvais D.M.
      • Ell B.J.
      • McWhorter A.R.
      • Rapraeger A.C.
      Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor.
      ,
      • Jung O.
      • Trapp-Stamborski V.
      • Purushothaman A.
      • Jin H.
      • Wang H.
      • Sanderson R.D.
      • Rapraeger A.C.
      Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins.
      ,
      • Beauvais D.M.
      • Rapraeger A.C.
      Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation.
      ,
      • Wang H.
      • Jin H.
      • Rapraeger A.C.
      Syndecan-1 and Syndecan-4 Capture Epidermal Growth Factor Receptor Family Members and the alpha3beta1 Integrin Via Binding Sites in Their Ectodomains: NOVEL SYNSTATINS PREVENT KINASE CAPTURE AND INHIBIT alpha6beta4-INTEGRIN-DEPENDENT EPITHELIAL CELL MOTILITY.
      ,
      • Rapraeger A.C.
      Syndecans and Their Synstatins: Targeting an Organizer of Receptor Tyrosine Kinase Signaling at the Cell-Matrix Interface.
      ) that could facilitate mechanosensitive formation of focal adhesion complexes and downstream activation of signaling pathways. Thus, the syndecan-4 mediated mechanotransduction pathway is likely to be broadly important in cancer, as the expression of syndecan-4 is high in cancers such as glioblastoma (
      • Takashima S.
      • Oka Y.
      • Fujiki F.
      • Morimoto S.
      • Nakajima H.
      • Nakae Y.
      • Nakata J.
      • Nishida S.
      • Hosen N.
      • Tatsumi N.
      • Mizuguchi K.
      • Hashimoto N.
      • Oji Y.
      • Tsuboi A.
      • Kumanogoh A.
      • Sugiyama H.
      Syndecan-4 as a biomarker to predict clinical outcome for glioblastoma multiforme treated with WT1 peptide vaccine.
      ) and osteosarcoma (
      • Na K.Y.
      • Bacchini P.
      • Bertoni F.
      • Kim Y.W.
      • Park Y.K.
      Syndecan-4 and fibronectin in osteosarcoma.
      ), and the high expression correlates with reduced survival.

      Serglycin

      Serglycin is the only known intracellular proteoglycan, with a core protein rich in serine-glycine repeats (
      • Kolset S.O.
      • Tveit H.
      Serglycin--structure and biology.
      ). The GAG chain of serglycin can be either heparin or chondroitin sulfate depending on the cell type in which serglycin is expressed. Though serglycin is considered as an intracellular proteoglycan, recent studies have shown that serglycin can be secreted by cancer cells and bind to cell surface receptors (
      • Purushothaman A.
      • Toole B.P.
      Serglycin proteoglycan is required for multiple myeloma cell adhesion, in vivo growth, and vascularization.
      ,
      • Theocharis A.D.
      • Seidel C.
      • Borset M.
      • Dobra K.
      • Baykov V.
      • Labropoulou V.
      • Kanakis I.
      • Dalas E.
      • Karamanos N.K.
      • Sundan A.
      • Hjerpe A.
      Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro.
      ,
      • Purushothaman A.
      • Bandari S.K.
      • Chandrashekar D.S.
      • Jones R.J.
      • Lee H.C.
      • Weber D.M.
      • Orlowski R.Z.
      Chondroitin sulfate proteoglycan serglycin influences protein cargo loading and functions of tumor-derived exosomes.
      ). Initial studies reported increased levels of serglycin only in hematological malignancies like multiple myeloma and leukemia; however more recent findings suggest that serglycin is overexpressed in glioma and tumors of the breast, prostate, lung, and liver (
      • Tanaka I.
      • Dayde D.
      • Tai M.C.
      • Mori H.
      • Solis L.M.
      • Tripathi S.C.
      • Fahrmann J.F.
      • Unver N.
      • Parhy G.
      • Jain R.
      • Parra E.R.
      • Murakami Y.
      • Aguilar-Bonavides C.
      • Mino B.
      • Celiktas M.
      • Dhillon D.
      • Casabar J.P.
      • Nakatochi M.
      • Stingo F.
      • Baladandayuthapani V.
      • Wang H.
      • Katayama H.
      • Dennison J.B.
      • Lorenzi P.L.
      • Do K.A.
      • Fujimoto J.
      • Behrens C.
      • Ostrin E.J.
      • Rodriguez-Canales J.
      • Hase T.
      • Fukui T.
      • Kajino T.
      • Kato S.
      • Yatabe Y.
      • Hosoda W.
      • Kawaguchi K.
      • Yokoi K.
      • Chen-Yoshikawa T.F.
      • Hasegawa Y.
      • Gazdar A.F.
      • Wistuba II,
      • Hanash S.
      • Taguchi A.
      SRGN-Triggered Aggressive and Immunosuppressive Phenotype in a Subset of TTF-1-Negative Lung Adenocarcinomas.
      ,
      • Korpetinou A.
      • Skandalis S.S.
      • Moustakas A.
      • Happonen K.E.
      • Tveit H.
      • Prydz K.
      • Labropoulou V.T.
      • Giannopoulou E.
      • Kalofonos H.P.
      • Blom A.M.
      • Karamanos N.K.
      • Theocharis A.D.
      Serglycin is implicated in the promotion of aggressive phenotype of breast cancer cells.
      ,
      • Guo J.Y.
      • Hsu H.S.
      • Tyan S.W.
      • Li F.Y.
      • Shew J.Y.
      • Lee W.H.
      • Chen J.Y.
      Serglycin in tumor microenvironment promotes non-small cell lung cancer aggressiveness in a CD44-dependent manner.
      ,
      • Baghy K.
      • Tatrai P.
      • Regos E.
      • Kovalszky I.
      Proteoglycans in liver cancer.
      ,
      • Korpetinou A.
      • Papachristou D.J.
      • Lampropoulou A.
      • Bouris P.
      • Labropoulou V.T.
      • Noulas A.
      • Karamanos N.K.
      • Theocharis A.D.
      Increased Expression of Serglycin in Specific Carcinomas and Aggressive Cancer Cell Lines.
      ). Though the extent to which serglycin contributes to mechanotransduction remains understudied, a recent study reported that upregulation of serglycin expression in chemoresistant breast cancer cells activates focal adhesion kinase (FAK) signaling (
      • Zhang Z.
      • Qiu N.
      • Yin J.
      • Zhang J.
      • Liu H.
      • Guo W.
      • Liu M.
      • Liu T.
      • Chen D.
      • Luo K.
      • Li H.
      • He Z.
      • Liu J.
      • Zheng G.
      SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression.
      ), indicating a potential connection between serglycin and mechanotransduction (
      • Wang H.B.
      • Dembo M.
      • Hanks S.K.
      • Wang Y.
      Focal adhesion kinase is involved in mechanosensing during fibroblast migration.
      ). Serglycin upregulates YAP expression in breast cancer cells by activating integrin α5/FAK/CREB signaling. YAP in turn upregulate HDAC2 expression via the transcription factor RUNX1 to maintain stemness and chemoresistance in these cells (
      • Zhang Z.
      • Qiu N.
      • Yin J.
      • Zhang J.
      • Liu H.
      • Guo W.
      • Liu M.
      • Liu T.
      • Chen D.
      • Luo K.
      • Li H.
      • He Z.
      • Liu J.
      • Zheng G.
      SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression.
      ). Additionally, YAP positively regulate serglycin expression to form a feed-forward circuit in breast cancer cells. These findings highlight that the proteoglycan serglycin can mediate cancer cell adaptation to the changing mechanical environment through the FAK/YAP signaling axis; a possibility that deserves further exploration.

      Glycoproteins

      Mucins

      Mucins are a family of highly glycosylated transmembrane glycoproteins produced by various epithelial cells and are categorized into membrane associated mucins, gel-forming mucins, and soluble mucins. The striking feature of cell surface mucins is their long, densely glycosylated ectodomain which can extend hundreds of nanometers from the plasma membrane. Mucins form a gel like mucus on the surface of the cells and impact integrin clustering, force sensing and signaling (
      • Kufe D.W.
      Mucins in cancer: function, prognosis and therapy.
      ). Mucins contribute to the bulk of the cancer associated glycans (
      • Muller S.
      • Goletz S.
      • Packer N.
      • Gooley A.
      • Lawson A.M.
      • Hanisch F.G.
      Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo.
      ,
      • Taylor-Papadimitriou J.
      • Burchell J.
      • Miles D.W.
      • Dalziel M.
      MUC1 and cancer.
      ), and high amount of O-glycosylation on the central region of mucins makes them resistant to degradation during cancer progression. Cell surface MUC1 and MUC16 are consistently upregulated in epithelia cancers and are considered as biomarkers of the disease (
      • Rahn J.J.
      • Dabbagh L.
      • Pasdar M.
      • Hugh J.C.
      The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature.
      ,
      • Bast Jr., R.C.
      • Hennessy B.
      • Mills G.B.
      The biology of ovarian cancer: new opportunities for translation.
      ). By virtue of their length, mucins can sterically modulate force on matrix-ligated integrin receptors, thereby activating them (
      • Paszek M.J.
      • DuFort C.C.
      • Rossier O.
      • Bainer R.
      • Mouw J.K.
      • Godula K.
      • Hudak J.E.
      • Lakins J.N.
      • Wijekoon A.C.
      • Cassereau L.
      • Rubashkin M.G.
      • Magbanua M.J.
      • Thorn K.S.
      • Davidson M.W.
      • Rugo H.S.
      • Park J.W.
      • Hammer D.A.
      • Giannone G.
      • Bertozzi C.R.
      • Weaver V.M.
      The cancer glycocalyx mechanically primes integrin-mediated growth and survival.
      ). Trimming mucins in glioblastoma cells, for example, represses integrin signaling, while increasing their size promotes tension-dependent integrin signaling (
      • Barnes J.M.
      • Kaushik S.
      • Bainer R.O.
      • Sa J.K.
      • Woods E.C.
      • Kai F.
      • Przybyla L.
      • Lee M.
      • Lee H.W.
      • Tung J.C.
      • Maller O.
      • Barrett A.S.
      • Lu K.V.
      • Lakins J.N.
      • Hansen K.C.
      • Obernier K.
      • Alvarez-Buylla A.
      • Bergers G.
      • Phillips J.J.
      • Nam D.H.
      • Bertozzi C.R.
      • Weaver V.M.
      A tension-mediated glycocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma.
      ). The dense glycan chains of mucins also promote cancer cell metastasis by enhancing integrin-FAK mechanosignaling, and cell cycle progression by the PI3K-Akt axis (
      • Paszek M.J.
      • DuFort C.C.
      • Rossier O.
      • Bainer R.
      • Mouw J.K.
      • Godula K.
      • Hudak J.E.
      • Lakins J.N.
      • Wijekoon A.C.
      • Cassereau L.
      • Rubashkin M.G.
      • Magbanua M.J.
      • Thorn K.S.
      • Davidson M.W.
      • Rugo H.S.
      • Park J.W.
      • Hammer D.A.
      • Giannone G.
      • Bertozzi C.R.
      • Weaver V.M.
      The cancer glycocalyx mechanically primes integrin-mediated growth and survival.
      ,
      • Woods E.C.
      • Kai F.
      • Barnes J.M.
      • Pedram K.
      • Pickup M.W.
      • Hollander M.J.
      • Weaver V.M.
      • Bertozzi C.R.
      A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression.
      ).

      Sialylation

      While glycans clearly impact mechanotransduction, the function of particular sugar modifications like sialylation of proteins remains understudied. Sialylation is a form of glycosylation that involves the addition of sialic acid to the terminal end of N- and O-linked glycan chains by sialyltransferase enzymes. Aberrant sialylation is a driver of malignant phenotype and regulates cell-cell and cell-matrix interactions, proliferation, invasion, angiogenesis, resistance to apoptosis and immune suppression (
      • Pietrobono S.
      • Stecca B.
      Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention?.
      ). A recent study reported that sialyation of EGFR, enhances tension on ECM -ligated integrins (
      • Rao T.C.
      • Beggs R.R.
      • Ankenbauer K.E.
      • Hwang J.
      • Ma V.P.
      • Salaita K.
      • Bellis S.L.
      • Mattheyses A.L.
      ST6Gal-I-mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion.
      ). Using DNA-based tension probes and high resolution total internal reflection fluorescence (TIRF) microscopy, the study showed that high sialyltransferase activity increases forces on the ECM, promotes maturation of focal adhesions, and eventual spreading and migration of ovarian cancer cells (
      • Rao T.C.
      • Beggs R.R.
      • Ankenbauer K.E.
      • Hwang J.
      • Ma V.P.
      • Salaita K.
      • Bellis S.L.
      • Mattheyses A.L.
      ST6Gal-I-mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion.
      ). These outcomes were driven by membrane retention and activity of EGFR via sialylation and downstream activation of the ERK and PI3K-AKT signaling cascades. As sialylation is increased in many cancers (
      • Pietrobono S.
      • Stecca B.
      Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention?.
      ), these findings highlight the need for further exploration of specific sugar modifications on proteins in the context of cancer cell mechanotransduction.

      Glycans and tumor ECM structure and mechanics

      There is a general over-expression of proteoglycans on tumor cells and in the ECM in cancer (
      • Iozzo R.V.
      • Sanderson R.D.
      Proteoglycans in cancer biology, tumour microenvironment and angiogenesis.
      ). Proteoglycans in the ECM can bind to a wide range of matrix proteins such as collagen, fibronectin, laminin, resulting in a more cross-linked matrix, and hence a stiffer matrix. For example, in breast cancer, even before tumor development there is an increased deposition of collagen I and proteoglycans in the ECM leading to increased breast density, which is a risk factor for breast cancer (
      • Guo Y.P.
      • Martin L.J.
      • Hanna W.
      • Banerjee D.
      • Miller N.
      • Fishell E.
      • Khokha R.
      • Boyd N.F.
      Growth factors and stromal matrix proteins associated with mammographic densities.
      ). Increased collagen and/or proteoglycan deposition results in matrix stiffening (
      • Guo Y.P.
      • Martin L.J.
      • Hanna W.
      • Banerjee D.
      • Miller N.
      • Fishell E.
      • Khokha R.
      • Boyd N.F.
      Growth factors and stromal matrix proteins associated with mammographic densities.
      ,
      • Andrlova H.
      • Mastroianni J.
      • Madl J.
      • Kern J.S.
      • Melchinger W.
      • Dierbach H.
      • Wernet F.
      • Follo M.
      • Technau-Hafsi K.
      • Has C.
      • Rao Mittapalli V.
      • Idzko M.
      • Herr R.
      • Brummer T.
      • Ungefroren H.
      • Busch H.
      • Boerries M.
      • Narr A.
      • Ihorst G.
      • Vennin C.
      • Schmitt-Graeff A.
      • Minguet S.
      • Timpson P.
      • Duyster J.
      • Meiss F.
      • Romer W.
      • Zeiser R.
      Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin-beta1 expression.
      ) and this in turn creates a tumor supporting matrix that contributes to the pathology of the tumor.
      Accumulation of advanced glycation end products (AGEs) in tissues has recently gained attention because of their significant role in inflammation and tumor development (
      • Wirtz D.
      • Konstantopoulos K.
      • Searson P.C.
      The physics of cancer: the role of physical interactions and mechanical forces in metastasis.
      ,
      • Schroter D.
      • Hohn A.
      Role of Advanced Glycation End Products in Carcinogenesis and their Therapeutic Implications.
      ). AGEs are formed when the carbonyl groups of endogenous reducing sugars (such as glucose-6-phosphate or ribose) non-enzymatically react with the free amino groups of proteins (
      • Francis-Sedlak M.E.
      • Uriel S.
      • Larson J.C.
      • Greisler H.P.
      • Venerus D.C.
      • Brey E.M.
      Characterization of type I collagen gels modified by glycation.
      ,
      • Villa M.
      • Parravano M.
      • Micheli A.
      • Gaddini L.
      • Matteucci A.
      • Mallozzi C.
      • Facchiano F.
      • Malchiodi-Albedi F.
      • Pricci F.
      A quick, simple method for detecting circulating fluorescent advanced glycation end-products: Correlation with in vitro and in vivo non-enzymatic glycation.
      ). AGE-induced cross-links can stiffen the collagen matrix with minimal changes to the fiber architecture (
      • Mason B.N.
      • Starchenko A.
      • Williams R.M.
      • Bonassar L.J.
      • Reinhart-King C.A.
      Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior.
      ,
      • Reddy G.K.
      AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats.
      ). AGE mediated ECM stiffening promotes epithelial cell invasion and decreases prostate cancer survival (
      • Rodriguez-Teja M.
      • Gronau J.H.
      • Breit C.
      • Zhang Y.Z.
      • Minamidate A.
      • Caley M.P.
      • McCarthy A.
      • Cox T.R.
      • Erler J.T.
      • Gaughan L.
      • Darby S.
      • Robson C.
      • Mauri F.
      • Waxman J.
      • Sturge J.
      AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival.
      ). Stiffening of collagen gels by glycation, but not by increased density, enhances the angiogenic outgrowth and branching of endothelial cell spheroids (
      • Bordeleau F.
      • Mason B.N.
      • Lollis E.M.
      • Mazzola M.
      • Zanotelli M.R.
      • Somasegar S.
      • Califano J.P.
      • Montague C.
      • LaValley D.J.
      • Huynh J.
      • Mencia-Trinchant N.
      • Negron Abril Y.L.
      • Hassane D.C.
      • Bonassar L.J.
      • Butcher J.T.
      • Weiss R.S.
      • Reinhart-King C.A.
      Matrix stiffening promotes a tumor vasculature phenotype.
      ); suggesting a potential role for collagen glycation in tumor angiogenesis. Furthermore a recent study reported that glucose can also promote glycation of collagen, AGE accumulation and stiffening of collagen without any change in collagen fiber density or architecture (
      • Rowe M.M.
      • Wang W.
      • Taufalele P.V.
      • Reinhart-King C.A.
      AGE-breaker ALT711 reverses glycation-mediated cancer cell migration.
      ). Expectedly, glucose induced collagen stiffening promotes cancer cell contractility elongation and migration. The use of an AGE breaker alagebrium chloride (ALT711) reduces AGE mediated matrix stiffening and cancer cell migration, without altering collagen pore size, chemical composition, or architecture (
      • Rowe M.M.
      • Wang W.
      • Taufalele P.V.
      • Reinhart-King C.A.
      AGE-breaker ALT711 reverses glycation-mediated cancer cell migration.
      ). These findings demonstrate that AGE formation may be one mechanism by which diabetes promotes cancer and disruptions of AGEs using AGE-breaker drugs can be therapeutically beneficial.
      In addition, heparan sulfate PGs such as syndecan-1 can promote the assembly of parallel fibronectin and collagen-1 fibers facilitating the directional migration of cancer cells (
      • Yang N.
      • Mosher R.
      • Seo S.
      • Beebe D.
      • Friedl A.
      Syndecan-1 in breast cancer stroma fibroblasts regulates extracellular matrix fiber organization and carcinoma cell motility.
      ). The heparin II binding domain on fibronectin binds with heparan sulfate chains of various members of the HSPG family (
      • Tumova S.
      • Woods A.
      • Couchman J.R.
      Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences.
      ). The binding of the heparan sulfate chains of syndecan-1 to the heparin-II domain may facilitate the unfolding of dimeric fibronectin and expose fibronectin self-assembly sites promoting fibrillogenesis. Furthermore, small leucine rich proteoglycans (SLRPs) biglycan and decorin can also modulate collagen fibril structure, fiber realignment and matrix assembly (
      • Robinson K.A.
      • Sun M.
      • Barnum C.E.
      • Weiss S.N.
      • Huegel J.
      • Shetye S.S.
      • Lin L.
      • Saez D.
      • Adams S.M.
      • Iozzo R.V.
      • Soslowsky L.J.
      • Birk D.E.
      Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons.
      ,
      • Lewis J.L.
      • Krawczak D.A.
      • Oegema Jr., T.R.
      • Westendorf J.J.
      Effect of decorin and dermatan sulfate on the mechanical properties of a neocartilage.
      ). Biglycan expression in melanoma promotes the formation of a denser collagen architecture leading to increased tissue stiffness (
      • Andrlova H.
      • Mastroianni J.
      • Madl J.
      • Kern J.S.
      • Melchinger W.
      • Dierbach H.
      • Wernet F.
      • Follo M.
      • Technau-Hafsi K.
      • Has C.
      • Rao Mittapalli V.
      • Idzko M.
      • Herr R.
      • Brummer T.
      • Ungefroren H.
      • Busch H.
      • Boerries M.
      • Narr A.
      • Ihorst G.
      • Vennin C.
      • Schmitt-Graeff A.
      • Minguet S.
      • Timpson P.
      • Duyster J.
      • Meiss F.
      • Romer W.
      • Zeiser R.
      Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin-beta1 expression.
      ). Biglycan-induced tissue stiffness in turn upregulates β1 integrin expression and promotes the invasion of melanoma cells (
      • Andrlova H.
      • Mastroianni J.
      • Madl J.
      • Kern J.S.
      • Melchinger W.
      • Dierbach H.
      • Wernet F.
      • Follo M.
      • Technau-Hafsi K.
      • Has C.
      • Rao Mittapalli V.
      • Idzko M.
      • Herr R.
      • Brummer T.
      • Ungefroren H.
      • Busch H.
      • Boerries M.
      • Narr A.
      • Ihorst G.
      • Vennin C.
      • Schmitt-Graeff A.
      • Minguet S.
      • Timpson P.
      • Duyster J.
      • Meiss F.
      • Romer W.
      • Zeiser R.
      Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin-beta1 expression.
      ). Biglycan can bind with different collagen subtypes, and a deficiency of biglycan can lead to collagen fibers becoming more loosely organized (
      • Schonherr E.
      • Witsch-Prehm P.
      • Harrach B.
      • Robenek H.
      • Rauterberg J.
      • Kresse H.
      Interaction of biglycan with type I collagen.
      ,
      • Douglas T.
      • Heinemann S.
      • Hempel U.
      • Mietrach C.
      • Knieb C.
      • Bierbaum S.
      • Scharnweber D.
      • Worch H.
      Characterization of collagen II fibrils containing biglycan and their effect as a coating on osteoblast adhesion and proliferation.
      ,
      • Wiberg C.
      • Heinegard D.
      • Wenglen C.
      • Timpl R.
      • Morgelin M.
      Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures.
      ,
      • Chen C.H.
      • Yeh M.L.
      • Geyer M.
      • Wang G.J.
      • Huang M.H.
      • Heggeness M.H.
      • Hook M.
      • Luo Z.P.
      Interactions between collagen IX and biglycan measured by atomic force microscopy.
      ,
      • Corsi A.
      • Xu T.
      • Chen X.D.
      • Boyde A.
      • Liang J.
      • Mankani M.
      • Sommer B.
      • Iozzo R.V.
      • Eichstetter I.
      • Robey P.G.
      • Bianco P.
      • Young M.F.
      Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues.
      ). Decorin is necessary for collagen fibril formation/realignment and in maintaining tissue stiffness (
      • Robinson K.A.
      • Sun M.
      • Barnum C.E.
      • Weiss S.N.
      • Huegel J.
      • Shetye S.S.
      • Lin L.
      • Saez D.
      • Adams S.M.
      • Iozzo R.V.
      • Soslowsky L.J.
      • Birk D.E.
      Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons.
      ,
      • Ruhland C.
      • Schonherr E.
      • Robenek H.
      • Hansen U.
      • Iozzo R.V.
      • Bruckner P.
      • Seidler D.G.
      The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis.
      ,
      • Zhang G.
      • Ezura Y.
      • Chervoneva I.
      • Robinson P.S.
      • Beason D.P.
      • Carine E.T.
      • Soslowsky L.J.
      • Iozzo R.V.
      • Birk D.E.
      Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development.
      ) , although its role in cancer development is less clear.
      The GAG hyaluronan (HA) is a non-sulfated GAG chain with no core protein and therefore is not considered a proteoglycan. HA is overexpressed in most cancers and accumulation of high levels of HA in the ECM triggers cancer progression and is associated with poor clinical outcome (
      • Caon I.
      • Bartolini B.
      • Parnigoni A.
      • Carava E.
      • Moretto P.
      • Viola M.
      • Karousou E.
      • Vigetti D.
      • Passi A.
      Revisiting the hallmarks of cancer: The role of hyaluronan.
      ,
      • Tammi R.H.
      • Kultti A.
      • Kosma V.M.
      • Pirinen R.
      • Auvinen P.
      • Tammi M.I.
      Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan.
      ,
      • Tahkola K.
      • Ahtiainen M.
      • Mecklin J.P.
      • Kellokumpu I.
      • Laukkarinen J.
      • Tammi M.
      • Tammi R.
      • Vayrynen J.P.
      • Bohm J.
      Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer.
      ,
      • Bourguignon L.Y.
      • Zhu H.
      • Shao L.
      • Chen Y.W.
      CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration.
      ,
      • Bourguignon L.Y.
      • Zhu H.
      • Shao L.
      • Chen Y.W.
      CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration.
      ,
      • Liu M.
      • Tolg C.
      • Turley E.
      Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment.
      ,
      • Toole B.P.
      Hyaluronan promotes the malignant phenotype.
      ). Elevated ECM stiffness in patients with glioma is associated with a substantial increase in the levels of HA and the HA binding glycoprotein tenascin C, but not collagen (
      • Miroshnikova Y.A.
      • Mouw J.K.
      • Barnes J.M.
      • Pickup M.W.
      • Lakins J.N.
      • Kim Y.
      • Lobo K.
      • Persson A.I.
      • Reis G.F.
      • McKnight T.R.
      • Holland E.C.
      • Phillips J.J.
      • Weaver V.M.
      Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression.
      ). The increased ECM stiffness is associated with poor prognosis in glioma patients (
      • Miroshnikova Y.A.
      • Mouw J.K.
      • Barnes J.M.
      • Pickup M.W.
      • Lakins J.N.
      • Kim Y.
      • Lobo K.
      • Persson A.I.
      • Reis G.F.
      • McKnight T.R.
      • Holland E.C.
      • Phillips J.J.
      • Weaver V.M.
      Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression.
      ). HA accumulation can contribute to growth induced solid mechanical stress and increase interstitial pressure through a retention of water within the tumor tissue due to the high negative charge on HA (
      • Voutouri C.
      • Polydorou C.
      • Papageorgis P.
      • Gkretsi V.
      • Stylianopoulos T.
      Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy.
      ,
      • DuFort C.C.
      • DelGiorno K.E.
      • Carlson M.A.
      • Osgood R.J.
      • Zhao C.
      • Huang Z.
      • Thompson C.B.
      • Connor R.J.
      • Thanos C.D.
      • Scott Brockenbrough J.
      • Provenzano P.P.
      • Frost G.I.
      • Michael Shepard H.
      • Hingorani S.R.
      Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase.
      ,
      • Hunger J.
      • Bernecker A.
      • Bakker H.J.
      • Bonn M.
      • Richter R.P.
      Hydration dynamics of hyaluronan and dextran.
      ,
      • Sarntinoranont M.
      • Rooney F.
      • Ferrari M.
      Interstitial stress and fluid pressure within a growing tumor.
      ,
      • Voutouri C.
      • Stylianopoulos T.
      Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness.
      ). Interestingly, soft HA substrates by themselves can elicit phenotypes from glioma cells like those when glioma cells are cultured on stiff ECM protein coated substrates (
      • Pogoda K.
      • Bucki R.
      • Byfield F.J.
      • Cruz K.
      • Lee T.
      • Marcinkiewicz C.
      • Janmey P.A.
      Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells.
      ), suggesting that HA may trigger mechanotransduction pathways independently of ECM stiffness. Hyaluronan can thus contribute in diverse ways to the mechanical changes in tumors.
      In addition to their role in sensing extracellular mechanical cues and translating them to biochemical changes, cell surface glycans can induce membrane curvature and hence control plasma membrane architecture (
      • Kuo J.C.
      • Paszek M.J.
      Glycocalyx Curving the Membrane: Forces Emerging from the Cell Exterior.
      ). Glycosaminoglycans and glycoproteins can generate crowding pressure strong enough to induce plasma membrane curvature, bending membranes into different shapes. This may contribute to the formation of functional cell surface structures such as microvilli, filopodia, lamellipodia, that are important for invasive migration, drug resistance, signaling, and secretion of extracellular vesicles (
      • Kuo J.C.
      • Paszek M.J.
      Glycocalyx Curving the Membrane: Forces Emerging from the Cell Exterior.
      ,
      • Berndt C.
      • Montanez E.
      • Villena J.
      • Fabre M.
      • Vilaro S.
      • Reina M.
      Influence of cytoplasmic deletions on the filopodia-inducing effect of syndecan-3.
      ,
      • Scholl F.G.
      • Gamallo C.
      • Vilaro S.
      • Quintanilla M.
      Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes.
      ,
      • Kultti A.
      • Rilla K.
      • Tiihonen R.
      • Spicer A.P.
      • Tammi R.H.
      • Tammi M.I.
      Hyaluronan synthesis induces microvillus-like cell surface protrusions.
      ). More studies are needed to understand the extent to which glycan-induced membrane changes/instability contribute to cancer cell functions like invasive migration.

      Tools for targeting glycans

      Our understanding of the function of glycans in cancer progression, and particularly, in mechanobiology of cancer is steadily growing, but many more studies are needed if we are to ultimately develop effective therapeutic strategies directed against glycan-mediated cancer mechano-adaptation in cancer. Effective tools to inhibit glycosylation are still lacking with the major challenge being limited specificity. Here we discuss the variety of tools that have emerged to alter glycan chains for cell biology studies. Towards the end we discuss glycan targeting drugs used in clinical trials.

      Tools to target glycans for in vitro applications

      The small molecules that inhibit glycosylation prevent the formation of glycosylation precursors, inhibit the activity of glycan processing enzymes, or act as primers and decoys (

      Esko, J. D., Bertozzi, C., and Schnaar, R. L. (2015) Chemical Tools for Inhibiting Glycosylation. in Essentials of Glycobiology (rd, Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Darvill, A. G., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., and Seeberger, P. H. eds.), Cold Spring Harbor (NY). pp 701-712

      ,

      Esko, J. D., and Bertozzi, C. R. (2009) Chemical Tools for Inhibiting Glycosylation. in Essentials of Glycobiology (nd, Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., and Etzler, M. E. eds.), Cold Spring Harbor (NY). pp

      ,

      Vocadlo, D. J., Lowary, T. L., Bertozzi, C. R., Schnaar, R. L., and Esko, J. D. (2022) Chemical Tools for Inhibiting Glycosylation. in Essentials of Glycobiology (th, Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., and Seeberger, P. H. eds.), Cold Spring Harbor (NY). pp 739-752

      ). Small synthetic glycan mimetics can compete for glycan binding sites and inhibit their binding and signaling. A glutamine analog, 6-diazo-5-oxo-L-norleucine (DON) is an example of a small molecule inhibitor used to inhibit the formation of glucosamine. All of the major glycan families require N-acetylglucosamine or N-acetylgalactosamine for their synthesis, and inhibiting glucosamine synthesis alters glycan assembly. For example, tunicamycin inhibits glycosylation of glycoproteins entirely by inhibiting N-glycosylation. Tunicamycin blocks the transfer of GlcNAc-1-phosphoate to dolichol phosphate, by inhibiting GlcNAc phosphotransferase, during the first steps of N-glycan synthesis (
      • Wyszynski F.J.
      • Lee S.S.
      • Yabe T.
      • Wang H.
      • Gomez-Escribano J.P.
      • Bibb M.J.
      • Lee S.J.
      • Davies G.J.
      • Davis B.G.
      Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates.
      ). Importantly, this drug induces apoptosis in cancer cells by blocking N-glycosylation in various cell surface glycoproteins.
      Many sugar analogs have been used to block N- and O-glycosylation (

      Vocadlo, D. J., Lowary, T. L., Bertozzi, C. R., Schnaar, R. L., and Esko, J. D. (2022) Chemical Tools for Inhibiting Glycosylation. in Essentials of Glycobiology (th, Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N. H., Prestegard, J. H., Schnaar, R. L., and Seeberger, P. H. eds.), Cold Spring Harbor (NY). pp 739-752

      ). The basic premise is that these sugar analogs can inhibit glycosyltransferase enzymes by serving as donor and substrate analogs. Sugar analogs that have been developed include analogs of sialic acid such as fluorinated sialic acid mimetic (
      • van den Bijgaart R.J.E.
      • Kroesen M.
      • Wassink M.
      • Brok I.C.
      • Kers-Rebel E.D.
      • Boon L.
      • Heise T.
      • van Scherpenzeel M.
      • Lefeber D.J.
      • Boltje T.J.
      • den Brok M.H.
      • Hoogerbrugge P.M.
      • Bull C.
      • Adema G.J.
      Combined sialic acid and histone deacetylase (HDAC) inhibitor treatment up-regulates the neuroblastoma antigen GD2.
      ), analogs of GalNAc such as per-acetylated 4F-GalNAc (
      • Marathe D.D.
      • Buffone Jr., A.
      • Chandrasekaran E.V.
      • Xue J.
      • Locke R.D.
      • Nasirikenari M.
      • Lau J.T.
      • Matta K.L.
      • Neelamegham S.
      Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins.
      ), analogs of GlcNAc such as 4F-GlcNAc (
      • Dimitroff C.J.
      • Bernacki R.J.
      • Sackstein R.
      Glycosylation-dependent inhibition of cutaneous lymphocyte-associated antigen expression: implications in modulating lymphocyte migration to skin.
      ) and analogs of fucose such as 2-fluorofucose, 5-alkynylfucose (
      • Okeley N.M.
      • Alley S.C.
      • Anderson M.E.
      • Boursalian T.E.
      • Burke P.J.
      • Emmerton K.M.
      • Jeffrey S.C.
      • Klussman K.
      • Law C.L.
      • Sussman D.
      • Toki B.E.
      • Westendorf L.
      • Zeng W.
      • Zhang X.
      • Benjamin D.R.
      • Senter P.D.
      Development of orally active inhibitors of protein and cellular fucosylation.
      ) and xylose (
      • Garud D.R.
      • Tran V.M.
      • Victor X.V.
      • Koketsu M.
      • Kuberan B.
      Inhibition of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis.
      ). Xylosides mimic the xylosylated serine residues on the core protein on PGs, where the priming of GAG chains occurs. Xylosides therefore divert the assembly of GAG chains from the core protein of PGs and thereby inhibit PG formation (
      • Okayama M.
      • Kimata K.
      • Suzuki S.
      The influence of p-nitrophenyl beta-d-xyloside on the synthesis of proteochondroitin sulfate by slices of embryonic chick cartilage.
      ,
      • Sobue M.
      • Habuchi H.
      • Ito K.
      • Yonekura H.
      • Oguri K.
      • Sakurai K.
      • Kamohara S.
      • Ueno Y.
      • Noyori R.
      • Suzuki S.
      beta-D-xylosides and their analogues as artificial initiators of glycosaminoglycan chain synthesis. Aglycone-related variation in their effectiveness in vitro and in ovo.
      ). Strategies to terminate the elongation of glycan chains have also been employed. For example, compounds such as mannosamine prevent the elongation of glycan chains on the GPI anchor and thereby block the incorporation of GPI glycans to GPI anchored proteins (
      • Lisanti M.P.
      • Field M.C.
      • Caras I.W.
      • Menon A.K.
      • Rodriguez-Boulan E.
      Mannosamine, a novel inhibitor of glycosylphosphatidylinositol incorporation into proteins.
      ). Likewise, oligomers of the GAG hyaluronan inhibit growth of several types of tumors by displacing endogenous hyaluronan from its receptor (
      • Ghatak S.
      • Misra S.
      • Toole B.P.
      Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway.
      ).
      Rapid and stable knockout of individual or multiple glycogenes using genome editing tools is another effective method to prune the glycan chains (
      • Steentoft C.
      • Bennett E.P.
      • Schjoldager K.T.
      • Vakhrushev S.Y.
      • Wandall H.H.
      • Clausen H.
      Precision genome editing: a small revolution for glycobiology.
      ). This method can be used to target a specific glycan by silencing specific glycotransferases or the entire glycan by silencing the chain initiating enzyme. For example, silencing specific enzymes such as sialyltransferase or fucosyltransferase inhibits the formation of sialofucosylated glycans on leukocytes and thereby blocks it binding to selectins (
      • Buffone Jr., A.
      • Mondal N.
      • Gupta R.
      • McHugh K.P.
      • Lau J.T.
      • Neelamegham S.
      Silencing alpha1,3-fucosyltransferases in human leukocytes reveals a role for FUT9 enzyme during E-selectin-mediated cell adhesion.
      ,
      • Mondal N.
      • Buffone Jr., A.
      • Stolfa G.
      • Antonopoulos A.
      • Lau J.T.
      • Haslam S.M.
      • Dell A.
      • Neelamegham S.
      ST3Gal-4 is the primary sialyltransferase regulating the synthesis of E-, P-, and L-selectin ligands on human myeloid leukocytes.
      ). In addition to genome editing, tool kits for membrane incorporation of fully synthetic polymers that mimic key features of glycoproteins have been developed for precision editing of sugar chains (
      • Shurer C.R.
      • Colville M.J.
      • Gupta V.K.
      • Head S.E.
      • Kai F.
      • Lakins J.N.
      • Paszek M.J.
      Genetically Encoded Toolbox for Glycocalyx Engineering: Tunable Control of Cell Adhesion, Survival, and Cancer Cell Behaviors.
      ). The approach is to engineer the structure and composition of the cellular glycans using genetically encoded glycoproteins and expression systems. This toolkit has been used to manipulate the shape and functions of the glycans and (
      • Shurer C.R.
      • Kuo J.C.
      • Roberts L.M.
      • Gandhi J.G.
      • Colville M.J.
      • Enoki T.A.
      • Pan H.
      • Su J.
      • Noble J.M.
      • Hollander M.J.
      • O'Donnell J.P.
      • Yin R.
      • Pedram K.
      • Mockl L.
      • Kourkoutis L.F.
      • Moerner W.E.
      • Bertozzi C.R.
      • Feigenson G.W.
      • Reesink H.L.
      • Paszek M.J.
      Physical Principles of Membrane Shape Regulation by the Glycocalyx.
      ). Likewise, a tool kit based on CRISPR-Cas9 has been developed to prune specific glycan types, such as N-linked and O-linked glycans of glycoproteins and glycolipids (
      • Stolfa G.
      • Mondal N.
      • Zhu Y.
      • Yu X.
      • Buffone Jr., A.
      • Neelamegham S.
      Using CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and Glycosphingolipids to human leukocyte-endothelium adhesion.
      ). This gene editing tool kit may be a powerful approach for targeting specific glycans that regulate tumor mechanics.
      Receptor for advanced glycation end-products (RAGE) are multi-ligand-specific receptors that bind AGEs and are upregulated in cancer (
      • Bronowicka-Szydelko A.
      • Kotyra L.
      • Lewandowski L.
      • Gamian A.
      • Kustrzeba-Wojcicka I.
      Role of Advanced Glycation End-Products and Other Ligands for AGE Receptors in Thyroid Cancer Progression.
      ). Numerous RAGE inhibitors have been identified to target the AGE/RAGE axis in cancer (
      • Mizumoto S.
      • Takahashi J.
      • Sugahara K.
      Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells.
      ,
      • Taguchi A.
      • Blood D.C.
      • del Toro G.
      • Canet A.
      • Lee D.C.
      • Qu W.
      • Tanji N.
      • Lu Y.
      • Lalla E.
      • Fu C.
      • Hofmann M.A.
      • Kislinger T.
      • Ingram M.
      • Lu A.
      • Tanaka H.
      • Hori O.
      • Ogawa S.
      • Stern D.M.
      • Schmidt A.M.
      Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases.
      ,
      • El-Far A.
      • Munesue S.
      • Harashima A.
      • Sato A.
      • Shindo M.
      • Nakajima S.
      • Inada M.
      • Tanaka M.
      • Takeuchi A.
      • Tsuchiya H.
      • Yamamoto H.
      • Shaheen H.M.E.
      • El-Sayed Y.S.
      • Kawano S.
      • Tanuma S.I.
      • Yamamoto Y.
      In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system.
      ,
      • Waghela B.N.
      • Vaidya F.U.
      • Ranjan K.
      • Chhipa A.S.
      • Tiwari B.S.
      • Pathak C.
      AGE-RAGE synergy influences programmed cell death signaling to promote cancer.
      ).

      Glycan targeting drugs that progressed to clinical evaluation

      Many highly sulfated and structurally defined heparan sulfate GAG analogs, that in part mimic the natural ligand, have been developed and tested in cancer (
      • Parish C.R.
      • Freeman C.
      • Brown K.J.
      • Francis D.J.
      • Cowden W.B.
      Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity.
      ,
      • Lanzi C.
      • Cassinelli G.
      Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity.
      ,
      • Galli M.
      • Chatterjee M.
      • Grasso M.
      • Specchia G.
      • Magen H.
      • Einsele H.
      • Celeghini I.
      • Barbieri P.
      • Paoletti D.
      • Pace S.
      • Sanderson R.D.
      • Rambaldi A.
      • Nagler A.
      Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy.
      ). Heparin mimetics have high potential as anti-cancer agents due to their ability to inhibit heparanase activity, by competing with the HS GAGs for binding/signaling growth factors and chemokines. The heparin mimetic, PI-88, is in clinical trials for melanoma and liver cancer (
      • Mohamed S.
      • Coombe D.R.
      Heparin Mimetics: Their Therapeutic Potential.
      ). Utilizing the technology underpinning PI-88, a set of heparan sulfate mimetics, called the PG500 series, such as PG545, have been developed to target both angiogenesis and heparanase activity (
      • Dredge K.
      • Hammond E.
      • Davis K.
      • Li C.P.
      • Liu L.
      • Johnstone K.
      • Handley P.
      • Wimmer N.
      • Gonda T.J.
      • Gautam A.
      • Ferro V.
      • Bytheway I.
      The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy.
      ). Viable approaches to target the GAG chains include the use of enzymes that can cleave specific GAGs. The use of a humanized mutant chondroitinase ABC enzyme (ChaseM) that depolymerizes chondroitin sulfate chains on a variety of CSPGs enhances glioma cell sensitivity to chemotherapeutic drugs (
      • Jaime-Ramirez A.C.
      • Dmitrieva N.
      • Yoo J.Y.
      • Banasavadi-Siddegowda Y.
      • Zhang J.
      • Relation T.
      • Bolyard C.
      • Wojton J.
      • Kaur B.
      Humanized chondroitinase ABC sensitizes glioblastoma cells to temozolomide.
      ). The recombinant hyaluronidase (rHuPH20) can cleave the polymeric HA into substituent units (
      • Frost G.I.
      Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration.
      ). Depletion of HA by a PEGylated form of rHuPH20, PEGPH20, induced antitumor response and enhanced efficacy of anti-cancer drugs in pre-clinical models (
      • Morosi L.
      • Meroni M.
      • Ubezio P.
      • Fuso Nerini I.
      • Minoli L.
      • Porcu L.
      • Panini N.
      • Colombo M.
      • Blouw B.
      • Kang D.W.
      • Davoli E.
      • Zucchetti M.
      • D'Incalci M.
      • Frapolli R.
      PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models.
      ,
      • Thompson C.B.
      • Shepard H.M.
      • O'Connor P.M.
      • Kadhim S.
      • Jiang P.
      • Osgood R.J.
      • Bookbinder L.H.
      • Li X.
      • Sugarman B.J.
      • Connor R.J.
      • Nadjsombati S.
      • Frost G.I.
      Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models.
      ,
      • Hingorani S.R.
      • Harris W.P.
      • Beck J.T.
      • Berdov B.A.
      • Wagner S.A.
      • Pshevlotsky E.M.
      • Tjulandin S.A.
      • Gladkov O.A.
      • Holcombe R.F.
      • Korn R.
      • Raghunand N.
      • Dychter S.
      • Jiang P.
      • Shepard H.M.
      • Devoe C.E.
      Phase Ib Study of PEGylated Recombinant Human Hyaluronidase and Gemcitabine in Patients with Advanced Pancreatic Cancer.
      ).
      While a number of tools have now been developed as described above, tools are needed to specifically alter glycans. Such tools could greatly enhance understanding and targeting of glycans in cancer mechanobiology.

      Conclusions

      Stiffening of the ECM is common in cancer. Cancer cells sense and transduce mechanical stiffness of the ECM into intracellular responses by a process called mechanotransduction, which promotes aberrant cell functions and contributes to cancer progression. There is mounting evidence that a wide range of glycans, including proteoglycans like syndecans, agrin, serglycin, SLRPs and others, hyaluronan, sialylated proteins, and O-linked glycans, are involved in cancer cell mechanotransduction. Glycans modulate multiple steps in the mechanotransduction pathway, including integrin ligand binding and clustering, adhesion assembly, cytoskeletal dynamics, activation of the Rho/ROCK and YAP/TAZ pathway (Fig.2), and correlated cancer cell functions such as migration, proliferation, and drug resistance. Some glycans can directly stiffen the ECM by forming more crosslinks between ECM fibrils. We conclude that stiffening of tumor, as a normal part of cancer progression, is likely due directly to specific changes in glycan content/composition of the tumors. More comprehensive investigations of glycans in cancer cell mechanotransduction as well as development of new and more specific tools to modulate glycans both in vivo and in vitro will provide avenues for improved or novel cancer diagnostics and treatments in the future.
      Figure thumbnail gr2
      Figure 2Schematic illustration of mechanobiological pathways. Mechanotransduction in cancer cells is mediated by complex molecular pathways involving glycans, integrins, focal adhesion proteins and the actomyosin cytoskeleton. Cancer cells engage ECM proteins through the heterodimeric integrin receptors, enabling the assembly of cell-ECM adhesions. Integrin receptors function as mechanotransmitters, transmitting force through adhesion proteins to the actomyosin cytoskeleton. Glycans can act as mechanotransmitters themselves or modify mechanotransduction pathways including integrin clustering, adhesion formation, cytoskeletal remodeling, and YAP/TAZ translocation to the nucleus. Crowding of glycans can also induce morphological changes in the plasma membrane. Furthermore, binding of glycans to matrix proteins can promote matrix realignment and assembly which in turn can promote the stiffening of matrix. Accumulation of glycans such as hyaluronan in the ECM can increase interstitial pressure through retention of water within the confined tumor and thereby can contribute to mechanical stress. In addition, accumulation of advanced glycation end products can induce cross-linking and stiffening of collagen with minimal changes to the collagen fiber architecture. HAS, hyaluronan synthases; FAK, focal adhesion kinase; ECM, extracellular matrix.

      Conflict of Interest

      The authors declare no conflict of interest

      Acknowledgements

      This work was supported by NIH U01 CA225566 (T.P.L.), and a CPRIT established investigator award Grant No. RR200043 (T.P.L.).

      References

        • Lugano R.
        • Ramachandran M.
        • Dimberg A.
        Tumor angiogenesis: causes, consequences, challenges and opportunities.
        Cell Mol Life Sci. 2020; 77: 1745-1770
        • Sahai E.
        • Astsaturov I.
        • Cukierman E.
        • DeNardo D.G.
        • Egeblad M.
        • Evans R.M.
        • Fearon D.
        • Greten F.R.
        • Hingorani S.R.
        • Hunter T.
        • Hynes R.O.
        • Jain R.K.
        • Janowitz T.
        • Jorgensen C.
        • Kimmelman A.C.
        • Kolonin M.G.
        • Maki R.G.
        • Powers R.S.
        • Puré E.
        • Ramirez D.C.
        • Scherz-Shouval R.
        • Sherman M.H.
        • Stewart S.
        • Tlsty T.D.
        • Tuveson D.A.
        • Watt F.M.
        • Weaver V.
        • Weeraratna A.T.
        • Werb Z.
        A framework for advancing our understanding of cancer-associated fibroblasts.
        Nature Reviews Cancer. 2020; 20: 174-186
        • Ponten F.
        • Ren Z.
        • Nister M.
        • Westermark B.
        • Ponten J.
        Epithelial-stromal interactions in basal cell cancer: the PDGF system.
        J Invest Dermatol. 1994; 102: 304-309
        • Kay E.J.
        • Paterson K.
        • Riera-Domingo C.
        • Sumpton D.
        • Dabritz J.H.M.
        • Tardito S.
        • Boldrini C.
        • Hernandez-Fernaud J.R.
        • Athineos D.
        • Dhayade S.
        • Stepanova E.
        • Gjerga E.
        • Neilson L.J.
        • Lilla S.
        • Hedley A.
        • Koulouras G.
        • McGregor G.
        • Jamieson C.
        • Johnson R.M.
        • Park M.
        • Kirschner K.
        • Miller C.
        • Kamphorst J.J.
        • Loayza-Puch F.
        • Saez-Rodriguez J.
        • Mazzone M.
        • Blyth K.
        • Zagnoni M.
        • Zanivan S.
        Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix.
        Nat Metab. 2022; 4: 693-710
        • Gonzalez H.
        • Hagerling C.
        • Werb Z.
        Roles of the immune system in cancer: from tumor initiation to metastatic progression.
        Genes Dev. 2018; 32: 1267-1284
        • Chen Y.
        • Li P.
        • Peng Y.
        • Xie X.
        • Zhang Y.
        • Jiang Y.
        • Li T.
        • Qin X.
        • Li S.
        • Yang H.
        • Wu C.
        • Zheng C.
        • Zhu J.
        • You F.
        • Liu Y.
        Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells.
        Free Radic Biol Med. 2021; 172: 590-603
        • Zhou H.
        • Wang M.
        • Zhang Y.
        • Su Q.
        • Xie Z.
        • Chen X.
        • Yan R.
        • Li P.
        • Li T.
        • Qin X.
        • Yang H.
        • Wu C.
        • You F.
        • Li S.
        • Liu Y.
        Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis.
        Cancer Commun (Lond). 2022; 42: 374-400
        • Bordeleau F.
        • Mason B.N.
        • Lollis E.M.
        • Mazzola M.
        • Zanotelli M.R.
        • Somasegar S.
        • Califano J.P.
        • Montague C.
        • LaValley D.J.
        • Huynh J.
        • Mencia-Trinchant N.
        • Negron Abril Y.L.
        • Hassane D.C.
        • Bonassar L.J.
        • Butcher J.T.
        • Weiss R.S.
        • Reinhart-King C.A.
        Matrix stiffening promotes a tumor vasculature phenotype.
        Proc Natl Acad Sci U S A. 2017; 114: 492-497
        • Nia H.T.
        • Munn L.L.
        • Jain R.K.
        Physical traits of cancer.
        Science. 2020; 370
        • Paszek M.J.
        • Zahir N.
        • Johnson K.R.
        • Lakins J.N.
        • Rozenberg G.I.
        • Gefen A.
        • Reinhart-King C.A.
        • Margulies S.S.
        • Dembo M.
        • Boettiger D.
        • Hammer D.A.
        • Weaver V.M.
        Tensional homeostasis and the malignant phenotype.
        Cancer Cell. 2005; 8: 241-254
        • Stowers R.S.
        • Shcherbina A.
        • Israeli J.
        • Gruber J.J.
        • Chang J.
        • Nam S.
        • Rabiee A.
        • Teruel M.N.
        • Snyder M.P.
        • Kundaje A.
        • Chaudhuri O.
        Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility.
        Nat Biomed Eng. 2019; 3: 1009-1019
        • Pathak A.
        • Kumar S.
        Independent regulation of tumor cell migration by matrix stiffness and confinement.
        Proc Natl Acad Sci U S A. 2012; 109: 10334-10339
        • Zhang J.
        • Reinhart-King C.A.
        Targeting Tissue Stiffness in Metastasis: Mechanomedicine Improves Cancer Therapy.
        Cancer Cell. 2020; 37: 754-755
        • Irianto J.
        • Pfeifer C.R.
        • Xia Y.
        • Discher D.E.
        SnapShot: Mechanosensing Matrix.
        Cell. 2016; 165: 1820-1820 e1821
        • Carey S.P.
        • Martin K.E.
        • Reinhart-King C.A.
        Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype.
        Sci Rep. 2017; 742088
        • Acerbi I.
        • Cassereau L.
        • Dean I.
        • Shi Q.
        • Au A.
        • Park C.
        • Chen Y.Y.
        • Liphardt J.
        • Hwang E.S.
        • Weaver V.M.
        Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.
        Integr Biol (Camb). 2015; 7: 1120-1134
        • Northey J.J.
        • Barrett A.S.
        • Acerbi I.
        • Hayward M.K.
        • Talamantes S.
        • Dean I.S.
        • Mouw J.K.
        • Ponik S.M.
        • Lakins J.N.
        • Huang P.J.
        • Wu J.
        • Shi Q.
        • Samson S.
        • Keely P.J.
        • Mukhtar R.A.
        • Liphardt J.T.
        • Shepherd J.A.
        • Hwang E.S.
        • Chen Y.Y.
        • Hansen K.C.
        • Littlepage L.E.
        • Weaver V.M.
        Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217.
        J Clin Invest. 2020; 130: 5721-5737
        • Shen Y.
        • Wang X.
        • Lu J.
        • Salfenmoser M.
        • Wirsik N.M.
        • Schleussner N.
        • Imle A.
        • Freire Valls A.
        • Radhakrishnan P.
        • Liang J.
        • Wang G.
        • Muley T.
        • Schneider M.
        • Ruiz de Almodovar C.
        • Diz-Munoz A.
        • Schmidt T.
        Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer.
        Cancer Cell. 2020; 37: 800-817 e807
        • Mason B.N.
        • Starchenko A.
        • Williams R.M.
        • Bonassar L.J.
        • Reinhart-King C.A.
        Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior.
        Acta Biomater. 2013; 9: 4635-4644
        • Rowe M.M.
        • Wang W.
        • Taufalele P.V.
        • Reinhart-King C.A.
        AGE-breaker ALT711 reverses glycation-mediated cancer cell migration.
        Soft Matter. 2022; 18: 8504-8513
        • Ingber D.E.
        Cellular mechanotransduction: putting all the pieces together again.
        FASEB J. 2006; 20: 811-827
        • Samuel M.S.
        • Lopez J.I.
        • McGhee E.J.
        • Croft D.R.
        • Strachan D.
        • Timpson P.
        • Munro J.
        • Schroder E.
        • Zhou J.
        • Brunton V.G.
        • Barker N.
        • Clevers H.
        • Sansom O.J.
        • Anderson K.I.
        • Weaver V.M.
        • Olson M.F.
        Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth.
        Cancer Cell. 2011; 19: 776-791