Advertisement
JBC Reviews|Articles in Press, 104570

Posttranslational regulation of liver kinase B1 (LKB1) in human cancer

  • Lanlin Hu
    Affiliations
    Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China

    Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China

    Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
    Search for articles by this author
  • Mingxin Liu
    Affiliations
    Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China

    Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
    Search for articles by this author
  • Bo Tang
    Affiliations
    Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China

    Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China

    Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
    Search for articles by this author
  • Qiang Li
    Affiliations
    Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
    Search for articles by this author
  • Bo-Syong Pan
    Affiliations
    Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
    Search for articles by this author
  • Chuan Xu
    Correspondence
    To whom correspondence should be addressed to: C.X
    Affiliations
    Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China

    Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China

    Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
    Search for articles by this author
  • Hui-Kuan Lin
    Correspondence
    To whom correspondence should be addressed to: H.K.L
    Affiliations
    Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
    Search for articles by this author
Open AccessPublished:March 02, 2023DOI:https://doi.org/10.1016/j.jbc.2023.104570

      Abstract

      Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.

      Keywords

      Abbreviations:

      LKB1 (liver kinase B1), STK11 (serine-threonine kinase 11), PJS (Peutz-Jeghers syndrome), PTM (posttranslational modification), NSCLC (non-small cell lung cancer), HCC (hepatocellular carcinoma), STRAD (Ste20-related adaptor), MO25 (mouse protein 25), CAB39 (calcium-binding protein 39), AMPK (AMP-activated protein kinase), BASK-1/2 (brain-specific kinases-1/2), MARK-1/2/3/4 (microtubule-associated protein/microtubule affinity-regulating kinases-1/2/3/4), NUAK-1/2 (novel (nua) kinase family-1/2), SNRK (sucrose non-fermenting protein (SNF1)-related kinase), SIK-1/2/3 (salt-inducible kinase-1/2/3), PTEN (phosphatase and tensin homolog), CDKN1A (cyclin dependent kinase inhibitor 1A), ATM (ataxia-telangiectasia mutated kinase), LIP1 (LKB1-interacting protein 1), Brg1 (Brahma-related gene 1), LATS-1/2 (large tumor suppressor kinase-1/2), MST1 (macrophage stimulating 1), NRD (N-terminal regulatory domain), CKD (catalytical kinase domain), CRD (C-terminal regulatory domain), NLS (nuclear localization signals), Ser (serine), Cys (cysteine), Thr (threonine), ATP (adenosine triphosphate), PGC1α (peroxisome proliferator-activated receptor-gamma coactivator 1 α), KRAS (Kirsten rat sarcoma viral oncogene homolog), HBP (hexosamine biosynthesis pathway), GFPT2 (glutamine-fructose-6-phosphate transaminase [Isomerizing] 2), CPS1 (carbamoyl phosphate synthetase-1), PI3K (phosphatidylinositol 3-kinases), AKT (protein kinase B), GSK3β (glycogen synthase kinase 3 β), mTOR (the mammalian target of rapamycin), S6K (ribosomal protein S6 kinase), CaMKK (calmodulin-dependent protein kinase kinase), mTORC1 (the mammalian target of rapamycin complex 1), HIF1α (hypoxia-inducible factor 1 α), MEF (mouse embryonic fibroblast), HPV (human papillomavirus), HK2 (hexokinase 2), ULK1 (Unc-51 like autophagy activating kinase 1), WIPI4 (WD repeat protein interacting with phosphoinositide 4), ATG2 (autophagy-related 2), ROS (reactive oxygen species), ACC1 (acetyl-CoA carboxylase 1), 6PGD (6-phosphogluconate dehydrogenase), PPP (pentose phosphate pathway), G6P (6-phosphogluconate), Ru5P (ribulose-5-phosphate), Asn (asparagine), Asp (aspartate), ASNS (asparagine synthetase), TCA cycle (tricarboxylic acid cycle), IL17 (Interleukin 17), TH17 (T helper 17), C. Elegans (Caenorhabditis Elegans), Par-4 (partitioning-defective 4), MZF1 (myeloid zinc finger 1), TGF-β (tumor growth factor β), α-KG (α-ketoglutarate), PAK1 (p21-activating kinase 1), MKK3/6 (mitogen-activated protein kinase kinase), ATF2 (activating transcription factor 2), EOC (epithelial ovarian cancer), NF-κB (nuclear factor κ B), PP1β (protein phosphatase 1β), MYPT1 (phosphorylates the myosin phosphatase targeting 1), MLC2 (myosin light chain-2), DIXDC1 (Dishevelled-Axin domain containing 1), FBXL14 (F-box and leucine-rich repeat protein 14), acetyl-CoA (acetyl-coenzyme A), NEDD9 (neural precursor cell expressed developmentally down-regulated protein 9), VEGFC (vascular endothelial growth factor C), MMP2 (matrix metallopeptidase 2), CRISPR (clustered regularly interspaced short palindromic repeats), YAP (yes-associated protein), Amotl2 (angiomotin-like protein 2), Cyr61 (Cysteine-rich angiogenic inducer 61), BRCA1 (breast cancer type 1), HuR (Hu antigen R), DSBs (double-strand breaks), CREB (cAMP response element-binding protein), CRTC2 (CREB regulated transcription coactivator 2), ID-1 (inhibitor of DNA binding 1), LOX (lysyl oxidase), PRC2 (polycomb repressive complex2), EZH2 (enhancer of zeste homolog 2), EED (embryonic ectoderm development), SUZ12 (suppressor of zeste 12), NGFR (nerve growth factor receptor), Krt5/6 (keratin 5/6), ZEB2 (zinc finger E-box binding homeobox), OS (overall survival), TKIs (tyrosine kinase inhibitors), EGFR (epithelial growth factor receptor), ICIs (immune checkpoint inhibitors), PFS (progression-free survival), PD-1 (programmed death-1), PD-L1 (programmed death-ligand 1), CTLA4 (cytotoxic T-lymphocyte-associated protein 4), TME (tumor microenvironment), Treg cells (regulatory T cells), TANs (tumor-associated neutrophils), TAMs (tumor-associated macrophages), CXCL (C-X-C motif chemokine ligand), G-CSF (granulocyte-conlony stimulating factor), STAT3 (signal transducer and activator of transcription 3), NKX2-1 (NK2 homebox 1), LAG3 (lymphocyte activation gene3), TIM3 (T-cell immunoglobulin and mucin-domain containing-3), Glu (glutamic acid), Leu (leucine), Arg (arginine), G-MDSC (granulocytic myeloid-derived suppressor cells), DCs (dendritic cells), TMB (tumor mutational burden), STING (stimulator of interferon genes), dsDNA (double-stranded DNA), cGAS (cyclic GMP-AMP synthase), DNMT1 (DNA (cytosine-5)-methyltransferase), Gls1 (glutaminase), AML (acute myeloid leukemia), HDAC4 (histone deacetylase 4), MEF2C (myocyte enhancer factor 2C), PKA (cAMP-dependent protein kinase), p90RSK (p90 ribosomal S6 kinase), MAP (mitogen-activated protein), BRAF (B-Raf proto-oncogene, serine/threonine kinase), ERK (extracellular signal regulated kinase), AURKA (Aurora kinase A), TCR (T cell receptor), Lck (lymphocyte-specific protein tyrosine kinase), Plcγ1 (protein Lat and phospholipase C-γ1), Lys (lysine), Hsp90 (heat shock protein 90), HSC70 (heat shock cognate protein 70), CHIP (carboxyl terminus of HSC70-interacting protein), MASTL (microtubule-associated serine/threonine kinase-like), HECTD3 (HECT domain E3 ubiquitin protein ligase 3), NRF2 (nuclear factor erythroid 2), NQO1 (NAD(P)H quinone oxidoreductase 1), FBXO22 (F-box protein 22), RNF146 (RING finger protein 146), SUMO (small ubiquitin-like modifier), SENP1 (Sentrin/SUMO-specific protease 1), UBC9 (ubiquitin carrier protein 9), SIRT1 (sirtuin 1), NAE1 (NEDD8 activating enzyme E1), ROCK (RhoA/Rho-associated protein kinase), HEK293T (human embryonic kidney 293T), DBC1 (deleted in breast cancer 1), FGF21 (fibroblast growth factor 21), HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2), 4-HNE (4-hydroxynonenal), NAD+ (nicotinamide adenine dinucleotide), NO (nitric oxide), LPS (lipopolysaccharide), iNOS (inducible nitric oxide synthase), HSF1 (heat shock factor 1)

      Introduction

      Liver kinase B1 (LKB1), also known as serine-threonine kinase 11 (STK11), is the gene encoding an evolutionarily conserved serine/threonine kinase belonging to the calcium/calmodulin regulated kinase-like family (
      • Hemminki A.
      • Markie D.
      • Tomlinson I.
      • Avizienyte E.
      • Roth S.
      • Loukola A.
      • Bignell G.
      • Warren W.
      • Aminoff M.
      • Hoglund P.
      • Jarvinen H.
      • Kristo P.
      • Pelin K.
      • Ridanpaa M.
      • Salovaara R.
      • Toro T.
      • Bodmer W.
      • Olschwang S.
      • Olsen A.S.
      • Stratton M.R.
      • de la Chapelle A.
      • Aaltonen L.A.
      A serine/threonine kinase gene defective in Peutz-Jeghers syndrome.
      ,
      • Ylikorkala A.
      • Avizienyte E.
      • Tomlinson I.P.
      • Tiainen M.
      • Roth S.
      • Loukola A.
      • Hemminki A.
      • Johansson M.
      • Sistonen P.
      • Markie D.
      • Neale K.
      • Phillips R.
      • Zauber P.
      • Twama T.
      • Sampson J.
      • Jarvinen H.
      • Makela T.P.
      • Aaltonen L.A.
      Mutations and impaired function of LKB1 in familial and non-familial Peutz-Jeghers syndrome and a sporadic testicular cancer.
      ). LKB1 was initially identified as a causative gene with loss of function mutations responsible for the Peutz-Jeghers syndrome (PJS), a rare hereditary disease and the first cancer-susceptibility syndrome characterized by the predisposition of benign and malignant tumors of many organ systems (
      • Hemminki A.
      • Markie D.
      • Tomlinson I.
      • Avizienyte E.
      • Roth S.
      • Loukola A.
      • Bignell G.
      • Warren W.
      • Aminoff M.
      • Hoglund P.
      • Jarvinen H.
      • Kristo P.
      • Pelin K.
      • Ridanpaa M.
      • Salovaara R.
      • Toro T.
      • Bodmer W.
      • Olschwang S.
      • Olsen A.S.
      • Stratton M.R.
      • de la Chapelle A.
      • Aaltonen L.A.
      A serine/threonine kinase gene defective in Peutz-Jeghers syndrome.
      ). The somatic mutations of LKB1 in cancers are rare (
      • Avizienyte E.
      • Roth S.
      • Loukola A.
      • Hemminki A.
      • Lothe R.A.
      • Stenwig A.E.
      • Fossa S.D.
      • Salovaara R.
      • Aaltonen L.A.
      Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors.
      ,
      • Guldberg P.
      • thor Straten P.
      • Ahrenkiel V.
      • Seremet T.
      • Kirkin A.F.
      • Zeuthen J.
      Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma.
      ), except for non-small cell lung carcinoma (NSCLC) (
      • Matsumoto S.
      • Iwakawa R.
      • Takahashi K.
      • Kohno T.
      • Nakanishi Y.
      • Matsuno Y.
      • Suzuki K.
      • Nakamoto M.
      • Shimizu E.
      • Minna J.D.
      • Yokota J.
      Prevalence and specificity of LKB1 genetic alterations in lung cancers.
      ,
      • Koivunen J.P.
      • Kim J.
      • Lee J.
      • Rogers A.M.
      • Park J.O.
      • Zhao X.
      • Naoki K.
      • Okamoto I.
      • Nakagawa K.
      • Yeap B.Y.
      • Meyerson M.
      • Wong K.K.
      • Richards W.G.
      • Sugarbaker D.J.
      • Johnson B.E.
      • Janne P.A.
      Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients.
      ,
      • Imielinski M.
      • Berger A.H.
      • Hammerman P.S.
      • Hernandez B.
      • Pugh T.J.
      • Hodis E.
      • Cho J.
      • Suh J.
      • Capelletti M.
      • Sivachenko A.
      • Sougnez C.
      • Auclair D.
      • Lawrence M.S.
      • Stojanov P.
      • Cibulskis K.
      • Choi K.
      • de Waal L.
      • Sharifnia T.
      • Brooks A.
      • Greulich H.
      • Banerji S.
      • Zander T.
      • Seidel D.
      • Leenders F.
      • Ansen S.
      • Ludwig C.
      • Engel-Riedel W.
      • Stoelben E.
      • Wolf J.
      • Goparju C.
      • Thompson K.
      • Winckler W.
      • Kwiatkowski D.
      • Johnson B.E.
      • Janne P.A.
      • Miller V.A.
      • Pao W.
      • Travis W.D.
      • Pass H.I.
      • Gabriel S.B.
      • Lander E.S.
      • Thomas R.K.
      • Garraway L.A.
      • Getz G.
      • Meyerson M.
      Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing.
      ,
      • Shire N.J.
      • Klein A.B.
      • Golozar A.
      • Collins J.M.
      • Fraeman K.H.
      • Nordstrom B.L.
      • McEwen R.
      • Hembrough T.
      • Rizvi N.A.
      STK11 (LKB1) mutations in metastatic NSCLC: Prognostic value in the real world.
      ) and cervical carcinoma (
      • Wingo S.N.
      • Gallardo T.D.
      • Akbay E.A.
      • Liang M.C.
      • Contreras C.M.
      • Boren T.
      • Shimamura T.
      • Miller D.S.
      • Sharpless N.E.
      • Bardeesy N.
      • Kwiatkowski D.J.
      • Schorge J.O.
      • Wong K.K.
      • Castrillon D.H.
      Somatic LKB1 mutations promote cervical cancer progression.
      ) with approximately 5-30% and 20% cases of LKB1 mutants, respectively. Studies have also reported the infrequently aberrant expression levels of LKB1 caused by somatic mutation or epigenetic alteration in several malignancies, including melanoma (
      • Guldberg P.
      • thor Straten P.
      • Ahrenkiel V.
      • Seremet T.
      • Kirkin A.F.
      • Zeuthen J.
      Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma.
      ), colorectal cancer (
      • Dong S.M.
      • Kim K.M.
      • Kim S.Y.
      • Shin M.S.
      • Na E.Y.
      • Lee S.H.
      • Park W.S.
      • Yoo N.J.
      • Jang J.J.
      • Yoon C.Y.
      • Kim J.W.
      • Kim S.Y.
      • Yang Y.M.
      • Kim S.H.
      • Kim C.S.
      • Lee J.Y.
      Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer.
      ), breast cancer (
      • Esteller M.
      • Avizienyte E.
      • Corn P.G.
      • Lothe R.A.
      • Baylin S.B.
      • Aaltonen L.A.
      • Herman J.G.
      Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome.
      ), pancreatic neoplasm (
      • Sahin F.
      • Maitra A.
      • Argani P.
      • Sato N.
      • Maehara N.
      • Montgomery E.
      • Goggins M.
      • Hruban R.H.
      • Su G.H.
      Loss of Stk11/Lkb1 expression in pancreatic and biliary neoplasms.
      ), etc. In vivo studies using conditionally Lkb1-deleted mouse models and cancer cell lines have implicated the tumor suppressive role of LKB1 in different types of cancers, such as hepatocellular carcinoma (HCC) (
      • Nakau M.
      • Miyoshi H.
      • Seldin M.F.
      • Imamura M.
      • Oshima M.
      • Taketo M.M.
      Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice.
      ), breast cancer (
      • McCarthy A.
      • Lord C.J.
      • Savage K.
      • Grigoriadis A.
      • Smith D.P.
      • Weigelt B.
      • Reis-Filho J.S.
      • Ashworth A.
      Conditional deletion of the Lkb1 gene in the mouse mammary gland induces tumour formation.
      ), and endometrial cancer (
      • Contreras C.M.
      • Gurumurthy S.
      • Haynie J.M.
      • Shirley L.J.
      • Akbay E.A.
      • Wingo S.N.
      • Schorge J.O.
      • Broaddus R.R.
      • Wong K.K.
      • Bardeesy N.
      • Castrillon D.H.
      Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas.
      ). Additionally, loss of LKB1 is associated with poor prognosis in cancer patients. Remarkably, concomitant LKB1 deficiency with KRAS or PTEN mutation accelerates cancer progression and induces immunosuppressive tumor microenvironment (
      • Ji H.
      • Ramsey M.R.
      • Hayes D.N.
      • Fan C.
      • McNamara K.
      • Kozlowski P.
      • Torrice C.
      • Wu M.C.
      • Shimamura T.
      • Perera S.A.
      • Liang M.C.
      • Cai D.
      • Naumov G.N.
      • Bao L.
      • Contreras C.M.
      • Li D.
      • Chen L.
      • Krishnamurthy J.
      • Koivunen J.
      • Chirieac L.R.
      • Padera R.F.
      • Bronson R.T.
      • Lindeman N.I.
      • Christiani D.C.
      • Lin X.
      • Shapiro G.I.
      • Janne P.A.
      • Johnson B.E.
      • Meyerson M.
      • Kwiatkowski D.J.
      • Castrillon D.H.
      • Bardeesy N.
      • Sharpless N.E.
      • Wong K.K.
      LKB1 modulates lung cancer differentiation and metastasis.
      ,
      • Morton J.P.
      • Jamieson N.B.
      • Karim S.A.
      • Athineos D.
      • Ridgway R.A.
      • Nixon C.
      • McKay C.J.
      • Carter R.
      • Brunton V.G.
      • Frame M.C.
      • Ashworth A.
      • Oien K.A.
      • Evans T.R.
      • Sansom O.J.
      LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest.
      ,
      • Hermanova I.
      • Zuniga-Garcia P.
      • Caro-Maldonado A.
      • Fernandez-Ruiz S.
      • Salvador F.
      • Martin-Martin N.
      • Zabala-Letona A.
      • Nunez-Olle M.
      • Torrano V.
      • Camacho L.
      • Lizcano J.M.
      • Talamillo A.
      • Carreira S.
      • Gurel B.
      • Cortazar A.R.
      • Guiu M.
      • Lopez J.I.
      • Martinez-Romero A.
      • Astobiza I.
      • Valcarcel-Jimenez L.
      • Lorente M.
      • Arruabarrena-Aristorena A.
      • Velasco G.
      • Gomez-Munoz A.
      • Suarez-Cabrera C.
      • Lodewijk I.
      • Flores J.M.
      • Sutherland J.D.
      • Barrio R.
      • de Bono J.S.
      • Paramio J.M.
      • Trka J.
      • Graupera M.
      • Gomis R.R.
      • Carracedo A.
      Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer.
      ,
      • Tanwar P.S.
      • Mohapatra G.
      • Chiang S.
      • Engler D.A.
      • Zhang L.
      • Kaneko-Tarui T.
      • Ohguchi Y.
      • Birrer M.J.
      • Teixeira J.M.
      Loss of LKB1 and PTEN tumor suppressor genes in the ovarian surface epithelium induces papillary serous ovarian cancer.
      ,
      • Gu M.
      • Xu T.
      • Chang P.
      KRAS/LKB1 and KRAS/TP53 co-mutations create divergent immune signatures in lung adenocarcinomas.
      ). Interestingly, recent studies have also uncovered its carcinogenic function in several cancers (
      • Tan X.
      • Liao Z.
      • Liang H.
      • Chen X.
      • Zhang B.
      • Chu L.
      Upregulation of liver kinase B1 predicts poor prognosis in hepatocellular carcinoma.
      ,
      • Dahmani R.
      • Just P.A.
      • Delay A.
      • Canal F.
      • Finzi L.
      • Prip-Buus C.
      • Lambert M.
      • Sujobert P.
      • Buchet-Poyau K.
      • Miller E.
      • Cavard C.
      • Marmier S.
      • Terris B.
      • Billaud M.
      • Perret C.
      A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties.
      ,
      • Tarumoto Y.
      • Lu B.
      • Somerville T.D.D.
      • Huang Y.H.
      • Milazzo J.P.
      • Wu X.S.
      • Klingbeil O.
      • El Demerdash O.
      • Shi J.
      • Vakoc C.R.
      LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia.
      ,
      • Lee S.W.
      • Li C.F.
      • Jin G.
      • Cai Z.
      • Han F.
      • Chan C.H.
      • Yang W.L.
      • Li B.K.
      • Rezaeian A.H.
      • Li H.Y.
      • Huang H.Y.
      • Lin H.K.
      Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress.
      ,
      • Barbier-Torres L.
      • Delgado T.C.
      • Garcia-Rodriguez J.L.
      • Zubiete-Franco I.
      • Fernandez-Ramos D.
      • Buque X.
      • Cano A.
      • Gutierrez-de Juan V.
      • Fernandez-Dominguez I.
      • Lopitz-Otsoa F.
      • Fernandez-Tussy P.
      • Boix L.
      • Bruix J.
      • Villa E.
      • Castro A.
      • Lu S.C.
      • Aspichueta P.
      • Xirodimas D.
      • Varela-Rey M.
      • Mato J.M.
      • Beraza N.
      • Martinez-Chantar M.L.
      Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer.
      ).
      Generally, LKB1 forms a heterotrimeric complex with the pseudokinase Ste20-related adaptor (STRAD) and the scaffolding mouse protein 25 (MO25; also known as calcium-binding protein 39, CAB39), which promotes the nucleocytoplasmic shuttling of LKB1 and its activation (
      • Boudeau J.
      • Baas A.F.
      • Deak M.
      • Morrice N.A.
      • Kieloch A.
      • Schutkowski M.
      • Prescott A.R.
      • Clevers H.C.
      • Alessi D.R.
      MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm.
      ). Upon activation, LKB1 functions as a master kinase that modulates a plethora of cellular processes through the phosphorylation of AMP-activated protein kinase (AMPK) and other 13 AMPK-related kinases, including brain-specific kinases (BRSK)-1/2 (also referred to as SAD-B/A) (
      • Bright N.J.
      • Carling D.
      • Thornton C.
      Investigating the regulation of brain-specific kinases 1 and 2 by phosphorylation.
      ), microtubule-associated protein/microtubule affinity-regulating kinases (MARK)-1/2/3/4 (
      • Kojima Y.
      • Miyoshi H.
      • Clevers H.C.
      • Oshima M.
      • Aoki M.
      • Taketo M.M.
      Suppression of tubulin polymerization by the LKB1-microtubule-associated protein/microtubule affinity-regulating kinase signaling.
      ,
      • Wang J.W.
      • Imai Y.
      • Lu B.
      Activation of PAR-1 kinase and stimulation of tau phosphorylation by diverse signals require the tumor suppressor protein LKB1.
      ), novel (nua) kinase family (NUAK)-1/2 (
      • Zagorska A.
      • Deak M.
      • Campbell D.G.
      • Banerjee S.
      • Hirano M.
      • Aizawa S.
      • Prescott A.R.
      • Alessi D.R.
      New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion.
      ,
      • Lefebvre D.L.
      • Bai Y.
      • Shahmolky N.
      • Sharma M.
      • Poon R.
      • Drucker D.J.
      • Rosen C.F.
      Identification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK.
      ), sucrose non-fermenting protein (SNF1)-related kinase (SNRK) (
      • Jaleel M.
      • McBride A.
      • Lizcano J.M.
      • Deak M.
      • Toth R.
      • Morrice N.A.
      • Alessi D.R.
      Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate.
      ), and salt-inducible kinase (SIK)-1/2/3 (
      • Hashimoto Y.K.
      • Satoh T.
      • Okamoto M.
      • Takemori H.
      Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity.
      ,
      • Lizcano J.M.
      • Goransson O.
      • Toth R.
      • Deak M.
      • Morrice N.A.
      • Boudeau J.
      • Hawley S.A.
      • Udd L.
      • Makela T.P.
      • Hardie D.G.
      • Alessi D.R.
      LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1.
      ,
      • Walkinshaw D.R.
      • Weist R.
      • Kim G.W.
      • You L.
      • Xiao L.
      • Nie J.
      • Li C.S.
      • Zhao S.
      • Xu M.
      • Yang X.J.
      The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases.
      ). LKB1 has also been reported to directly bind to other proteins, such as p53 (
      • Zeng P.Y.
      • Berger S.L.
      LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation.
      ), phosphatase and tensin homolog (PTEN) (
      • Mehenni H.
      • Lin-Marq N.
      • Buchet-Poyau K.
      • Reymond A.
      • Collart M.A.
      • Picard D.
      • Antonarakis S.E.
      LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes.
      ), cyclin dependent kinase inhibitor 1A (CDKN1A) (
      • Esteve-Puig R.
      • Gil R.
      • Gonzalez-Sanchez E.
      • Bech-Serra J.J.
      • Grueso J.
      • Hernandez-Losa J.
      • Moline T.
      • Canals F.
      • Ferrer B.
      • Cortes J.
      • Bastian B.
      • Ramon Y.C.S.
      • Martin-Caballero J.
      • Flores J.M.
      • Vivancos A.
      • Garcia-Patos V.
      • Recio J.A.
      A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation.
      ), ataxia-telangiectasia mutated kinase (ATM) (
      • Fernandes N.
      • Sun Y.
      • Chen S.
      • Paul P.
      • Shaw R.J.
      • Cantley L.C.
      • Price B.D.
      DNA damage-induced association of ATM with its target proteins requires a protein interaction domain in the N terminus of ATM.
      ), LKB1-interacting protein 1 (LIP1) (
      • Smith D.P.
      • Rayter S.I.
      • Niederlander C.
      • Spicer J.
      • Jones C.M.
      • Ashworth A.
      LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1.
      ), brahma-related gene 1 (Brg1) (
      • Marignani P.A.
      • Kanai F.
      • Carpenter C.L.
      LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest.
      ), large tumor suppressor kinase 1/2 (LATS1/2) and macrophage stimulating 1 (MST1) (
      • Mohseni M.
      • Sun J.
      • Lau A.
      • Curtis S.
      • Goldsmith J.
      • Fox V.L.
      • Wei C.
      • Frazier M.
      • Samson O.
      • Wong K.K.
      • Kim C.
      • Camargo F.D.
      A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway.
      ), thereby regulating tumor initiation and progression.
      Besides the downstream signaling, a myriad of studies has been conducted to understand the impact of posttranslational modifications (PTMs) of LKB1 on its function. Overwhelming data have demonstrated that PTMs, including phosphorylation, ubiquitination, neddylation, SUMOylation, prenylation, and others, alone or cooperatively modulate the stability, localization, and function of LKB1. In this review, we will review recent discoveries of the mechanisms underlying LKB1-mediated cancer progression, summarize recent advances in PTMs of LKB1, and propose the therapeutic implications in cancer.

      1. Structure of LKB1

      The human LKB1/STK11 gene is located on the short arm of chromosome 19 (19p13.3) and encodes three protein isoforms through alternative transcription of the LKB1 mRNA, including the classical full-length LKB1 (FL-LKB1, 50 kDa), a 3’ alternative spliced isoform (S-LKB1, 48 kDa) (
      • Towler M.C.
      • Fogarty S.
      • Hawley S.A.
      • Pan D.A.
      • Martin D.M.
      • Morrice N.A.
      • McCarthy A.
      • Galardo M.N.
      • Meroni S.B.
      • Cigorraga S.B.
      • Ashworth A.
      • Sakamoto K.
      • Hardie D.G.
      A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis.
      ), and the shortest isoform lacking N-terminal region, the nuclear localization signal, and partial kinase domain (ΔN-LKB1, 42 kDa) (
      • Dahmani R.
      • Just P.A.
      • Delay A.
      • Canal F.
      • Finzi L.
      • Prip-Buus C.
      • Lambert M.
      • Sujobert P.
      • Buchet-Poyau K.
      • Miller E.
      • Cavard C.
      • Marmier S.
      • Terris B.
      • Billaud M.
      • Perret C.
      A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties.
      ) (Fig.1). In 2008, Mhairi C.T. et al. identified two distinct variants of LKB1 mRNA generated by alternative splicing in exon 9A, 9B and 10, and the two variants are correspondingly translated into FL-LKB1 and S-LKB1 (
      • Towler M.C.
      • Fogarty S.
      • Hawley S.A.
      • Pan D.A.
      • Martin D.M.
      • Morrice N.A.
      • McCarthy A.
      • Galardo M.N.
      • Meroni S.B.
      • Cigorraga S.B.
      • Ashworth A.
      • Sakamoto K.
      • Hardie D.G.
      A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis.
      ). FL-LKB1 contains three major domains, including the N-terminal regulatory domain (NRD), the catalytical kinase domain (CKD), and the C-terminal regulatory domain (CRD). Two nuclear localization signals (NLSs) and the farnesylation motif, which are essential for the subcellular localization of LKB1, lie in NRD and CRD, respectively (
      • Marcus A.I.
      • Zhou W.
      LKB1 regulated pathways in lung cancer invasion and metastasis.
      ). Compared to FL-LKB1, S-LKB1 lacks the critical serine phosphorylation site (Ser428 in human and Ser431 in mouse) and the cysteine farnesylation site (Cys430 in human and Cys433 in mouse) at the C-terminus. Both two isoforms are ubiquitously expressed in human and rodent tissues, whereas FL-LKB1 and S-LKB1 are more predominantly expressed in brain and testis, respectively (
      • Towler M.C.
      • Fogarty S.
      • Hawley S.A.
      • Pan D.A.
      • Martin D.M.
      • Morrice N.A.
      • McCarthy A.
      • Galardo M.N.
      • Meroni S.B.
      • Cigorraga S.B.
      • Ashworth A.
      • Sakamoto K.
      • Hardie D.G.
      A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis.
      ). Further functional studies have revealed that both FL-LKB1 and S-LKB1 can equivalently be activated and activate downstream targets. The subcellular localization of both isoforms is only affected by the association with STRAD and MO25 (
      • Denison F.C.
      • Hiscock N.J.
      • Carling D.
      • Woods A.
      Characterization of an alternative splice variant of LKB1.
      ). Dahmani R. and colleagues later identified a novel isoform ΔN-LKB1 mostly expressed in mouse heart and skeletal muscle, as well as human lung cancer cell lines (
      • Dahmani R.
      • Just P.A.
      • Delay A.
      • Canal F.
      • Finzi L.
      • Prip-Buus C.
      • Lambert M.
      • Sujobert P.
      • Buchet-Poyau K.
      • Miller E.
      • Cavard C.
      • Marmier S.
      • Terris B.
      • Billaud M.
      • Perret C.
      A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties.
      ). ΔN-LKB1 is the product of alternative transcription and internal initiation of translation of LKB1 mRNA in exon3. Although catalytically inactive, ΔN-LKB1 has a strong association with the regulatory autoinhibitory domain of AMPK, which changes the conformation of the heterotrimeric AMPK complex, thereby elevating the phosphorylation of AMPKα at Thr172 and enhancing AMPK activity. Further mechanical studies in the mouse model and cell lines have uncovered the paradoxical functions of ΔN-LKB1. Unlike the classical LKB1, ΔN-LKB1 reduces cell polarity enhanced by FL-LKB1, restrains the cell growth inhibition regulated by FL-LKB1 in cancer cell lines, and confers tumor growth in subcutaneously implanted tumor mouse models, indicative of pro-tumor role of ΔN-LKB1 (
      • Dahmani R.
      • Just P.A.
      • Delay A.
      • Canal F.
      • Finzi L.
      • Prip-Buus C.
      • Lambert M.
      • Sujobert P.
      • Buchet-Poyau K.
      • Miller E.
      • Cavard C.
      • Marmier S.
      • Terris B.
      • Billaud M.
      • Perret C.
      A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties.
      ).
      Figure thumbnail gr1
      Figure 1The structure of LKB1 complex. A. Diagram of the exon structure of the LKB1 mRNA. LKB1 gene consists of 10 exons and three isoforms are translated through alternative splicing. The start codon (ATG) of both FL-LKB1 and S-LKB1 is in the Exon 2 and the translation initiation codon of ΔN-LKB1 is in Exon 3. The stop codons of all three isoforms are in the Exon9. B. Structure of human FL-LKB1, S-LKB1, ΔN-LKB1, and the other two components of LKB1 complex, STRAD and MO25. The nuclear localization signals are localized in the N-terminal regulatory domain, while the farnesylation motif is localized in the C-terminal regulatory domain. C430 is the farnesylation residue. C, cysteine; 5’UTR, 5’ untranslated region; 3’UTR, 3’ untranslated region; NRD, N-terminal regulatory domain; CKD, catalytic kinase domain; CRD, C-terminal regulatory domain. Created with BioRender.com

      2. LKB1 in cancer progression

      To exert multiple biological functions, LKB1 primarily forms a heterotrimer complex with STRAD and MO25 (
      • Boudeau J.
      • Baas A.F.
      • Deak M.
      • Morrice N.A.
      • Kieloch A.
      • Schutkowski M.
      • Prescott A.R.
      • Clevers H.C.
      • Alessi D.R.
      MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm.
      ). The analysis of the LKB1/STRAD/MO25 complex structure by Zeqiraj E. et al. reveals that STRAD adopts a closed conformation maintained through its cooperative binding to adenosine triphosphate (ATP) and MO25. STRAD subsequently binds to the kinase domain of LKB1 through its pseudokinase domain, which promotes the interaction between MO25 and LKB1 and the shuttling of LKB1 from the nucleus to the cytoplasm. The interaction with STRAD/MO25 also triggers the conformational change and the activation of LKB1. Meanwhile, MO25 stabilizes the activation loop of LKB1 in a conformation required for phosphorylating its substrates (
      • Zeqiraj E.
      • Filippi B.M.
      • Deak M.
      • Alessi D.R.
      • van Aalten D.M.
      Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation.
      ,
      • Godlewski J.
      • Nowicki M.O.
      • Bronisz A.
      • Nuovo G.
      • Palatini J.
      • De Lay M.
      • Van Brocklyn J.
      • Ostrowski M.C.
      • Chiocca E.A.
      • Lawler S.E.
      MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells.
      ). In gastric cancer cells, LKB1 is also found in complexes with STRAD and MO25-like protein, the paralog of MO25, which induces the activation of AMPK and the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC1α)-mediated genes involved in mitochondrial respiration complexes (
      • Li W.
      • Wong C.C.
      • Zhang X.
      • Kang W.
      • Nakatsu G.
      • Zhao Q.
      • Chen H.
      • Go M.Y.Y.
      • Chiu P.W.Y.
      • Wang X.
      • Ji J.
      • Li X.
      • Cai Z.
      • Ng E.K.W.
      • Yu J.
      CAB39L elicited an anti-Warburg effect via a LKB1-AMPK-PGC1alpha axis to inhibit gastric tumorigenesis.
      ). In another study of the mechanism underlying nuclear-cytoplasm shuttling of LKB1 in hepatocyte and diabetes mouse models, the orphan nuclear receptor Nur77 is reported to interact with LKB1 through its ligand binding domain and retain LKB1 in the nucleus (
      • Zhan Y.Y.
      • Chen Y.
      • Zhang Q.
      • Zhuang J.J.
      • Tian M.
      • Chen H.Z.
      • Zhang L.R.
      • Zhang H.K.
      • He J.P.
      • Wang W.J.
      • Wu R.
      • Wang Y.
      • Shi C.
      • Yang K.
      • Li A.Z.
      • Xin Y.Z.
      • Li T.Y.
      • Yang J.Y.
      • Zheng Z.H.
      • Yu C.D.
      • Lin S.C.
      • Chang C.
      • Huang P.Q.
      • Lin T.
      • Wu Q.
      The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK.
      ). Upon activation in the cytosol, LKB1 generally binds to and phosphorylates the downstream targets. Of note is that the study by Shengcai Lin group has demonstrated that glucose starvation triggers the formation of v-ATPase-Ragulator complex on the lipid raft region of late endosome/lysosome and subsequently promotes the translocation of LKB1 to lysosome, ultimately leading to AMPK activation and switching from anabolism to catabolism in cells (
      • Zhang C.S.
      • Jiang B.
      • Li M.
      • Zhu M.
      • Peng Y.
      • Zhang Y.L.
      • Wu Y.Q.
      • Li T.Y.
      • Liang Y.
      • Lu Z.
      • Lian G.
      • Liu Q.
      • Guo H.
      • Yin Z.
      • Ye Z.
      • Han J.
      • Wu J.W.
      • Yin H.
      • Lin S.Y.
      • Lin S.C.
      The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism.
      ). Cumulatively, the subcellular localization of LKB1 is crucial for its activation and interaction with downstream substrates. In this section, we will review recent studies that have uncovered both tumor-suppressive and tumor promoting roles of LKB1 by rewiring cell metabolism, disrupting cell polarity, abrogating genomic integrity, and suppressing immune response.

      2.1 LKB1 deficiency rewires tumor cell metabolism.

      LKB1 loss of function is one of the most common mutations in NSCLC patients with poor prognosis (
      • Lin C.
      • Lin X.
      • Lin K.
      • Tan J.
      • Wei C.
      • Liu T.
      LKB1 expression and the prognosis of lung cancer: A meta-analysis.
      ). In patients with KRAS or PTEN mutations, concomitant LKB1 mutations create divergent metabolic signatures (
      • Ji H.
      • Ramsey M.R.
      • Hayes D.N.
      • Fan C.
      • McNamara K.
      • Kozlowski P.
      • Torrice C.
      • Wu M.C.
      • Shimamura T.
      • Perera S.A.
      • Liang M.C.
      • Cai D.
      • Naumov G.N.
      • Bao L.
      • Contreras C.M.
      • Li D.
      • Chen L.
      • Krishnamurthy J.
      • Koivunen J.
      • Chirieac L.R.
      • Padera R.F.
      • Bronson R.T.
      • Lindeman N.I.
      • Christiani D.C.
      • Lin X.
      • Shapiro G.I.
      • Janne P.A.
      • Johnson B.E.
      • Meyerson M.
      • Kwiatkowski D.J.
      • Castrillon D.H.
      • Bardeesy N.
      • Sharpless N.E.
      • Wong K.K.
      LKB1 modulates lung cancer differentiation and metastasis.
      ,
      • Kottakis F.
      • Nicolay B.N.
      • Roumane A.
      • Karnik R.
      • Gu H.
      • Nagle J.M.
      • Boukhali M.
      • Hayward M.C.
      • Li Y.Y.
      • Chen T.
      • Liesa M.
      • Hammerman P.S.
      • Wong K.K.
      • Hayes D.N.
      • Shirihai O.S.
      • Dyson N.J.
      • Haas W.
      • Meissner A.
      • Bardeesy N.
      LKB1 loss links serine metabolism to DNA methylation and tumorigenesis.
      ). DeBerardinis group reveals that KRAS/LKB1 co-mutant cancers exhibit disturbed nitrogen metabolism (
      • Kim J.
      • Lee H.M.
      • Cai F.
      • Ko B.
      • Yang C.
      • Lieu E.L.
      • Muhammad N.
      • Rhyne S.
      • Li K.
      • Haloul M.
      • Gu W.
      • Faubert B.
      • Kaushik A.K.
      • Cai L.
      • Kasiri S.
      • Marriam U.
      • Nham K.
      • Girard L.
      • Wang H.
      • Sun X.
      • Kim J.
      • Minna J.D.
      • Unsal-Kacmaz K.
      • DeBerardinis R.J.
      The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer.
      ,
      • Kim J.
      • Hu Z.
      • Cai L.
      • Li K.
      • Choi E.
      • Faubert B.
      • Bezwada D.
      • Rodriguez-Canales J.
      • Villalobos P.
      • Lin Y.F.
      • Ni M.
      • Huffman K.E.
      • Girard L.
      • Byers L.A.
      • Unsal-Kacmaz K.
      • Pena C.G.
      • Heymach J.V.
      • Wauters E.
      • Vansteenkiste J.
      • Castrillon D.H.
      • Chen B.P.C.
      • Wistuba I.
      • Lambrechts D.
      • Xu J.
      • Minna J.D.
      • DeBerardinis R.J.
      CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells.
      ). Other earlier studies have reported that LKB1 acts through AMPK/mTOR axis to modulate multiple metabolic pathways, including glycolysis, hexosamine biosynthesis pathway (HBP), pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), Urea cycle, autophagosome, ferroptosis, as well as asparagine (Asn)- aspartate (Asp) homeostasis (
      • Kim J.
      • Lee H.M.
      • Cai F.
      • Ko B.
      • Yang C.
      • Lieu E.L.
      • Muhammad N.
      • Rhyne S.
      • Li K.
      • Haloul M.
      • Gu W.
      • Faubert B.
      • Kaushik A.K.
      • Cai L.
      • Kasiri S.
      • Marriam U.
      • Nham K.
      • Girard L.
      • Wang H.
      • Sun X.
      • Kim J.
      • Minna J.D.
      • Unsal-Kacmaz K.
      • DeBerardinis R.J.
      The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer.
      ,
      • Kim J.
      • Hu Z.
      • Cai L.
      • Li K.
      • Choi E.
      • Faubert B.
      • Bezwada D.
      • Rodriguez-Canales J.
      • Villalobos P.
      • Lin Y.F.
      • Ni M.
      • Huffman K.E.
      • Girard L.
      • Byers L.A.
      • Unsal-Kacmaz K.
      • Pena C.G.
      • Heymach J.V.
      • Wauters E.
      • Vansteenkiste J.
      • Castrillon D.H.
      • Chen B.P.C.
      • Wistuba I.
      • Lambrechts D.
      • Xu J.
      • Minna J.D.
      • DeBerardinis R.J.
      CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells.
      ,
      • George J.W.
      • Patterson A.L.
      • Tanwar P.S.
      • Kajdacsy-Balla A.
      • Prins G.S.
      • Teixeira J.M.
      Specific deletion of LKB1/Stk11 in the Mullerian duct mesenchyme drives hyperplasia of the periurethral stroma and tumorigenesis in male mice.
      ,
      • Liu J.L.
      • Mao Z.
      • Gallick G.E.
      • Yung W.K.
      AMPK/TSC2/mTOR-signaling intermediates are not necessary for LKB1-mediated nuclear retention of PTEN tumor suppressor.
      ,
      • Shackelford D.B.
      • Vasquez D.S.
      • Corbeil J.
      • Wu S.
      • Leblanc M.
      • Wu C.L.
      • Vera D.R.
      • Shaw R.J.
      mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome.
      ,
      • Faubert B.
      • Vincent E.E.
      • Griss T.
      • Samborska B.
      • Izreig S.
      • Svensson R.U.
      • Mamer O.A.
      • Avizonis D.
      • Shackelford D.B.
      • Shaw R.J.
      • Jones R.G.
      Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha.
      ,
      • Lai L.P.
      • Lilley B.N.
      • Sanes J.R.
      • McMahon A.P.
      Lkb1/Stk11 regulation of mTOR signaling controls the transition of chondrocyte fates and suppresses skeletal tumor formation.
      ,
      • Zeng Q.
      • Chen J.
      • Li Y.
      • Werle K.D.
      • Zhao R.X.
      • Quan C.S.
      • Wang Y.S.
      • Zhai Y.X.
      • Wang J.W.
      • Youssef M.
      • Cui R.
      • Liang J.
      • Genovese N.
      • Chow L.T.
      • Li Y.L.
      • Xu Z.X.
      LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism.
      ,
      • Kim J.
      • Kundu M.
      • Viollet B.
      • Guan K.L.
      AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.
      ,
      • Liang J.
      • Shao S.H.
      • Xu Z.X.
      • Hennessy B.
      • Ding Z.
      • Larrea M.
      • Kondo S.
      • Dumont D.J.
      • Gutterman J.U.
      • Walker C.L.
      • Slingerland J.M.
      • Mills G.B.
      The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis.
      ,
      • Bakula D.
      • Muller A.J.
      • Zuleger T.
      • Takacs Z.
      • Franz-Wachtel M.
      • Thost A.K.
      • Brigger D.
      • Tschan M.P.
      • Frickey T.
      • Robenek H.
      • Macek B.
      • Proikas-Cezanne T.
      WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy.
      ,
      • Li C.
      • Dong X.
      • Du W.
      • Shi X.
      • Chen K.
      • Zhang W.
      • Gao M.
      LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis.
      ,
      • Lee H.
      • Zandkarimi F.
      • Zhang Y.
      • Meena J.K.
      • Kim J.
      • Zhuang L.
      • Tyagi S.
      • Ma L.
      • Westbrook T.F.
      • Steinberg G.R.
      • Nakada D.
      • Stockwell B.R.
      • Gan B.
      Energy-stress-mediated AMPK activation inhibits ferroptosis.
      ,
      • Lin R.
      • Elf S.
      • Shan C.
      • Kang H.B.
      • Ji Q.
      • Zhou L.
      • Hitosugi T.
      • Zhang L.
      • Zhang S.
      • Seo J.H.
      • Xie J.
      • Tucker M.
      • Gu T.L.
      • Sudderth J.
      • Jiang L.
      • Mitsche M.
      • DeBerardinis R.J.
      • Wu S.
      • Li Y.
      • Mao H.
      • Chen P.R.
      • Wang D.
      • Chen G.Z.
      • Hurwitz S.J.
      • Lonial S.
      • Arellano M.L.
      • Khoury H.J.
      • Khuri F.R.
      • Lee B.H.
      • Lei Q.
      • Brat D.J.
      • Ye K.
      • Boggon T.J.
      • He C.
      • Kang S.
      • Fan J.
      • Chen J.
      6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
      ,
      • Deng L.
      • Yao P.
      • Li L.
      • Ji F.
      • Zhao S.
      • Xu C.
      • Lan X.
      • Jiang P.
      p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival.
      ,
      • Baixauli F.
      • Piletic K.
      • Puleston D.J.
      • Villa M.
      • Field C.S.
      • Flachsmann L.J.
      • Quintana A.
      • Rana N.
      • Edwards-Hicks J.
      • Matsushita M.
      • Stanczak M.A.
      • Grzes K.M.
      • Kabat A.M.
      • Fabri M.
      • Caputa G.
      • Kelly B.
      • Corrado M.
      • Musa Y.
      • Duda K.J.
      • Mittler G.
      • O'Sullivan D.
      • Sesaki H.
      • Jenuwein T.
      • Buescher J.M.
      • Pearce E.J.
      • Sanin D.E.
      • Pearce E.L.
      An LKB1-mitochondria axis controls T(H)17 effector function.
      ) (Fig. 2).
      Figure thumbnail gr2
      Figure 2LKB1 regulates diverse metabolic pathways in cancer cells. Generally, LKB1 regulates metabolic signaling mainly through AMPK/mTORC1 axis. AMPK inhibits key enzymes from hexosamine biosynthesis pathway (HBP), fatty acid synthesis, and urea cycle in direct or indirect manner. AMPK also promotes autophagy through direct phosphorylation of p27 and ULK1. In addition, AMPK inhibits mTORC1 leading to inhibiting autophagy, glycolysis, nucleotide synthesis, and protein synthesis. LKB1 also shows to regulate autophagy by promoting the translocation of ATG2/WIPI4 from ATG2/WIPI4/AMPK/ULK1 complex to autophagosome. LKB1 can directly interact with Ru5P and asparagine (Asn) to inhibit the activation of LKB1. Additionally, aspartate (Asp) directly binds to LKB1 and regulates its phosphorylation and activation. The arrowed line and arrowed line with fading tail represent promotion and translocation, respectively. The red stop line represents inhibition. The solid line and dashed line represent that regulation is in a direct or indirectly manner, respectively. Created with BioRender.com
      In KRAS-mutant NSCLC, glucose and glutamine metabolism is usually enhanced through the induction of metabolism-associated enzymes or transporter. Loss of LKB1 forces the flux to the HBP by relieving the LKB1/AMPK-mediated suppression of glutamine-fructose-6-phosphate transaminase [Isomerizing] 2 (GFPT2), thus increasing protein glycosylation and promoting cell proliferation and survival (
      • Kim J.
      • Lee H.M.
      • Cai F.
      • Ko B.
      • Yang C.
      • Lieu E.L.
      • Muhammad N.
      • Rhyne S.
      • Li K.
      • Haloul M.
      • Gu W.
      • Faubert B.
      • Kaushik A.K.
      • Cai L.
      • Kasiri S.
      • Marriam U.
      • Nham K.
      • Girard L.
      • Wang H.
      • Sun X.
      • Kim J.
      • Minna J.D.
      • Unsal-Kacmaz K.
      • DeBerardinis R.J.
      The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer.
      ). In KRAS/LKB1 co-mutant lung cancer, the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which might be indirectly inhibited by LKB1/AMPK, is highly expressed. CPS1 promotes the non-canonical pathway of nitrogen flow from ammonia into pyrimidines by catalyzing the production of carbamoyl phosphate from ammonia and bicarbonate in the mitochondria, maintains the nucleotide homeostasis, and enables lung cancer cell survival and proliferation (
      • Kim J.
      • Hu Z.
      • Cai L.
      • Li K.
      • Choi E.
      • Faubert B.
      • Bezwada D.
      • Rodriguez-Canales J.
      • Villalobos P.
      • Lin Y.F.
      • Ni M.
      • Huffman K.E.
      • Girard L.
      • Byers L.A.
      • Unsal-Kacmaz K.
      • Pena C.G.
      • Heymach J.V.
      • Wauters E.
      • Vansteenkiste J.
      • Castrillon D.H.
      • Chen B.P.C.
      • Wistuba I.
      • Lambrechts D.
      • Xu J.
      • Minna J.D.
      • DeBerardinis R.J.
      CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells.
      ). The mice with conditional deletion of Lkb1 or Pten or both develop hyperplasia of the periurethral stroma or tumors (
      • George J.W.
      • Patterson A.L.
      • Tanwar P.S.
      • Kajdacsy-Balla A.
      • Prins G.S.
      • Teixeira J.M.
      Specific deletion of LKB1/Stk11 in the Mullerian duct mesenchyme drives hyperplasia of the periurethral stroma and tumorigenesis in male mice.
      ,
      • Liu J.L.
      • Mao Z.
      • Gallick G.E.
      • Yung W.K.
      AMPK/TSC2/mTOR-signaling intermediates are not necessary for LKB1-mediated nuclear retention of PTEN tumor suppressor.
      ). The deficiency of both LKB1 and PTEN in cells hyperactivates phosphoinositide 3-kinase (PI3K)/Akt signaling. LKB1 deficiency also promotes the expression and activation of β-catenin, and the expression of glycogen synthase kinase 3 β (GSK3β) but inhibits the phosphorylation of GSK3β at Ser9 (
      • George J.W.
      • Patterson A.L.
      • Tanwar P.S.
      • Kajdacsy-Balla A.
      • Prins G.S.
      • Teixeira J.M.
      Specific deletion of LKB1/Stk11 in the Mullerian duct mesenchyme drives hyperplasia of the periurethral stroma and tumorigenesis in male mice.
      ). PTEN is a well-characterized tumor suppressor, whose subcellular localization is vital to its functions. PTEN is localized in the nucleus and exported from the nucleus into the cytoplasm upon the activation of PI3K/Akt/mammalian target of rapamycin (mTOR)/S6 kinase (S6K) cascade during the G1/S transition (
      • Worby C.A.
      • Dixon J.E.
      Pten.
      ). In LKB1-null A549 cells, PTEN is restrained in the nucleus upon the treatment of ATP or a calmodulin-dependent protein kinase kinase (CaMKK) activator but not AMPK activator metformin. Reintroduction of LKB1 in LKB1-null A549 cells recovers the metformin-regulated blockade of the nuclear-cytoplasm trafficking, suggesting that LKB1 might regulate the nuclear-cytoplasm shuttling of PTEN through AMPK or non-AMPK signaling (
      • Liu J.L.
      • Mao Z.
      • Gallick G.E.
      • Yung W.K.
      AMPK/TSC2/mTOR-signaling intermediates are not necessary for LKB1-mediated nuclear retention of PTEN tumor suppressor.
      ). Collectively, these studies suggest that LKB1 deficiency results in metabolic alterations to favor tumor growth.
      The canonical target of LKB1 is the metabolic AMPK, which is a key regulator of energy metabolism and metabolic homeostasis in eukaryotes. Under energy stress, AMPK coordinates glucose and lipid metabolism to maintain the intracellular ATP level (
      • Herzig S.
      • Shaw R.J.
      AMPK: guardian of metabolism and mitochondrial homeostasis.
      ). Under the stimulation with metabolic signals and stressors, the cytosolic activated-LKB1 phosphorylates AMPKα at Thr172 leading to AMPK activation and inhibiting multiple downstream signaling, such as the mammalian target of rapamycin complex 1 (mTORC1), which restrains the anabolic processes, especially lipid metabolism (
      • Lin S.C.
      • Hardie D.G.
      AMPK: Sensing Glucose as well as Cellular Energy Status.
      ). In the absence of LKB1 or AMPK, cancer cells exhibit hyperactivated mTOR signaling and upregulated hypoxia inducible factor 1 α (HIF1α), as well as increased glucose utilization (
      • Shackelford D.B.
      • Vasquez D.S.
      • Corbeil J.
      • Wu S.
      • Leblanc M.
      • Wu C.L.
      • Vera D.R.
      • Shaw R.J.
      mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome.
      ,
      • Faubert B.
      • Vincent E.E.
      • Griss T.
      • Samborska B.
      • Izreig S.
      • Svensson R.U.
      • Mamer O.A.
      • Avizonis D.
      • Shackelford D.B.
      • Shaw R.J.
      • Jones R.G.
      Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha.
      ). Silencing LKB1 attenuated the suppression of mTOR without altering mTOR expression, which leads to aberrant proliferating immature chondrocytes and the formation of enchondroma-like tumors (
      • Lai L.P.
      • Lilley B.N.
      • Sanes J.R.
      • McMahon A.P.
      Lkb1/Stk11 regulation of mTOR signaling controls the transition of chondrocyte fates and suppresses skeletal tumor formation.
      ). In mouse embryonic fibroblasts (MEFs), the introduction of high-risk human papillomavirus (HPV) 16 E6/E7 promotes cell proliferation and elevates glucose metabolism by inducing c-Myc–mediated expression of hexokinase 2 (HK2). Ectopic expression of LKB1 inhibits the activation of mTOR in an AMPK-dependent manner and the expression of c-Myc and its downstream HK2, resulting in retarding the HPV16-driven tumor progression (
      • Zeng Q.
      • Chen J.
      • Li Y.
      • Werle K.D.
      • Zhao R.X.
      • Quan C.S.
      • Wang Y.S.
      • Zhai Y.X.
      • Wang J.W.
      • Youssef M.
      • Cui R.
      • Liang J.
      • Genovese N.
      • Chow L.T.
      • Li Y.L.
      • Xu Z.X.
      LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism.
      ). Therefore, cancer cells deficient for LKB1 typically exhibit decreased AMPK activity and increased mTOR activity, while restoration of LKB1 could restrict tumor progression.
      LKB1 has been reported to regulate autophagy directly or indirectly. LKB1 promotes autophagy by boosting AMPK-driven phosphorylation of Unc-51 like autophagy activating kinase 1 (ULK1) at Ser317 and Ser777 and diminishing mTOR-mediated inhibitory phosphorylation of ULK1 at Ser 757 (
      • Kim J.
      • Kundu M.
      • Viollet B.
      • Guan K.L.
      AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.
      ). Under the condition of energy stress in response to cancer therapies, such as chemotherapy, the activated LKB1/AMPK phosphorylates p27 at Thr198 leading to p27 stabilization and sustaining cell survival through the induction of autophagy (
      • Liang J.
      • Shao S.H.
      • Xu Z.X.
      • Hennessy B.
      • Ding Z.
      • Larrea M.
      • Kondo S.
      • Dumont D.J.
      • Gutterman J.U.
      • Walker C.L.
      • Slingerland J.M.
      • Mills G.B.
      The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis.
      ). Upon amino-acid starvation, LKB1 mediates the dissociation of WD repeat protein interacting with phosphoinositide 4 (WIPI4)-autophagy-related 2 (ATG2) from the WIPI4-ATG2/AMPK-ULK1 complex and promotes the translocation of WIPI4-ATG2 to nascent autophagosomes, which constrains the size of autophagosomes (
      • Bakula D.
      • Muller A.J.
      • Zuleger T.
      • Takacs Z.
      • Franz-Wachtel M.
      • Thost A.K.
      • Brigger D.
      • Tschan M.P.
      • Frickey T.
      • Robenek H.
      • Macek B.
      • Proikas-Cezanne T.
      WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy.
      ). In addition to autophagy, LKB1/AMPK is involved in regulating the sensitivity of cancer cells to ferroptosis (
      • Li C.
      • Dong X.
      • Du W.
      • Shi X.
      • Chen K.
      • Zhang W.
      • Gao M.
      LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis.
      ,
      • Lee H.
      • Zandkarimi F.
      • Zhang Y.
      • Meena J.K.
      • Kim J.
      • Zhuang L.
      • Tyagi S.
      • Ma L.
      • Westbrook T.F.
      • Steinberg G.R.
      • Nakada D.
      • Stockwell B.R.
      • Gan B.
      Energy-stress-mediated AMPK activation inhibits ferroptosis.
      ). Ferroptosis characterized by accumulating reactive oxygen species (ROS) and lipid peroxides is shown to suppress tumor growth but also enhance tumor growth by promoting immunosuppression in the tumor microenvironment (
      • Chen X.
      • Kang R.
      • Kroemer G.
      • Tang D.
      Broadening horizons: the role of ferroptosis in cancer.
      ,
      • Lei G.
      • Zhuang L.
      • Gan B.
      Targeting ferroptosis as a vulnerability in cancer.
      ). Loss of LKB1 has been reported to sensitize cancer cells and MEFs to ferroptosis (
      • Li C.
      • Dong X.
      • Du W.
      • Shi X.
      • Chen K.
      • Zhang W.
      • Gao M.
      LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis.
      ,
      • Lee H.
      • Zandkarimi F.
      • Zhang Y.
      • Meena J.K.
      • Kim J.
      • Zhuang L.
      • Tyagi S.
      • Ma L.
      • Westbrook T.F.
      • Steinberg G.R.
      • Nakada D.
      • Stockwell B.R.
      • Gan B.
      Energy-stress-mediated AMPK activation inhibits ferroptosis.
      ). Ferroptosis induced by energy stress activates LKB1-AMPK signaling, which results in the inhibition of lipid synthesis through inhibitory phosphorylation of acetyl coenzyme A (acetyl-CoA) carboxylase 1 (ACC1) and successively confers the resistance to ferroptosis (
      • Li C.
      • Dong X.
      • Du W.
      • Shi X.
      • Chen K.
      • Zhang W.
      • Gao M.
      LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis.
      ,
      • Lee H.
      • Zandkarimi F.
      • Zhang Y.
      • Meena J.K.
      • Kim J.
      • Zhuang L.
      • Tyagi S.
      • Ma L.
      • Westbrook T.F.
      • Steinberg G.R.
      • Nakada D.
      • Stockwell B.R.
      • Gan B.
      Energy-stress-mediated AMPK activation inhibits ferroptosis.
      ).
      Interestingly, metabolites have been recently demonstrated to coordinate the activation of LKB1 through direct binding. In tumors with upregulated 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in the oxidative PPP, 6-phosphogluconate (G6P) is rapidly converted to ribulose-5-phosphate (Ru5P). Ru5P binds to LKB1 and disrupts the formation of LKB1/STRAD/MO25 complex without altering its protein levels. This process subsequently inhibits the AMPK/ACC1-mediated lipogenesis and eventually promotes cancer cell proliferation and tumor growth (
      • Lin R.
      • Elf S.
      • Shan C.
      • Kang H.B.
      • Ji Q.
      • Zhou L.
      • Hitosugi T.
      • Zhang L.
      • Zhang S.
      • Seo J.H.
      • Xie J.
      • Tucker M.
      • Gu T.L.
      • Sudderth J.
      • Jiang L.
      • Mitsche M.
      • DeBerardinis R.J.
      • Wu S.
      • Li Y.
      • Mao H.
      • Chen P.R.
      • Wang D.
      • Chen G.Z.
      • Hurwitz S.J.
      • Lonial S.
      • Arellano M.L.
      • Khoury H.J.
      • Khuri F.R.
      • Lee B.H.
      • Lei Q.
      • Brat D.J.
      • Ye K.
      • Boggon T.J.
      • He C.
      • Kang S.
      • Fan J.
      • Chen J.
      6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
      ). LKB1 is also identified as a sensor of cellular Asn–Asp homeostasis (
      • Deng L.
      • Yao P.
      • Li L.
      • Ji F.
      • Zhao S.
      • Xu C.
      • Lan X.
      • Jiang P.
      p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival.
      ). A high level of intracellular Asp directly binds to LKB1, leading to phosphorylation and activation of LKB1. The activated LKB1 activates AMPK/p53 cascade and thus suppresses the expression of asparagine synthetase (ASNS) expression, which eventually promotes tumor cell growth by hampering the catalyzed conversion from Asp to Asn. However, Asn can also directly bind to LKB1 and interfere with the activation of LKB1 and its downstream signaling activation (
      • Deng L.
      • Yao P.
      • Li L.
      • Ji F.
      • Zhao S.
      • Xu C.
      • Lan X.
      • Jiang P.
      p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival.
      ). Interestingly, LKB1 can regulate mitochondrial TCA cycle and subsequent cytokine Interleukin 17 (IL17) expression to control the pool of T helper 17 (TH17) cells (
      • Baixauli F.
      • Piletic K.
      • Puleston D.J.
      • Villa M.
      • Field C.S.
      • Flachsmann L.J.
      • Quintana A.
      • Rana N.
      • Edwards-Hicks J.
      • Matsushita M.
      • Stanczak M.A.
      • Grzes K.M.
      • Kabat A.M.
      • Fabri M.
      • Caputa G.
      • Kelly B.
      • Corrado M.
      • Musa Y.
      • Duda K.J.
      • Mittler G.
      • O'Sullivan D.
      • Sesaki H.
      • Jenuwein T.
      • Buescher J.M.
      • Pearce E.J.
      • Sanin D.E.
      • Pearce E.L.
      An LKB1-mitochondria axis controls T(H)17 effector function.
      ). Taken together, the tumor suppressor LKB1 plays a central role in regulating metabolic signaling mainly through both AMPK-dependent and independent mechanisms.

      2.2 LKB1 deficiency promotes cancer metastasis.

      Metastasis leading to cancer recurrence is the leading cause of cancer mortality. The metastasis cascade comprises diverse biological processes including invasion, intravasation, circulation, extravasation, formation of pre-metastatic niche, micro-metastasis, and metastatic colonization (
      • Fares J.
      • Fares M.Y.
      • Khachfe H.H.
      • Salhab H.A.
      • Fares Y.
      Molecular principles of metastasis: a hallmark of cancer revisited.
      ). An organized polarized epithelial structure, which is strictly regulated by cell polarity, preserves structural integrity and homeostasis, and obstructs unrestrained proliferation and metastasis. Deficiency of epithelial integrity is one of the hallmarks in the advanced cancer (
      • Coradini D.
      • Casarsa C.
      • Oriana S.
      Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment.
      ). In Caenorhabditis Elegans (C. Elegans), partitioning-defective 4 (Par-4), the ortholog of LKB1, has been associated with embryonic asymmetry through the regulation of cell polarity (
      • Watts J.L.
      • Morton D.G.
      • Bestman J.
      • Kemphues K.J.
      The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry.
      ). In mammals, increasing evidence has implicated the regulatory role of LKB1 in cell polarity (
      • Baas A.F.
      • Kuipers J.
      • van der Wel N.N.
      • Batlle E.
      • Koerten H.K.
      • Peters P.J.
      • Clevers H.C.
      Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD.
      ,
      • Fu D.
      • Wakabayashi Y.
      • Lippincott-Schwartz J.
      • Arias I.M.
      Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway.
      ).
      In the 3D organotypic model of mammary acini, chronic activation of c-Myc causes hyperproliferation and transformed acinar morphology, whereas acute activation of c-Myc in mature organoids with established epithelial architecture confers no alteration in cell cycle and morphology. However, silencing LKB1 synergizes with acute activation of c-Myc to disrupt the cell polarity and epithelial structure and enables aberrant proliferation of epithelial cells (
      • Partanen J.I.
      • Nieminen A.I.
      • Makela T.P.
      • Klefstrom J.
      Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization.
      ). Loss of LKB1 also promotes c-Myc transcription by upregulating myeloid zinc finger 1 (MZF1) expression, which facilitates lung tumor growth, migration, and invasion (
      • Tsai L.H.
      • Wu J.Y.
      • Cheng Y.W.
      • Chen C.Y.
      • Sheu G.T.
      • Wu T.C.
      • Lee H.
      The MZF1/c-MYC axis mediates lung adenocarcinoma progression caused by wild-type lkb1 loss.
      ) (Fig. 3). Disrupted basal polarity and aberrant proliferation of transformed fallopian tube epithelial cells are also detected in LKB1/p53 co-mutant tumor tissues (
      • George S.H.
      • Milea A.
      • Sowamber R.
      • Chehade R.
      • Tone A.
      • Shaw P.A.
      Loss of LKB1 and p53 synergizes to alter fallopian tube epithelial phenotype and high-grade serous tumorigenesis.
      ). A further mechanistic study has revealed that LKB1 deficiency might drive the reallocation of a type Ⅱ transmembrane serine protease Hepsin from the cell surface to the cytoplasm, resulting in subsequently epithelial disorganization (
      • Partanen J.I.
      • Tervonen T.A.
      • Myllynen M.
      • Lind E.
      • Imai M.
      • Katajisto P.
      • Dijkgraaf G.J.
      • Kovanen P.E.
      • Makela T.P.
      • Werb Z.
      • Klefstrom J.
      Tumor suppressor function of Liver kinase B1 (Lkb1) is linked to regulation of epithelial integrity.
      ). Meanwhile, LKB1 deficiency in stromal cells, such as mesenchymal cells, reduces the production of tumor growth factor β (TGF-β) and contributes to gastrointestinal polyposis by expanding epithelial cells (
      • Katajisto P.
      • Vaahtomeri K.
      • Ekman N.
      • Ventela E.
      • Ristimaki A.
      • Bardeesy N.
      • Feil R.
      • DePinho R.A.
      • Makela T.P.
      LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis.
      ).
      Figure thumbnail gr3
      Figure 3The pathways are involved in LKB1-modulated metastasis. In the absence of LKB1, cells exhibit high level of Sox17 and MZF1 and hyperactivation of NF-κB. Sox17 enters the nucleus and binds to the chromatin, thereby enhances the gene accessibility and the transcription activity of metastasis-associated genes. MZF1 induces the expression of c-Myc that promotes the transcription of NEDD9, VEGFC, CD24, and MMP2. Hyperactivation of NF-κB impedes the production of ROS. Additionally, loss of LKB1 facilitates the translocation of Hepsin from Desmosome on the membrane to the cytoplasm. ROS also activates LKB1 and its downstream MKK3/6-p38/AFT2 axis. Interestingly, LKB1 also modulates anoikis, formation of actomyosin, activity of YAP, HIF1α/LOX/β-integrin-mediated collagen deposition, and expression and degradation of Snail. Thus, loss LKB1 promotes anoikis resistance and snail-mediated metastasis. Created with BioRender.com
      To migrate to the distant sites, cancer cells first detach from the primary sites into circulation. Anchorage-independent growth activates LKB1/SIK1 axis and induces the association of SIK1 with its substrates. SIK1 regulates the phosphorylation and abundance of p53, thereby stimulating anoikis to restrict metastasis (
      • Cheng H.
      • Liu P.
      • Wang Z.C.
      • Zou L.
      • Santiago S.
      • Garbitt V.
      • Gjoerup O.V.
      • Iglehart J.D.
      • Miron A.
      • Richardson A.L.
      • Hahn W.C.
      • Zhao J.J.
      SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis.
      ). Anoikis, a form of cell death due to the detachment from the matrix and excessive reactive oxygen species (ROS), is one of the main barriers to metastasis (
      • Taddei M.L.
      • Giannoni E.
      • Fiaschi T.
      • Chiarugi P.
      Anoikis: an emerging hallmark in health and diseases.
      ). Thus, cancer cells adopt anoikis resistance to fight against ROS stress and survive on their way to remote metastatic sites (
      • Sakamoto S.
      • Kyprianou N.
      Targeting anoikis resistance in prostate cancer metastasis.
      ). Loss of LKB1 interrupts SIK1/p53 axis and confers to anoikis resistance in cancers (
      • Cheng H.
      • Liu P.
      • Wang Z.C.
      • Zou L.
      • Santiago S.
      • Garbitt V.
      • Gjoerup O.V.
      • Iglehart J.D.
      • Miron A.
      • Richardson A.L.
      • Hahn W.C.
      • Zhao J.J.
      SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis.
      ). In LKB-null tumor cells, it has also been reported that α-ketoglutarate (α-KG) binds to CaMKK2 and recruits AMPK to CaMKK2, which promotes AMPK-dependent anoikis resistance and tumor metastasis (
      • Jin L.
      • Chun J.
      • Pan C.
      • Kumar A.
      • Zhang G.
      • Ha Y.
      • Li D.
      • Alesi G.N.
      • Kang Y.
      • Zhou L.
      • Yu W.M.
      • Magliocca K.R.
      • Khuri F.R.
      • Qu C.K.
      • Metallo C.
      • Owonikoko T.K.
      • Kang S.
      The PLAG1-GDH1 Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer.
      ). Additionally, the expression of lysyl oxidase (LOX) is increased via activated mTOR/HIF1α signaling leading to enhancing collagen deposition and promoting anchorage-independent tumor growth and migration in LKB1-deficient NSCLC by activating β1 integrin signaling (
      • Gao Y.
      • Xiao Q.
      • Ma H.
      • Li L.
      • Liu J.
      • Feng Y.
      • Fang Z.
      • Wu J.
      • Han X.
      • Zhang J.
      • Sun Y.
      • Wu G.
      • Padera R.
      • Chen H.
      • Wong K.K.
      • Ge G.
      • Ji H.
      LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling.
      ). LKB1-null tumor cells display significantly increased intracellular ROS levels, excessive oxidation DNA, increased mutation rates, and accumulation of DNA damage (
      • Xu H.G.
      • Zhai Y.X.
      • Chen J.
      • Lu Y.
      • Wang J.W.
      • Quan C.S.
      • Zhao R.X.
      • Xiao X.
      • He Q.
      • Werle K.D.
      • Kim H.G.
      • Lopez R.
      • Cui R.
      • Liang J.
      • Li Y.L.
      • Xu Z.X.
      LKB1 reduces ROS-mediated cell damage via activation of p38.
      ). Increased ROS level promotes the binding of LKB1 to the Cdc42/p21-activating kinases 1 (PAK1) complex, which triggers the activation of mitogen-activated protein kinase-kinase (MKK) 3/6-p38-activating transcription factor 2 (ATF2) cascade and the expression of anti-oxidative enzymes to protect cells against oxidative damage (
      • Xu H.G.
      • Zhai Y.X.
      • Chen J.
      • Lu Y.
      • Wang J.W.
      • Quan C.S.
      • Zhao R.X.
      • Xiao X.
      • He Q.
      • Werle K.D.
      • Kim H.G.
      • Lopez R.
      • Cui R.
      • Liang J.
      • Li Y.L.
      • Xu Z.X.
      LKB1 reduces ROS-mediated cell damage via activation of p38.
      ). In LKB1/NUAK1-deficient epithelial ovarian cancer (EOC) cells and the spheroid model of high-grade serous ovarian cancer, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway is hyperactivated to suppress ROS production and maintain cell survival (
      • Buensuceso A.
      • Fritz J.L.
      • Collins O.
      • Valdes Y.R.
      • Borrelli M.J.
      • DiMattia G.E.
      • Shepherd T.G.
      Loss of LKB1-NUAK1 signalling enhances NF-kappaB activity in a spheroid model of high-grade serous ovarian cancer.
      ). Upon cell detachment, LKB1-activated NUAK1 interacts with protein phosphatase 1β (PP1β)/phosphorylates the myosin phosphatase targeting 1 (MYPT1) complex and phosphorylates MYPT1 at Ser445, Ser472, and Ser90, which stimulates 14-3-3 binding to MYPT1 and blocks its interaction with myosin, thereby suppressing the dephosphorylation of myosin light chain-2 (MLC2) at Ser19 and Thr18 by PP1β/MYPT1 complex. Inhibition of the LKB1/NUAK1 axis impairs the formation of the actomyosin “contractile ring” and promotes cell adhesion, in turn facilitating metastatic colonization (
      • Zagorska A.
      • Deak M.
      • Campbell D.G.
      • Banerjee S.
      • Hirano M.
      • Aizawa S.
      • Prescott A.R.
      • Alessi D.R.
      New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion.
      ).
      Moreover, previous studies have reported the abundance of metastasis- and angiogenesis-related proteins in LKB1-deficient tumor cells. LKB1-null tumor cells express a high level of metastasis-related Snail (
      • Goodwin J.M.
      • Svensson R.U.
      • Lou H.J.
      • Winslow M.M.
      • Turk B.E.
      • Shaw R.J.
      An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential.
      ,
      • Song L.
      • Guo J.
      • Chang R.
      • Peng X.
      • Li J.
      • Xu X.
      • Zhan X.
      • Zhan L.
      LKB1 obliterates Snail stability and inhibits pancreatic cancer metastasis in response to metformin treatment.
      ). LKB1-activated MARK1/4 phosphorylate Dishevelled-Axin domain containing 1 (DIXDC1) at Ser592, which facilitates the proper localization of DIXDC1 to focal adhesions and represses Snail expression in a FAK-mediated manner (
      • Goodwin J.M.
      • Svensson R.U.
      • Lou H.J.
      • Winslow M.M.
      • Turk B.E.
      • Shaw R.J.
      An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential.
      ). In pancreatic cancer, LKB1 promotes the interaction of Snail and E3 ligase F-box and leucine-rich repeat protein 14 (FBXL14), which results in the ubiquitin-mediated degradation of Snail (
      • Song L.
      • Guo J.
      • Chang R.
      • Peng X.
      • Li J.
      • Xu X.
      • Zhan X.
      • Zhan L.
      LKB1 obliterates Snail stability and inhibits pancreatic cancer metastasis in response to metformin treatment.
      ). In the KRAS/LKB1 co-mutant cells, elevated acetyl-CoA derived from autophagy also induces the acetylation and stabilization of Snail (
      • Han J.H.
      • Kim Y.K.
      • Kim H.
      • Lee J.
      • Oh M.J.
      • Kim S.B.
      • Kim M.
      • Kim K.H.
      • Yoon H.J.
      • Lee M.S.
      • Minna J.D.
      • White M.A.
      • Kim H.S.
      Snail acetylation by autophagy-derived acetyl-coenzyme A promotes invasion and metastasis of KRAS-LKB1 co-mutated lung cancer cells.
      ). Loss of LKB1 also promotes the expression of genes involved in angiogenesis and metastasis in lung adenocarcinomas, such as neural precursor cell expressed developmentally down-regulated protein 9 (NEDD9), vascular endothelial growth factor C (VEGFC), CD24, and matrix metallopeptidase 2 (MMP2) (
      • Ji H.
      • Ramsey M.R.
      • Hayes D.N.
      • Fan C.
      • McNamara K.
      • Kozlowski P.
      • Torrice C.
      • Wu M.C.
      • Shimamura T.
      • Perera S.A.
      • Liang M.C.
      • Cai D.
      • Naumov G.N.
      • Bao L.
      • Contreras C.M.
      • Li D.
      • Chen L.
      • Krishnamurthy J.
      • Koivunen J.
      • Chirieac L.R.
      • Padera R.F.
      • Bronson R.T.
      • Lindeman N.I.
      • Christiani D.C.
      • Lin X.
      • Shapiro G.I.
      • Janne P.A.
      • Johnson B.E.
      • Meyerson M.
      • Kwiatkowski D.J.
      • Castrillon D.H.
      • Bardeesy N.
      • Sharpless N.E.
      • Wong K.K.
      LKB1 modulates lung cancer differentiation and metastasis.
      ). Sox17-mediated chromatin accessibility and yes-associated protein (YAP) signaling have also been reported in LKB1-deficiency metastatic tumors (
      • Mohseni M.
      • Sun J.
      • Lau A.
      • Curtis S.
      • Goldsmith J.
      • Fox V.L.
      • Wei C.
      • Frazier M.
      • Samson O.
      • Wong K.K.
      • Kim C.
      • Camargo F.D.
      A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway.
      ,
      • Kriaucionis S.
      LKB1 cooperates with Sox17 to drive metastasis.
      ,
      • Pierce S.E.
      • Granja J.M.
      • Corces M.R.
      • Brady J.J.
      • Tsai M.K.
      • Pierce A.B.
      • Tang R.
      • Chu P.
      • Feldser D.M.
      • Chang H.Y.
      • Bassik M.C.
      • Greenleaf W.J.
      • Winslow M.M.
      LKB1 inactivation modulates chromatin accessibility to drive metastatic progression.
      ). Pierce et al. reported increased levels of Sox17 specifically in LKB1-deficiency metastatic tumors but not in primary tumors through CRIPSR-based mutagenesis screen. Further investigation identified a small population of cells in LKB1 deficient tumors with upregulated Sox17 in NSCLC. Mechanistically, Sox17 promotes chromatin accessibility and successively induces genotype-specific epigenic program, thereby enabling metastasis (
      • Kriaucionis S.
      LKB1 cooperates with Sox17 to drive metastasis.
      ,
      • Pierce S.E.
      • Granja J.M.
      • Corces M.R.
      • Brady J.J.
      • Tsai M.K.
      • Pierce A.B.
      • Tang R.
      • Chu P.
      • Feldser D.M.
      • Chang H.Y.
      • Bassik M.C.
      • Greenleaf W.J.
      • Winslow M.M.
      LKB1 inactivation modulates chromatin accessibility to drive metastatic progression.
      ). For its role in YAP signaling, LKB1 promotes the localization of YAP in the cytoplasm and a remarkable reduction of YAP/TEAD transcriptional activity by inducing the phosphorylation of MST1/2 at Thr183/Thr180 and LATS1/2 at Thr1079 through MARK1/2/3/4. In LKB1-deficient tumors, the phosphorylation of YAP is repressed leading to YAP activation and upregulated downstream targets of YAP, such as angiomotin-like protein 2 (Amotl2) and Cysteine-rich angiogenic inducer 61 (Cyr61), which promote tumor growth and invasion (
      • Mohseni M.
      • Sun J.
      • Lau A.
      • Curtis S.
      • Goldsmith J.
      • Fox V.L.
      • Wei C.
      • Frazier M.
      • Samson O.
      • Wong K.K.
      • Kim C.
      • Camargo F.D.
      A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway.
      ).

      2.3 LKB1 regulates genomic integrity and cell fate.

      Accumulating studies have also indicated the role of LKB1 in regulating genome integrity and cell fate (Fig.4). LKB1 maintains Breast cancer type 1 (BRCA1) mRNA stability by retaining an RNA binding protein Hu Antigen R (HuR) inside the nucleus dependent on AMPK, which maintains genome integrity (
      • Gupta R.
      • Liu A.Y.
      • Glazer P.M.
      • Wajapeyee N.
      LKB1 preserves genome integrity by stimulating BRCA1 expression.
      ). In the UV-induced cancer model, UVB irradiation promotes both LKB1 and NUAK1 binding to and phosphorylating CDKN1A at Thr80 and Thr146, respectively, leading to the degradation of CDKN1A and DNA damage response. In the absence of LKB1, cells exhibit accumulated CDKN1A, elevated DNA double-strand breaks (DSBs), impaired homology-directed DNA repair, and resistance to apoptosis (
      • Esteve-Puig R.
      • Gil R.
      • Gonzalez-Sanchez E.
      • Bech-Serra J.J.
      • Grueso J.
      • Hernandez-Losa J.
      • Moline T.
      • Canals F.
      • Ferrer B.
      • Cortes J.
      • Bastian B.
      • Ramon Y.C.S.
      • Martin-Caballero J.
      • Flores J.M.
      • Vivancos A.
      • Garcia-Patos V.
      • Recio J.A.
      A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation.
      ). In the LKB1-deficient NSCLC, cAMP response element-binding protein (CREB) regulated transcription coactivator 2 (CRTC2) remains dephosphorylated and persistently activated in the nucleus to promote the tumor growth and the apoptotic resistance via the induction of CREB target genes, such as the inhibitor of DNA binding 1 (ID1) (
      • Rodon L.
      • Svensson R.U.
      • Wiater E.
      • Chun M.G.H.
      • Tsai W.W.
      • Eichner L.J.
      • Shaw R.J.
      • Montminy M.
      The CREB coactivator CRTC2 promotes oncogenesis in LKB1-mutant non-small cell lung cancer.
      ). By generating a conditionally inactivated and restored Lkb1XTR allele, Christopher W.M. and colleagues demonstrated that LKB1 inactivation at the initial stage of tumorigenesis increases lung tumor burden and leads to the transformation of alveolar type Ⅱ cell into progenitor-like cells, which can be reversed by LKB1 restoration (
      • Murray C.W.
      • Brady J.J.
      • Han M.
      • Cai H.
      • Tsai M.K.
      • Pierce S.E.
      • Cheng R.
      • Demeter J.
      • Feldser D.M.
      • Jackson P.K.
      • Shackelford D.B.
      • Winslow M.M.
      LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer.
      ), indicative of the critical role of LKB1 in cell fate control.
      Figure thumbnail gr4
      Figure 4LKB1 regulates genomic integrity and cell fate. UVB stimulates NUAK1 and LKB1 bind to and phosphorylate CDKN1A, thus activating DNA repair. The cytosolic HuR binds to BRCA mRNA and induces its degradation. LKB1/AMPK inhibits the translocation of HuR from the nucleus to the cytoplasm, which protects cells from genotoxic stress. LKB1 inactivates CRTC2 through direct phosphorylation, leading to suppressing the transcription of ID1. LKB1 regulates stem-like phenotype and transdifferentiation by inhibiting the transcription of stem-associated genes and mTOR/HIF1α/LOX/β-integrin axis, respectively. Created with BioRender.com
      Loss of LKB1 induces expression of stem cell-like genes, such as POU class 5 homeobox 1 (Pou5f1), Nanog, and Sox2, and promotes the formation of mammosphere in breast cancer (
      • Sengupta S.
      • Nagalingam A.
      • Muniraj N.
      • Bonner M.Y.
      • Mistriotis P.
      • Afthinos A.
      • Kuppusamy P.
      • Lanoue D.
      • Cho S.
      • Korangath P.
      • Shriver M.
      • Begum A.
      • Merino V.F.
      • Huang C.Y.
      • Arbiser J.L.
      • Matsui W.
      • Gyorffy B.
      • Konstantopoulos K.
      • Sukumar S.
      • Marignani P.A.
      • Saxena N.K.
      • Sharma D.
      Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3.
      ). Recent studies in signatures of cancers with LKB1 mutation alone and in the combination of other gene mutations implicate the role of LKB1 in regulating transdifferentiation. One study demonstrates that LKB1 inactivation specifically drives KRAS-mutant lung adenocarcinoma with polycomb repressive complex 2 (PRC2) loss to squamous cell carcinoma (
      • Zhang H.
      • Fillmore Brainson C.
      • Koyama S.
      • Redig A.J.
      • Chen T.
      • Li S.
      • Gupta M.
      • Garcia-de-Alba C.
      • Paschini M.
      • Herter-Sprie G.S.
      • Lu G.
      • Zhang X.
      • Marsh B.P.
      • Tuminello S.J.
      • Xu C.
      • Chen Z.
      • Wang X.
      • Akbay E.A.
      • Zheng M.
      • Palakurthi S.
      • Sholl L.M.
      • Rustgi A.K.
      • Kwiatkowski D.J.
      • Diehl J.A.
      • Bass A.J.
      • Sharpless N.E.
      • Dranoff G.
      • Hammerman P.S.
      • Ji H.
      • Bardeesy N.
      • Saur D.
      • Watanabe H.
      • Kim C.F.
      • Wong K.K.
      Lkb1 inactivation drives lung cancer lineage switching governed by Polycomb Repressive Complex 2.
      ). PRC2 is composed of enhancer of zeste homolog 2 (EZH2), embryonic ectoderm development (EED), and suppressor of zeste 12 (SUZ12) and catalyzes the methylation of H3 on lysine27 (
      • Majewski I.J.
      • Blewitt M.E.
      • de Graaf C.A.
      • McManus E.J.
      • Bahlo M.
      • Hilton A.A.
      • Hyland C.D.
      • Smyth G.K.
      • Corbin J.E.
      • Metcalf D.
      • Alexander W.S.
      • Hilton D.J.
      Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity.
      ). Loss of PRC2 activates the transcription of squamous-associated genes, including nerve growth factor receptor (Ngfr), Sox2, DNp63, and keratin 5/6 (Krt5/6) (
      • Zhang H.
      • Fillmore Brainson C.
      • Koyama S.
      • Redig A.J.
      • Chen T.
      • Li S.
      • Gupta M.
      • Garcia-de-Alba C.
      • Paschini M.
      • Herter-Sprie G.S.
      • Lu G.
      • Zhang X.
      • Marsh B.P.
      • Tuminello S.J.
      • Xu C.
      • Chen Z.
      • Wang X.
      • Akbay E.A.
      • Zheng M.
      • Palakurthi S.
      • Sholl L.M.
      • Rustgi A.K.
      • Kwiatkowski D.J.
      • Diehl J.A.
      • Bass A.J.
      • Sharpless N.E.
      • Dranoff G.
      • Hammerman P.S.
      • Ji H.
      • Bardeesy N.
      • Saur D.
      • Watanabe H.
      • Kim C.F.
      • Wong K.K.
      Lkb1 inactivation drives lung cancer lineage switching governed by Polycomb Repressive Complex 2.
      ). Moreover, LOX/β-integrin-mediated collagen deposition and YAP activation derived from LKB1 deficiency can also obstruct the transdifferentiation (
      • Han X.
      • Li F.
      • Fang Z.
      • Gao Y.
      • Li F.
      • Fang R.
      • Yao S.
      • Sun Y.
      • Li L.
      • Zhang W.
      • Ma H.
      • Xiao Q.
      • Ge G.
      • Fang J.
      • Wang H.
      • Zhang L.
      • Wong K.K.
      • Chen H.
      • Hou Y.
      • Ji H.
      Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma.
      ,
      • Gao Y.
      • Zhang W.
      • Han X.
      • Li F.
      • Wang X.
      • Wang R.
      • Fang Z.
      • Tong X.
      • Yao S.
      • Li F.
      • Feng Y.
      • Sun Y.
      • Hou Y.
      • Yang Z.
      • Guan K.
      • Chen H.
      • Zhang L.
      • Ji H.
      YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression.
      ). Inhibition of the elevated Lox in Lkb1-deficient lung adenocarcinoma provokes extracellular matrix remodeling and induces DNp63 expression, thereby promoting the transdifferentiation of lung adenocarcinoma into lung squamous cell carcinoma (
      • Han X.
      • Li F.
      • Fang Z.
      • Gao Y.
      • Li F.
      • Fang R.
      • Yao S.
      • Sun Y.
      • Li L.
      • Zhang W.
      • Ma H.
      • Xiao Q.
      • Ge G.
      • Fang J.
      • Wang H.
      • Zhang L.
      • Wong K.K.
      • Chen H.
      • Hou Y.
      • Ji H.
      Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma.
      ). Further mechanistic study reveals that activated YAP translocates into the nucleus and promotes zinc finger E-box binding homeobox (ZEB2) transcription by binding to the ZBE2 promoter region. Increased ZEB2 then represses DNp63 transcription to inhibit the transdifferentiation of lung adenocarcinoma to lung squamous cell carcinoma (
      • Gao Y.
      • Zhang W.
      • Han X.
      • Li F.
      • Wang X.
      • Wang R.
      • Fang Z.
      • Tong X.
      • Yao S.
      • Li F.
      • Feng Y.
      • Sun Y.
      • Hou Y.
      • Yang Z.
      • Guan K.
      • Chen H.
      • Zhang L.
      • Ji H.
      YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression.
      ). Although the critical role of LKB1 inactivation in genomic integrity and cell fate control presented above, the detailed mechanisms by which LKB1 deficiency orchestrates these processes remain to be elucidated.

      2.4 LKB1 deficiency confers therapeutic resistance.

      The 24-month observational multicentric study from 159 NSCLC patients, who have received chemotherapy or immunotherapy, has demonstrated that the median overall survival (OS) of patients harboring LKB1 mutation is significantly shorter than those with wild-type LKB1 (4.7 months versus 16.2 months, P < 0.001). The first-line treatment failure is also remarkedly shorter in LKB1-mutant NSCLC patients (
      • Rosellini P.
      • Amintas S.
      • Caumont C.
      • Veillon R.
      • Galland-Girodet S.
      • Cuguilliere A.
      • Nguyen L.
      • Domblides C.
      • Gouverneur A.
      • Merlio J.P.
      • Bezin J.
      • Girodet P.O.
      Clinical impact of STK11 mutation in advanced-stage non-small cell lung cancer.
      ). LKB1 mutation implicates resistance to treatments in cancer, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy (
      • Skoulidis F.
      • Goldberg M.E.
      • Greenawalt D.M.
      • Hellmann M.D.
      • Awad M.M.
      • Gainor J.F.
      • Schrock A.B.
      • Hartmaier R.J.
      • Trabucco S.E.
      • Gay L.
      • Ali S.M.
      • Elvin J.A.
      • Singal G.
      • Ross J.S.
      • Fabrizio D.
      • Szabo P.M.
      • Chang H.
      • Sasson A.
      • Srinivasan S.
      • Kirov S.
      • Szustakowski J.
      • Vitazka P.
      • Edwards R.
      • Bufill J.A.
      • Sharma N.
      • Ou S.I.
      • Peled N.
      • Spigel D.R.
      • Rizvi H.
      • Aguilar E.J.
      • Carter B.W.
      • Erasmus J.
      • Halpenny D.F.
      • Plodkowski A.J.
      • Long N.M.
      • Nishino M.
      • Denning W.L.
      • Galan-Cobo A.
      • Hamdi H.
      • Hirz T.
      • Tong P.
      • Wang J.
      • Rodriguez-Canales J.
      • Villalobos P.A.
      • Parra E.R.
      • Kalhor N.
      • Sholl L.M.
      • Sauter J.L.
      • Jungbluth A.A.
      • Mino-Kenudson M.
      • Azimi R.
      • Elamin Y.Y.
      • Zhang J.
      • Leonardi G.C.
      • Jiang F.
      • Wong K.K.
      • Lee J.J.
      • Papadimitrakopoulou V.A.
      • Wistuba II,
      • Miller V.A.
      • Frampton G.M.
      • Wolchok J.D.
      • Shaw A.T.
      • Janne P.A.
      • Stephens P.J.
      • Rudin C.M.
      • Geese W.J.
      • Albacker L.A.
      • Heymach J.V.
      STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
      ,
      • Sitthideatphaiboon P.
      • Galan-Cobo A.
      • Negrao M.V.
      • Qu X.
      • Poteete A.
      • Zhang F.
      • Liu D.D.
      • Lewis W.E.
      • Kemp H.N.
      • Lewis J.
      • Rinsurongkawong W.
      • Giri U.
      • Lee J.J.
      • Zhang J.
      • Roth J.A.
      • Swisher S.
      • Heymach J.V.
      STK11/LKB1 Mutations in NSCLC Are Associated with KEAP1/NRF2-Dependent Radiotherapy Resistance Targetable by Glutaminase Inhibition.
      ,
      • Moro M.
      • Caiola E.
      • Ganzinelli M.
      • Zulato E.
      • Rulli E.
      • Marabese M.
      • Centonze G.
      • Busico A.
      • Pastorino U.
      • de Braud F.G.
      • Vernieri C.
      • Simbolo M.
      • Bria E.
      • Scarpa A.
      • Indraccolo S.
      • Broggini M.
      • Sozzi G.
      • Garassino M.C.
      Metformin Enhances Cisplatin-Induced Apoptosis and Prevents Resistance to Cisplatin in Co-mutated KRAS/LKB1 NSCLC.
      ,
      • Wang Y.
      • Li N.
      • Jiang W.
      • Deng W.
      • Ye R.
      • Xu C.
      • Qiao Y.
      • Sharma A.
      • Zhang M.
      • Hung M.C.
      • Lin S.H.
      Mutant LKB1 Confers Enhanced Radiosensitization in Combination with Trametinib in KRAS-Mutant Non-Small Cell Lung Cancer.
      ). In this section, we will summarize recent discoveries of the mechanisms underlying resistance to tyrosine kinase inhibitors (TKIs) and immunotherapy regulated by LKB1 deficiency.

      2.4.1 LKB1 deficiency regulates resistance to TKIs

      TKIs for epithelial growth factor receptor (EGFR) have been proven to treat tumor patients with EFGR mutations, especially EGFR mutant NSCLC. EGFR TKIs also show certain efficacy in NSCLC with wild-type EGFR by activating the intrinsic apoptosis pathway. LKB1 deficiency causes impaired AMPK activity and activated mTOR signaling, which can be selectively blocked by Erlotinib in LKB1-deficient NSCLC cells, which suggests that NSCLC cells with LKB1 deficiency might be more sensitive to EGFR TKIs, PI3K inhibitor, and rapamycin (
      • Whang Y.M.
      • Park S.I.
      • Trenary I.A.
      • Egnatchik R.A.
      • Fessel J.P.
      • Kaufman J.M.
      • Carbone D.P.
      • Young J.D.
      LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells.
      ). However, another study in cigarette smoke-induced NSCLC revealed that LKB1 deficiency might contribute to resistance to EGFR TKIs. Upon treatment with cigarette smoke extract, all six regions of the LKB1 promoter are hypermethylated and thereby reducing the expression of LKB1, which contributes to the resistance to EGFR TKIs (Erlotinib and Gefitinib) via attenuating AMPK-mediated inhibition of mTOR. The result indicates that LKB1 expression is a critical determinant for the sensitivity to EGFR TKI in NSCLC with EGFR WT (
      • Cheng F.J.
      • Chen C.H.
      • Tsai W.C.
      • Wang B.W.
      • Yu M.C.
      • Hsia T.C.
      • Wei Y.L.
      • Hsiao Y.C.
      • Hu D.W.
      • Ho C.Y.
      • Li T.S.
      • Wu C.Y.
      • Chou W.Y.
      • Yu Y.L.
      • Tang C.H.
      • Chen C.Y.
      • Chen C.M.
      • Hsu J.L.
      • Chen H.F.
      • Chen Y.
      • Tu C.Y.
      • Hung M.C.
      • Huang W.C.
      Cigarette smoke-induced LKB1/AMPK pathway deficiency reduces EGFR TKI sensitivity in NSCLC.
      ). Whether the LKB1 expression could be a potential biomarker for TKI treatment varies from distinct contexts and requires further investigation.

      2.4.2 LKB1 deficiency regulates resistance to immune checkpoint inhibitors (ICIs)

      The emergence of immunotherapy, especially ICIs, changes the treatment paradigm for solid cancers including NSCLC. Numerous clinical trials have demonstrated that the OS or progression-free survival (PFS) of NSCLC patients who received ICIs is remarkably prolonged compared to those who receive chemotherapies (
      • Borghaei H.
      • Paz-Ares L.
      • Horn L.
      • Spigel D.R.
      • Steins M.
      • Ready N.E.
      • Chow L.Q.
      • Vokes E.E.
      • Felip E.
      • Holgado E.
      • Barlesi F.
      • Kohlhaufl M.
      • Arrieta O.
      • Burgio M.A.
      • Fayette J.
      • Lena H.
      • Poddubskaya E.
      • Gerber D.E.
      • Gettinger S.N.
      • Rudin C.M.
      • Rizvi N.
      • Crino L.
      • Blumenschein Jr., G.R.
      • Antonia S.J.
      • Dorange C.
      • Harbison C.T.
      • Graf Finckenstein F.
      • Brahmer J.R.
      Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer.
      ,
      • Mok T.S.K.
      • Wu Y.L.
      • Kudaba I.
      • Kowalski D.M.
      • Cho B.C.
      • Turna H.Z.
      • Castro Jr., G.
      • Srimuninnimit V.
      • Laktionov K.K.
      • Bondarenko I.
      • Kubota K.
      • Lubiniecki G.M.
      • Zhang J.
      • Kush D.
      • Lopes G.
      • Investigators K.-.
      Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial.
      ,
      • Gadgeel S.
      • Rodriguez-Abreu D.
      • Speranza G.
      • Esteban E.
      • Felip E.
      • Domine M.
      • Hui R.
      • Hochmair M.J.
      • Clingan P.
      • Powell S.F.
      • Cheng S.Y.
      • Bischoff H.G.
      • Peled N.
      • Grossi F.
      • Jennens R.R.
      • Reck M.
      • Garon E.B.
      • Novello S.
      • Rubio-Viqueira B.
      • Boyer M.
      • Kurata T.
      • Gray J.E.
      • Yang J.
      • Bas T.
      • Pietanza M.C.
      • Garassino M.C.
      Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer.
      ). Skoulidis F. et al. have reported that LKB1 alteration is the key cause of primary resistance to anti-programmed death-1 (PD-1) immunotherapy in KRAS-mutant NSCLC by analyzing online datasets and utilizing Kras-mutant murine lung adenocarcinoma models (
      • Skoulidis F.
      • Goldberg M.E.
      • Greenawalt D.M.
      • Hellmann M.D.
      • Awad M.M.
      • Gainor J.F.
      • Schrock A.B.
      • Hartmaier R.J.
      • Trabucco S.E.
      • Gay L.
      • Ali S.M.
      • Elvin J.A.
      • Singal G.
      • Ross J.S.
      • Fabrizio D.
      • Szabo P.M.
      • Chang H.
      • Sasson A.
      • Srinivasan S.
      • Kirov S.
      • Szustakowski J.
      • Vitazka P.
      • Edwards R.
      • Bufill J.A.
      • Sharma N.
      • Ou S.I.
      • Peled N.
      • Spigel D.R.
      • Rizvi H.
      • Aguilar E.J.
      • Carter B.W.
      • Erasmus J.
      • Halpenny D.F.
      • Plodkowski A.J.
      • Long N.M.
      • Nishino M.
      • Denning W.L.
      • Galan-Cobo A.
      • Hamdi H.
      • Hirz T.
      • Tong P.
      • Wang J.
      • Rodriguez-Canales J.
      • Villalobos P.A.
      • Parra E.R.
      • Kalhor N.
      • Sholl L.M.
      • Sauter J.L.
      • Jungbluth A.A.
      • Mino-Kenudson M.
      • Azimi R.
      • Elamin Y.Y.
      • Zhang J.
      • Leonardi G.C.
      • Jiang F.
      • Wong K.K.
      • Lee J.J.
      • Papadimitrakopoulou V.A.
      • Wistuba II,
      • Miller V.A.
      • Frampton G.M.
      • Wolchok J.D.
      • Shaw A.T.
      • Janne P.A.
      • Stephens P.J.
      • Rudin C.M.
      • Geese W.J.
      • Albacker L.A.
      • Heymach J.V.
      STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
      ). Retrospective analysis of phase Ⅰ/Ⅱ clinical studies of NSCLC patients treated with anti-programmed death-ligand 1 (PD-L1) or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) immunotherapy shows that LKB1 mutation is significantly associated with poor OS and poor objective response to ICIs (NCT01693562, NCT02087423, and NCT02000947) (
      • Pore N.
      • Wu S.
      • Standifer N.
      • Jure-Kunkel M.
      • de Los Reyes M.
      • Shrestha Y.
      • Halpin R.
      • Rothstein R.
      • Mulgrew K.
      • Blackmore S.
      • Martin P.
      • Meekin 3rd, J.
      • Griffin M.
      • Bisha I.
      • Proia T.A.
      • Miragaia R.J.
      • Herbst R.
      • Gupta A.
      • Abdullah S.E.
      • Raja R.
      • Frigault M.M.
      • Barrett J.C.
      • Dennis P.A.
      • Ascierto M.L.
      • Oberst M.D.
      Resistance to Durvalumab and Durvalumab plus Tremelimumab Is Associated with Functional STK11 Mutations in Patients with Non-Small Cell Lung Cancer and Is Reversed by STAT3 Knockdown.
      ). Increasing evidence has implicated the impact of LKB1 alteration on the tumor microenvironment (TME), which confers resistance to the immunotherapy (
      • Skoulidis F.
      • Goldberg M.E.
      • Greenawalt D.M.
      • Hellmann M.D.
      • Awad M.M.
      • Gainor J.F.
      • Schrock A.B.
      • Hartmaier R.J.
      • Trabucco S.E.
      • Gay L.
      • Ali S.M.
      • Elvin J.A.
      • Singal G.
      • Ross J.S.
      • Fabrizio D.
      • Szabo P.M.
      • Chang H.
      • Sasson A.
      • Srinivasan S.
      • Kirov S.
      • Szustakowski J.
      • Vitazka P.
      • Edwards R.
      • Bufill J.A.
      • Sharma N.
      • Ou S.I.
      • Peled N.
      • Spigel D.R.
      • Rizvi H.
      • Aguilar E.J.
      • Carter B.W.
      • Erasmus J.
      • Halpenny D.F.
      • Plodkowski A.J.
      • Long N.M.
      • Nishino M.
      • Denning W.L.
      • Galan-Cobo A.
      • Hamdi H.
      • Hirz T.
      • Tong P.
      • Wang J.
      • Rodriguez-Canales J.
      • Villalobos P.A.
      • Parra E.R.
      • Kalhor N.
      • Sholl L.M.
      • Sauter J.L.
      • Jungbluth A.A.
      • Mino-Kenudson M.
      • Azimi R.
      • Elamin Y.Y.
      • Zhang J.
      • Leonardi G.C.
      • Jiang F.
      • Wong K.K.
      • Lee J.J.
      • Papadimitrakopoulou V.A.
      • Wistuba II,
      • Miller V.A.
      • Frampton G.M.
      • Wolchok J.D.
      • Shaw A.T.
      • Janne P.A.
      • Stephens P.J.
      • Rudin C.M.
      • Geese W.J.
      • Albacker L.A.
      • Heymach J.V.
      STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
      ,
      • Li R.
      • Salehi-Rad R.
      • Crosson W.
      • Momcilovic M.
      • Lim R.J.
      • Ong S.L.
      • Huang Z.L.
      • Zhang T.
      • Abascal J.
      • Dumitras C.
      • Jing Z.
      • Park S.J.
      • Krysan K.
      • Shackelford D.B.
      • Tran L.M.
      • Liu B.
      • Dubinett S.M.
      Inhibition of Granulocytic Myeloid-Derived Suppressor Cells Overcomes Resistance to Immune Checkpoint Inhibition in LKB1-Deficient Non-Small Cell Lung Cancer.
      ,
      • Galan-Cobo A.
      • Sitthideatphaiboon P.
      • Qu X.
      • Poteete A.
      • Pisegna M.A.
      • Tong P.
      • Chen P.H.
      • Boroughs L.K.
      • Rodriguez M.L.M.
      • Zhang W.
      • Parlati F.
      • Wang J.
      • Gandhi V.
      • Skoulidis F.
      • DeBerardinis R.J.
      • Minna J.D.
      • Heymach J.V.
      LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in KRAS-Mutant Lung Adenocarcinoma.
      ).
      To analyze the immune and metabolic signatures in LKB1-deficient tumors, the mice with homozygous deletion of Lkb1, Pten, or p53 as well as the Kras mutation developed lung cancer recapitulate human lung cancer. Specifically, Lkb1-/-/Pten-/- mice develop lung squamous carcinoma expressing a high level of CD274 (gene encoding PD-L1). A stem-like subpopulation expressing stem cell antigen-1 (SCA1) and NGFR shows more abundant PD-L1. The high PD-L1 in tumor cells might induce the filtration of regulatory T (Treg) cells expressing PD-1 (
      • Xu C.
      • Fillmore C.M.
      • Koyama S.
      • Wu H.
      • Zhao Y.
      • Chen Z.
      • Herter-Sprie G.S.
      • Akbay E.A.
      • Tchaicha J.H.
      • Altabef A.
      • Reibel J.B.
      • Walton Z.
      • Ji H.
      • Watanabe H.
      • Janne P.A.
      • Castrillon D.H.
      • Rustgi A.K.
      • Bass A.J.
      • Freeman G.J.
      • Padera R.F.
      • Dranoff G.
      • Hammerman P.S.
      • Kim C.F.
      • Wong K.K.
      Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression.
      ). Foxp3-expressing Treg cells along with Th are a subset of CD4+ T cells that were originally found to prevent autoimmune disease and maintain tolerance of self-antigens (
      • Tanaka A.
      • Sakaguchi S.
      Targeting Treg cells in cancer immunotherapy.
      ). Studies have indicated that Treg suppresses anti-tumor immunity and that Treg cell infiltration is negatively associated with prognosis in cancer patients (
      • Tanaka A.
      • Sakaguchi S.
      Targeting Treg cells in cancer immunotherapy.
      ). Additionally, high tumor-associated neutrophils (TANs) (CD45+CD11b+Ly6G+) and low tumor-associated macrophages (TAMs) (CD45+CD11c+CD11b-CD103-) infiltration have been detected in the Lkb1-/-/Pten-/- tumors, which might be regulated by elevating C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL5 and CXCL7 in bronchoalveolar lavage fluid (
      • Xu C.
      • Fillmore C.M.
      • Koyama S.
      • Wu H.
      • Zhao Y.
      • Chen Z.
      • Herter-Sprie G.S.
      • Akbay E.A.
      • Tchaicha J.H.
      • Altabef A.
      • Reibel J.B.
      • Walton Z.
      • Ji H.
      • Watanabe H.
      • Janne P.A.
      • Castrillon D.H.
      • Rustgi A.K.
      • Bass A.J.
      • Freeman G.J.
      • Padera R.F.
      • Dranoff G.
      • Hammerman P.S.
      • Kim C.F.
      • Wong K.K.
      Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression.
      ). A similar population of TANs and TAMs is also detected in the KrasG12D/+/Lkb1-/- mouse tumor model. In KrasG12D/+/Lkb1-/- tumor cells, Lkb1 loss induces the production of IL-1α. In turn, IL-1α activates the production of IL-6, CXCL7, and granulocyte-colony stimulating factor (G-CSF) in a signal transducer and activator of transcription 3 (STAT3)-dependent manner, thereby recruiting TANs and subsequently leading to a reduction in total CD8+ T cells and impaired proliferation and function of CD8+ T cells (
      • Koyama S.
      • Akbay E.A.
      • Li Y.Y.
      • Aref A.R.
      • Skoulidis F.
      • Herter-Sprie G.S.
      • Buczkowski K.A.
      • Liu Y.
      • Awad M.M.
      • Denning W.L.
      • Diao L.
      • Wang J.
      • Parra-Cuentas E.R.
      • Wistuba II,
      • Soucheray M.
      • Thai T.
      • Asahina H.
      • Kitajima S.
      • Altabef A.
      • Cavanaugh J.D.
      • Rhee K.
      • Gao P.
      • Zhang H.
      • Fecci P.E.
      • Shimamura T.
      • Hellmann M.D.
      • Heymach J.V.
      • Hodi F.S.
      • Freeman G.J.
      • Barbie D.A.
      • Dranoff G.
      • Hammerman P.S.
      • Wong K.K.
      STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
      ). In the Lenti-Sox2-cre-infected KrasG12D/+/p53-/- lung cancer mouse model, highly expressed Sox2 suppresses NK2 homebox 1 (NKX2-1) activity and induces CXCL5 expression. The Lenti-CXCL5-cre-infected KrasG12D/+/p53-/- lung cancer mouse model displays a high expression of CXCL5 and a remarkable accumulation of neutrophils, further confirming that CXCL5 promotes the accumulation of tumor-derived neutrophils and subsequently accelerates tumorigenesis (
      • Mollaoglu G.
      • Jones A.
      • Wait S.J.
      • Mukhopadhyay A.
      • Jeong S.
      • Arya R.
      • Camolotto S.A.
      • Mosbruger T.L.
      • Stubben C.J.
      • Conley C.J.
      • Bhutkar A.
      • Vahrenkamp J.M.
      • Berrett K.C.
      • Cessna M.H.
      • Lane T.E.
      • Witt B.L.
      • Salama M.E.
      • Gertz J.
      • Jones K.B.
      • Snyder E.L.
      • Oliver T.G.
      The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment.
      ). Elevated TGF-β and IL-6, which have been shown to promote tumor growth and induce immunosuppressive TME, are also increased in bronchoalveolar lavage fluid (
      • Xu C.
      • Fillmore C.M.
      • Koyama S.
      • Wu H.
      • Zhao Y.
      • Chen Z.
      • Herter-Sprie G.S.
      • Akbay E.A.
      • Tchaicha J.H.
      • Altabef A.
      • Reibel J.B.
      • Walton Z.
      • Ji H.
      • Watanabe H.
      • Janne P.A.
      • Castrillon D.H.
      • Rustgi A.K.
      • Bass A.J.
      • Freeman G.J.
      • Padera R.F.
      • Dranoff G.
      • Hammerman P.S.
      • Kim C.F.
      • Wong K.K.
      Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression.
      ,
      • Koyama S.
      • Akbay E.A.
      • Li Y.Y.
      • Aref A.R.
      • Skoulidis F.
      • Herter-Sprie G.S.
      • Buczkowski K.A.
      • Liu Y.
      • Awad M.M.
      • Denning W.L.
      • Diao L.
      • Wang J.
      • Parra-Cuentas E.R.
      • Wistuba II,
      • Soucheray M.
      • Thai T.
      • Asahina H.
      • Kitajima S.
      • Altabef A.
      • Cavanaugh J.D.
      • Rhee K.
      • Gao P.
      • Zhang H.
      • Fecci P.E.
      • Shimamura T.
      • Hellmann M.D.
      • Heymach J.V.
      • Hodi F.S.
      • Freeman G.J.
      • Barbie D.A.
      • Dranoff G.
      • Hammerman P.S.
      • Wong K.K.
      STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
      ). Additionally, it is reported that PD-L1 is downregulated by Lkb1 loss (
      • Koyama S.
      • Akbay E.A.
      • Li Y.Y.
      • Aref A.R.
      • Skoulidis F.
      • Herter-Sprie G.S.
      • Buczkowski K.A.
      • Liu Y.
      • Awad M.M.
      • Denning W.L.
      • Diao L.
      • Wang J.
      • Parra-Cuentas E.R.
      • Wistuba II,
      • Soucheray M.
      • Thai T.
      • Asahina H.
      • Kitajima S.
      • Altabef A.
      • Cavanaugh J.D.
      • Rhee K.
      • Gao P.
      • Zhang H.
      • Fecci P.E.
      • Shimamura T.
      • Hellmann M.D.
      • Heymach J.V.
      • Hodi F.S.
      • Freeman G.J.
      • Barbie D.A.
      • Dranoff G.
      • Hammerman P.S.
      • Wong K.K.
      STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
      ). In the KrasG12D/Lkb1-/- mutant NSCLC mouse model, combined therapy of radiotherapy and anti-PD1 immunotherapy increases the infiltration of CD8+ T cells expressing increased inhibitory lymphocyte activation gene 3 (LAG3) and T-cell immunoglobulin and mucin-domain containing-3 (TIM3), thus contributing to poor therapeutic efficacy (
      • Herter-Sprie G.S.
      • Koyama S.
      • Korideck H.
      • Hai J.
      • Deng J.
      • Li Y.Y.
      • Buczkowski K.A.
      • Grant A.K.
      • Ullas S.
      • Rhee K.
      • Cavanaugh J.D.
      • Neupane N.P.
      • Christensen C.L.
      • Herter J.M.
      • Makrigiorgos G.M.
      • Hodi F.S.
      • Freeman G.J.
      • Dranoff G.
      • Hammerman P.S.
      • Kimmelman A.C.
      • Wong K.K.
      Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer.
      ). Knocking down LKB1 in normal bronchial epithelial cells and Kras-mutant NSCLC cells upregulates a panel of the CXC chemokines with an NH2-terminal Glu-Leu-Arg motif, including CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8. In the KrasG12D/Lkb1-/- or KrasG12D/Lkb1-/-/p53-/- mouse model, the CXC chemokines are also elevated, accompanied by increased accumulation of granulocytic myeloid-derived suppressor cells (G-MDSC) in both TME and peripheral blood and spleen. Depletion of G-MDSC sensitizes LKB1-deficient tumors to anti-PD-1 therapy by boosting the proliferation and function of tumor-infiltrating lymphocytes (
      • Li R.
      • Salehi-Rad R.
      • Crosson W.
      • Momcilovic M.
      • Lim R.J.
      • Ong S.L.
      • Huang Z.L.
      • Zhang T.
      • Abascal J.
      • Dumitras C.
      • Jing Z.
      • Park S.J.
      • Krysan K.
      • Shackelford D.B.
      • Tran L.M.
      • Liu B.
      • Dubinett S.M.
      Inhibition of Granulocytic Myeloid-Derived Suppressor Cells Overcomes Resistance to Immune Checkpoint Inhibition in LKB1-Deficient Non-Small Cell Lung Cancer.
      ). LKB1-deficient NSCLC tumors also show defective TCF1+CD8+ T cells and mouse KrasG12D/Lkb1-/-/p53-/- tumor exhibits poor response to anti-PD-1 immunotherapy. Inhibition of Axl by Bemcentinib sensitizes LKB1-deficient tumors to anti-PD-1 immunotherapy by inducing the secretion of type I interferon by activated dendritic cells (DCs) and the expansion of TCF1+CD8+ T cells (
      • Li H.
      • Liu Z.
      • Liu L.
      • Zhang H.
      • Han C.
      • Girard L.
      • Park H.
      • Zhang A.
      • Dong C.
      • Ye J.
      • Rayford A.
      • Peyton M.
      • Li X.
      • Avila K.
      • Cao X.
      • Hu S.
      • Alam M.M.
      • Akbay E.A.
      • Solis L.M.
      • Behrens C.
      • Hernandez-Ruiz S.
      • Lu W.
      • Wistuba I.
      • Heymach J.V.
      • Chisamore M.
      • Micklem D.
      • Gabra H.
      • Gausdal G.
      • Lorens J.B.
      • Li B.
      • Fu Y.X.
      • Minna J.D.
      • Brekken R.A.
      AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1(+) CD8 T cells.
      ).
      In the retrospective study of immune phenotype in NSCLC patients with LKB1 mutation, the immune signatures are not completely concordant with those in mouse models. The LKB1-mutant tumors are characterized by the increased genes involved in the regulation of cytokine production by macrophages/neutrophils and TH17 cells, as well as the decreased baseline and posttreatment quantities of NK cells, CD4+ effector memory, CD4+ HLA-DR+, CD8+ effector memory, and CD8+ HLA-DR+ T cells. The single-cell RNA sequencing and flow cytometry results reveal the elevating intratumoral Ly6G+ granulocytes and CD163+ TAMs in Lkb1-KO tumors, as well as the upregulation of immunosuppressive cytokines and chemokines and low expression of PD-L1 in CD45- tumor cells, which might contribute to insensitivity to ICIs treatment. Further analysis of proteomics data from the TCGA database reveals the positive association between phosphor-STAT3 and LKB1 mutation. Inhibition of STAT3 potentiates Lkb1-mutant tumors to ICIs in a mouse model by enhancing the function of antigen-presenting cells (
      • Pore N.
      • Wu S.
      • Standifer N.
      • Jure-Kunkel M.
      • de Los Reyes M.
      • Shrestha Y.
      • Halpin R.
      • Rothstein R.
      • Mulgrew K.
      • Blackmore S.
      • Martin P.
      • Meekin 3rd, J.
      • Griffin M.
      • Bisha I.
      • Proia T.A.
      • Miragaia R.J.
      • Herbst R.
      • Gupta A.
      • Abdullah S.E.
      • Raja R.
      • Frigault M.M.
      • Barrett J.C.
      • Dennis P.A.
      • Ascierto M.L.
      • Oberst M.D.
      Resistance to Durvalumab and Durvalumab plus Tremelimumab Is Associated with Functional STK11 Mutations in Patients with Non-Small Cell Lung Cancer and Is Reversed by STAT3 Knockdown.
      ). It has also been reported that administration of anti-PD-1 immunotherapy in combination with CCL7 could promote the DCs and CD8+ T cell recruitment in KrasG12D/Lkb1-/- mouse lung cancer resulting in inhibiting the cancer development and prolonging the mice survival (
      • Zhang M.
      • Yang W.
      • Wang P.
      • Deng Y.
      • Dong Y.T.
      • Liu F.F.
      • Huang R.
      • Zhang P.
      • Duan Y.Q.
      • Liu X.D.
      • Lin D.
      • Chu Q.
      • Zhong B.
      CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer.
      ).
      Deng J. and colleagues reported higher tumor mutational burden (TMB) resulting from defects in DSBs repair regulated by LKB deficiency in LKB1-mutant NSCLC from nonsmoker and genetically engineered mouse models (
      • Deng J.
      • Thennavan A.
      • Dolgalev I.
      • Chen T.
      • Li J.
      • Marzio A.
      • Poirier J.T.
      • Peng D.H.
      • Bulatovic M.
      • Mukhopadhyay S.
      • Silver H.
      • Papadopoulos E.
      • Pyon V.
      • Thakurdin C.
      • Han H.
      • Li F.
      • Li S.
      • Ding H.
      • Hu H.
      • Pan Y.
      • Weerasekara V.
      • Jiang B.
      • Wang E.S.
      • Ahearn I.
      • Philips M.
      • Papagiannakopoulos T.
      • Tsirigos A.
      • Rothenberg E.
      • Gainor J.
      • Freeman G.J.
      • Rudin C.M.
      • Gray N.S.
      • Hammerman P.S.
      • Pagano M.
      • Heymach J.V.
      • Perou C.M.
      • Bardeesy N.
      • Wong K.K.
      ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer.
      ). High TMB shows a correlation with expressed neoantigens, which are usually derived from mutations and presented by MHC Ⅰ on cancer cells (
      • Yu G.
      • Pang Y.
      • Merchant M.
      • Kesserwan C.
      • Gangalapudi V.
      • Abdelmaksoud A.
      • Ranjan A.
      • Kim O.
      • Wei J.S.
      • Chou H.C.
      • Wen X.
      • Sindiri S.
      • Song Y.K.
      • Xi L.
      • Kaplan R.N.
      • Armstrong T.S.
      • Gilbert M.R.
      • Aldape K.
      • Khan J.
      • Wu J.
      Tumor Mutation Burden, Expressed Neoantigens and the Immune Microenvironment in Diffuse Gliomas.
      ). However, NSCLC patients with KRAS/LKB1 co-mutation show poor response to immunotherapy, and tumors with KRAS/LKB1 co-mutation also exhibit reduced MHC Ⅰ on cell surface (
      • Shire N.J.
      • Klein A.B.
      • Golozar A.
      • Collins J.M.
      • Fraeman K.H.
      • Nordstrom B.L.
      • McEwen R.
      • Hembrough T.
      • Rizvi N.A.
      STK11 (LKB1) mutations in metastatic NSCLC: Prognostic value in the real world.
      ,
      • Skoulidis F.
      • Goldberg M.E.
      • Greenawalt D.M.
      • Hellmann M.D.
      • Awad M.M.
      • Gainor J.F.
      • Schrock A.B.
      • Hartmaier R.J.
      • Trabucco S.E.
      • Gay L.
      • Ali S.M.
      • Elvin J.A.
      • Singal G.
      • Ross J.S.
      • Fabrizio D.
      • Szabo P.M.
      • Chang H.
      • Sasson A.
      • Srinivasan S.
      • Kirov S.
      • Szustakowski J.
      • Vitazka P.
      • Edwards R.
      • Bufill J.A.
      • Sharma N.
      • Ou S.I.
      • Peled N.
      • Spigel D.R.
      • Rizvi H.
      • Aguilar E.J.
      • Carter B.W.
      • Erasmus J.
      • Halpenny D.F.
      • Plodkowski A.J.
      • Long N.M.
      • Nishino M.
      • Denning W.L.
      • Galan-Cobo A.
      • Hamdi H.
      • Hirz T.
      • Tong P.
      • Wang J.
      • Rodriguez-Canales J.
      • Villalobos P.A.
      • Parra E.R.
      • Kalhor N.
      • Sholl L.M.
      • Sauter J.L.
      • Jungbluth A.A.
      • Mino-Kenudson M.
      • Azimi R.
      • Elamin Y.Y.
      • Zhang J.
      • Leonardi G.C.
      • Jiang F.
      • Wong K.K.
      • Lee J.J.
      • Papadimitrakopoulou V.A.
      • Wistuba II,
      • Miller V.A.
      • Frampton G.M.
      • Wolchok J.D.
      • Shaw A.T.
      • Janne P.A.
      • Stephens P.J.
      • Rudin C.M.
      • Geese W.J.
      • Albacker L.A.
      • Heymach J.V.
      STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
      ,
      • Deng J.
      • Thennavan A.
      • Dolgalev I.
      • Chen T.
      • Li J.
      • Marzio A.
      • Poirier J.T.
      • Peng D.H.
      • Bulatovic M.
      • Mukhopadhyay S.
      • Silver H.
      • Papadopoulos E.
      • Pyon V.
      • Thakurdin C.
      • Han H.
      • Li F.
      • Li S.
      • Ding H.
      • Hu H.
      • Pan Y.
      • Weerasekara V.
      • Jiang B.
      • Wang E.S.
      • Ahearn I.
      • Philips M.
      • Papagiannakopoulos T.
      • Tsirigos A.
      • Rothenberg E.
      • Gainor J.
      • Freeman G.J.
      • Rudin C.M.
      • Gray N.S.
      • Hammerman P.S.
      • Pagano M.
      • Heymach J.V.
      • Perou C.M.
      • Bardeesy N.
      • Wong K.K.
      ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer.
      ). Further mechanistic study implicates that LKB deficiency promotes autophagy and suppresses proteasomal degradation of antigenic peptides, which compromises antigen processing and presentation by MHC Ⅰ and ultimately immune evasion in KRAS/LKB1 co-mutant NSCLC (
      • Deng J.
      • Thennavan A.
      • Dolgalev I.
      • Chen T.
      • Li J.
      • Marzio A.
      • Poirier J.T.
      • Peng D.H.
      • Bulatovic M.
      • Mukhopadhyay S.
      • Silver H.
      • Papadopoulos E.
      • Pyon V.
      • Thakurdin C.
      • Han H.
      • Li F.
      • Li S.
      • Ding H.
      • Hu H.
      • Pan Y.
      • Weerasekara V.
      • Jiang B.
      • Wang E.S.
      • Ahearn I.
      • Philips M.
      • Papagiannakopoulos T.
      • Tsirigos A.
      • Rothenberg E.
      • Gainor J.
      • Freeman G.J.
      • Rudin C.M.
      • Gray N.S.
      • Hammerman P.S.
      • Pagano M.
      • Heymach J.V.
      • Perou C.M.
      • Bardeesy N.
      • Wong K.K.
      ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer.
      ). In KRAS/LKB1 co-mutant tumor cell lines, the expression of stimulator of interferon genes (STING) is low or absent as a consequence of LKB1 loss (
      • Kitajima S.
      • Ivanova E.
      • Guo S.
      • Yoshida R.
      • Campisi M.
      • Sundararaman S.K.
      • Tange S.
      • Mitsuishi Y.
      • Thai T.C.
      • Masuda S.
      • Piel B.P.
      • Sholl L.M.
      • Kirschmeier P.T.
      • Paweletz C.P.
      • Watanabe H.
      • Yajima M.
      • Barbie D.A.
      Suppression of STING Associated with LKB1 Loss in KRAS-Driven Lung Cancer.
      ). STING has been reported to regulate the innate immune response by sensing the abnormal cytosolic double-stranded DNA (dsDNA) via cyclic GMP-AMP synthase (cGAS) and therefore inducing type Ⅰ interferons and chemokines that recruit T cells (
      • Barber G.N.
      STING: infection, inflammation and cancer.
      ). In particular, DNA (cytosine-5)-methyltransferase (DNMT1) and EZH2 regulate the methylation of STING promoter and impede its transcription, which fails to sense the cytosolic dsDNA from defective mitochondria for subsequent STAT1 signaling activation, eventually leading to impaired intratumoral T cell recruitment (
      • Kitajima S.
      • Ivanova E.
      • Guo S.
      • Yoshida R.
      • Campisi M.
      • Sundararaman S.K.
      • Tange S.
      • Mitsuishi Y.
      • Thai T.C.
      • Masuda S.
      • Piel B.P.
      • Sholl L.M.
      • Kirschmeier P.T.
      • Paweletz C.P.
      • Watanabe H.
      • Yajima M.
      • Barbie D.A.
      Suppression of STING Associated with LKB1 Loss in KRAS-Driven Lung Cancer.
      ).
      The metabolic signature has also been analyzed among KrasG12D/+, KrasG12D/+/Keap1-/-, KrasG12D/+/Lkb1-/-, and KrasG12D/+/Keap1-/-/Lkb1-/- mouse lung tumors. KrasG12D/+/Lkb1-/- tumor nodules specifically show increased glutaminase (Gls1) mRNA, rapid conversion from glutamine to glutamate, and significantly accumulated glutamate (
      • Best S.A.
      • Gubser P.M.
      • Sethumadhavan S.
      • Kersbergen A.
      • Negron Abril Y.L.
      • Goldford J.
      • Sellers K.
      • Abeysekera W.
      • Garnham A.L.
      • McDonald J.A.
      • Weeden C.E.
      • Anderson D.
      • Pirman D.
      • Roddy T.P.
      • Creek D.J.
      • Kallies A.
      • Kingsbury G.
      • Sutherland K.D.
      Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer.
      ). Although studies have implicated that inhibition of glutamine metabolism in T cells might enhance the cytotoxic effector function of CD8+ T cells and shortly induce the exhaustion of cytotoxic CD8+ T cells, glutaminase inhibition fails to boost the efficacy of anti-PD-1 immunotherapy in KrasG12D/+/Lkb1-/- mouse lung cancer model (
      • Best S.A.
      • Gubser P.M.
      • Sethumadhavan S.
      • Kersbergen A.
      • Negron Abril Y.L.
      • Goldford J.
      • Sellers K.
      • Abeysekera W.
      • Garnham A.L.
      • McDonald J.A.
      • Weeden C.E.
      • Anderson D.
      • Pirman D.
      • Roddy T.P.
      • Creek D.J.
      • Kallies A.
      • Kingsbury G.
      • Sutherland K.D.
      Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer.
      ,
      • Leone R.D.
      • Zhao L.
      • Englert J.M.
      • Sun I.M.
      • Oh M.H.
      • Sun I.H.
      • Arwood M.L.
      • Bettencourt I.A.
      • Patel C.H.
      • Wen J.
      • Tam A.
      • Blosser R.L.
      • Prchalova E.
      • Alt J.
      • Rais R.
      • Slusher B.S.
      • Powell J.D.
      Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion.
      ,
      • Johnson M.O.
      • Wolf M.M.
      • Madden M.Z.
      • Andrejeva G.
      • Sugiura A.
      • Contreras D.C.
      • Maseda D.
      • Liberti M.V.
      • Paz K.
      • Kishton R.J.
      • Johnson M.E.
      • de Cubas A.A.
      • Wu P.
      • Li G.
      • Zhang Y.
      • Newcomb D.C.
      • Wells A.D.
      • Restifo N.P.
      • Rathmell W.K.
      • Locasale J.W.
      • Davila M.L.
      • Blazar B.R.
      • Rathmell J.C.
      Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism.
      ).
      Collectively, LKB1 deficiency in tumor cells alters the sensitivity of tumors to either targeted or immunotherapy by regulating immunomodulators and reprogramming metabolic networks inside tumor cells and in the TME, indicating that the impact of LKB1 deficiency on therapeutic resistance results from not only the monologue of tumor cells but the dialogue among tumor cells and stromal cells.

      2.5 Oncogenic role of LKB1

      Although dozens of studies have generally identified LKB1 as a tumor suppressor, multiple studies have reported the oncogenic role of LKB1 in tumorigenesis. One study in acute myeloid leukemia (AML) shows the pro-oncogenic role of LKB1. Tarumoto et al. reported that LKB1 phosphorylates the T-loop of SIK3 at Thr221 and activates SIK3. The activated SIK3 phosphorylates and prevents the histone deacetylase 4 (HDAC4)-mediated inhibition of myocyte enhancer factor 2C (MEF2C), which promotes AML proliferation (
      • Tarumoto Y.
      • Lu B.
      • Somerville T.D.D.
      • Huang Y.H.
      • Milazzo J.P.
      • Wu X.S.
      • Klingbeil O.
      • El Demerdash O.
      • Shi J.
      • Vakoc C.R.
      LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia.
      ). In HCC patients, a high level of LKB1 is significantly associated with poor prognosis (
      • Barbier-Torres L.
      • Delgado T.C.
      • Garcia-Rodriguez J.L.
      • Zubiete-Franco I.
      • Fernandez-Ramos D.
      • Buque X.
      • Cano A.
      • Gutierrez-de Juan V.
      • Fernandez-Dominguez I.
      • Lopitz-Otsoa F.
      • Fernandez-Tussy P.
      • Boix L.
      • Bruix J.
      • Villa E.
      • Castro A.
      • Lu S.C.
      • Aspichueta P.
      • Xirodimas D.
      • Varela-Rey M.
      • Mato J.M.
      • Beraza N.
      • Martinez-Chantar M.L.
      Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer.
      ,
      • Zubiete-Franco I.
      • Garcia-Rodriguez J.L.
      • Lopitz-Otsoa F.
      • Serrano-Macia M.
      • Simon J.
      • Fernandez-Tussy P.
      • Barbier-Torres L.
      • Fernandez-Ramos D.
      • Gutierrez-de-Juan V.
      • Lopez de Davalillo S.
      • Carlevaris O.
      • Beguiristain Gomez A.
      • Villa E.
      • Calvisi D.
      • Martin C.
      • Berra E.
      • Aspichueta P.
      • Beraza N.
      • Varela-Rey M.
      • Avila M.
      • Rodriguez M.S.
      • Mato J.M.
      • Diaz-Moreno I.
      • Diaz-Quintana A.
      • Delgado T.C.
      • Martinez-Chantar M.L.
      SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer.
      ). In HCC cells, LKB1 overexpression resulting in AMPK signaling activation to prevent energy stress-induced cell death enhances liver cancer development (
      • Lee S.W.
      • Li C.F.
      • Jin G.
      • Cai Z.
      • Han F.
      • Chan C.H.
      • Yang W.L.
      • Li B.K.
      • Rezaeian A.H.
      • Li H.Y.
      • Huang H.Y.
      • Lin H.K.
      Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress.
      ). Additionally, LKB1 is essential for the phosphorylation of Akt downstream targets in the context of constitutively activating Akt, which hampers apoptosis and favors tumor cell survival (
      • Zhong D.
      • Liu X.
      • Khuri F.R.
      • Sun S.Y.
      • Vertino P.M.
      • Zhou W.
      LKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins.
      ). Similarly, the ΔN-LKB1 isoform exerts an oncogenic function by assisting the activation of AMPK (
      • Dahmani R.
      • Just P.A.
      • Delay A.
      • Canal F.
      • Finzi L.
      • Prip-Buus C.
      • Lambert M.
      • Sujobert P.
      • Buchet-Poyau K.
      • Miller E.
      • Cavard C.
      • Marmier S.
      • Terris B.
      • Billaud M.
      • Perret C.
      A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties.
      ). Collectively, LKB1 appears to be an oncogenic player in certain contexts, and more investigations are required to comprehensively understand the functional role of LKB1 both in cancer cells and stromal cells and its underlying mechanisms in cancer regulation.

      3. Posttranslational modifications of LKB1

      Increasing evidence has suggested that the inactivation or deletion of both two alleles might be required for the recessive function of the tumor suppressor gene in the tumorigenesis (
      • Chen L.
      • Liu S.
      • Tao Y.
      Regulating tumor suppressor genes: post-translational modifications.
      ). The LKB1’s mutation types, especially in NSCLC, include deep deletion, truncation mutation, splice mutation, missense mutation, inframe mutation, and structural variant, which might cause alterations in copy number (
      • Gao J.
      • Aksoy B.A.
      • Dogrusoz U.
      • Dresdner G.
      • Gross B.
      • Sumer S.O.
      • Sun Y.
      • Jacobsen A.
      • Sinha R.
      • Larsson E.
      • Cerami E.
      • Sander C.
      • Schultz N.
      Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
      ,
      • Cerami E.
      • Gao J.
      • Dogrusoz U.
      • Gross B.E.
      • Sumer S.O.
      • Aksoy B.A.
      • Jacobsen A.
      • Byrne C.J.
      • Heuer M.L.
      • Larsson E.
      • Antipin Y.
      • Reva B.
      • Goldberg A.P.
      • Sander C.
      • Schultz N.
      The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
      ). Further analysis of different mutations of LKB1, missense mutation accounts for 30% of the total and mainly causes loss-of-function of LKB1 protein by disrupting its kinase activity or localization (
      • Granado-Martinez P.
      • Garcia-Ortega S.
      • Gonzalez-Sanchez E.
      • McGrail K.
      • Selgas R.
      • Grueso J.
      • Gil R.
      • Naldaiz-Gastesi N.
      • Rhodes A.C.
      • Hernandez-Losa J.
      • Ferrer B.
      • Canals F.
      • Villanueva J.
      • Mendez O.
      • Espinosa-Gil S.
      • Lizcano J.M.
      • Munoz-Couselo E.
      • Garcia-Patos V.
      • Recio J.A.
      STK11 (LKB1) missense somatic mutant isoforms promote tumor growth, motility and inflammation.
      ). PTM is a biologically catalyzed process of covalently adding small chemical molecular groups, peptides, or complex molecules to the amino-acid sidechain of proteins, which often alters the conformation, properties, and localization of proteins and/or increases the diversity of proteome (
      • Wang Y.C.
      • Peterson S.E.
      • Loring J.F.
      Protein post-translational modifications and regulation of pluripotency in human stem cells.
      ). A panel of PTMs have been identified in managing activity, cellular distribution, and stability of LKB1 in the past decades, ultimately orchestrating tumorigenesis. In this section, we will summarize and discuss the PTMs of LKB1, including phosphorylation, ubiquitination, SUMOylation, neddylation, prenylation, acetylation, ADP-ribosylation, S-nitrosylation, and HNE-adduction (Fig. 5 and Table 1).
      Figure thumbnail gr5
      Figure 5The regulators involved in PTM of LKB1 A. the schematic figure of PTMs residues in LKB1 domains. B. Modification by varied enzymes regulates LKB1 function in biological processes. Enzymes known to modify LKB1 modulate its PTM state, thus in turn affecting various cellular functions as indicated. Solid arrows indicate promotion, dashed arrows indicate transferring, red stop lines indicate inhibition. Yellow balls indicate phosphorylation, red ball indicates ADP-ribosylation, purple balls indicate ubiquitination, orange balls indicate acetylation, grey ball indicates 4-HNE adduction, lavender ball indicates SUMOylation, and green ball indicates S-nitrosylation. SNO, S-nitrosylation; SUMO, SUMOylation; S, Ser, serine; K, Lys, lysine; E, Glu, glutamic acid; C, Cys, cysteine; T, Thr, threonine. Created with BioRender.com.
      Table 1Posttranslational modification of LKB1 and their functions
      PTMResiduesRegulatorsFunctionContextReference
      PhosphorylationSer31unknownUnknownHEK293T cell(
      • Sapkota G.P.
      • Boudeau J.
      • Deak M.
      • Kieloch A.
      • Morrice N.
      • Alessi D.R.
      Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome.
      )
      Tyr36LckPhosphorylation and activation of PLCγ1Mouse T cells(
      • Cao Y.
      • Li H.
      • Liu H.
      • Zhang M.
      • Hua Z.
      • Ji H.
      • Liu X.
      LKB1 regulates TCR-mediated PLCgamma1 activation and thymocyte positive selection.
      )
      Thr185STRADLKB1 activationHEK293T cell(
      • Baas A.F.
      • Boudeau J.
      • Sapkota G.P.
      • Smit L.
      • Medema R.
      • Morrice N.A.
      • Alessi D.R.
      • Clevers H.C.
      Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD.
      )
      Thr261FynLKB1 nuclear retentionMouse muscle cells(
      • Yamada E.
      • Pessin J.E.
      • Kurland I.J.
      • Schwartz G.J.
      • Bastie C.C.
      Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1.
      )
      Ser299AURKASuppression of the interaction with AMPKNSCLC cells(
      • Zheng X.
      • Chi J.
      • Zhi J.
      • Zhang H.
      • Yue D.
      • Zhao J.
      • Li D.
      • Li Y.
      • Gao M.
      • Guo J.
      Aurora-A-mediated phosphorylation of LKB1 compromises LKB1/AMPK signaling axis to facilitate NSCLC growth and migration.
      )
      Ser307PKCςBinding with STRAD and cytoplasmic translocationEndothelial cell(
      • Xie Z.
      • Dong Y.
      • Zhang J.
      • Scholz R.
      • Neumann D.
      • Zou M.H.
      Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis.
      )
      Ser325Cyclin D1-Cdk4/Cdk6Suppression of the interaction with AMPKBreact cancer cells(
      • Casimiro M.C.
      • Di Sante G.
      • Di Rocco A.
      • Loro E.
      • Pupo C.
      • Pestell T.G.
      • Bisetto S.
      • Velasco-Velazquez M.A.
      • Jiao X.
      • Li Z.
      • Kusminski C.M.
      • Seifert E.L.
      • Wang C.
      • Ly D.
      • Zheng B.
      • Shen C.H.
      • Scherer P.E.
      • Pestell R.G.
      Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK-LKB1 Signaling Axis.
      )
      ERKSuppression of the interaction with AMPKBRAFV600E melanoma cells(
      • Zheng B.
      • Jeong J.H.
      • Asara J.M.
      • Yuan Y.Y.
      • Granter S.R.
      • Chin L.
      • Cantley L.C.
      Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation.
      )
      Ser334AktBinding with 14-3-3 and nuclear retentionBreast cancer cells and HEK293T cell(
      • Liu L.
      • Siu F.M.
      • Che C.M.
      • Xu A.
      • Wang Y.
      Akt blocks the tumor suppressor activity of LKB1 by promoting phosphorylation-dependent nuclear retention through 14-3-3 proteins.
      )
      Tyr365FynLKB1 nuclear retentionMouse muscle cells(
      • Yamada E.
      • Pessin J.E.
      • Kurland I.J.
      • Schwartz G.J.
      • Bastie C.C.
      Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1.
      )
      LckPhosphorylation and activation of PLCγ1Mouse T cells(
      • Cao Y.
      • Li H.
      • Liu H.
      • Zhang M.
      • Hua Z.
      • Ji H.
      • Liu X.
      LKB1 regulates TCR-mediated PLCgamma1 activation and thymocyte positive selection.
      )
      Thr336STRADLKB1 activationMelanoma cells(
      • Sapkota G.P.
      • Boudeau J.
      • Deak M.
      • Kieloch A.
      • Morrice N.
      • Alessi D.R.
      Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome.
      )
      Binding with 14-3-3 and suppression of the interaction with AMPKHeLa cell(
      • Bai Y.
      • Zhou T.
      • Fu H.
      • Sun H.
      • Huang B.
      14-3-3 interacts with LKB1 via recognizing phosphorylated threonine 336 residue and suppresses LKB1 kinase function.
      )
      Thr366unknownunknownHEK293T cell(
      • Sapkota G.P.
      • Boudeau J.
      • Deak M.
      • Kieloch A.
      • Morrice N.
      • Alessi D.R.
      Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome.
      )
      ATMAMPK activationPrimary B cells and cancer cells(
      • Sherman M.H.
      • Kuraishy A.I.
      • Deshpande C.
      • Hong J.S.
      • Cacalano N.A.
      • Gatti R.A.
      • Manis J.P.
      • Damore M.A.
      • Pellegrini M.
      • Teitell M.A.
      AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling.
      ,
      • Alexander A.
      • Cai S.L.
      • Kim J.
      • Nanez A.
      • Sahin M.
      • MacLean K.H.
      • Inoki K.
      • Guan K.L.
      • Shen J.
      • Person M.D.
      • Kusewitt D.
      • Mills G.B.
      • Kastan M.B.
      • Walker C.L.
      ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS.
      )
      Ser399PKCςS-LKB1 localization and activationNSCLC cells(
      • Zhu H.
      • Moriasi C.M.
      • Zhang M.
      • Zhao Y.
      • Zou M.H.
      Phosphorylation of serine 399 in LKB1 protein short form by protein kinase Czeta is required for its nucleocytoplasmic transport and consequent AMP-activated protein kinase (AMPK) activation.
      )
      Thr402STRADLKB1 activationHEK293T cell(
      • Baas A.F.
      • Boudeau J.
      • Sapkota G.P.
      • Smit L.
      • Medema R.
      • Morrice N.A.
      • Alessi D.R.
      • Clevers H.C.
      Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD.
      )
      Ser428P90RSKSuppression of the Interaction with AMPKBRAFV600E melanoma cells(
      • Zheng B.
      • Jeong J.H.
      • Asara J.M.
      • Yuan Y.Y.
      • Granter S.R.
      • Chin L.
      • Cantley L.C.
      Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation.
      )
      PKALKB1 inactivationNSCLC cells(
      • Bian T.
      • Wang Y.
      • Botello J.F.
      • Hu Q.
      • Jiang Y.
      • Zingone A.
      • Ding H.
      • Wu Y.
      • Zahra Aly F.
      • Salloum R.G.
      • Warren G.
      • Huo Z.
      • Ryan B.M.
      • Jin L.
      • Xing C.
      LKB1 phosphorylation and deactivation in lung cancer by NNAL, a metabolite of tobacco-specific carcinogen, in an isomer-dependent manner.
      )
      PKCςAMPK activationHUVEC cell(
      • Xie Z.
      • Dong Y.
      • Scholz R.
      • Neumann D.
      • Zou M.H.
      Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells.
      )
      Ser431P90RSKCell growthMelanoma cells(
      • Sapkota G.P.
      • Kieloch A.
      • Lizcano J.M.
      • Lain S.
      • Arthur J.S.
      • Williams M.R.
      • Morrice N.
      • Deak M.
      • Alessi D.R.
      Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth.
      )
      PKACell growthMelanoma cells(
      • Sapkota G.P.
      • Kieloch A.
      • Lizcano J.M.
      • Lain S.
      • Arthur J.S.
      • Williams M.R.
      • Morrice N.
      • Deak M.
      • Alessi D.R.
      Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth.
      )
      PKACo-localization with PAR-3 on Schwann cell-axon surfaceSchwann cell(
      • Shen Y.A.
      • Chen Y.
      • Dao D.Q.
      • Mayoral S.R.
      • Wu L.
      • Meijer D.
      • Ullian E.M.
      • Chan J.R.
      • Lu Q.R.
      Phosphorylation of LKB1/Par-4 establishes Schwann cell polarity to initiate and control myelin extent.
      )
      UbiquitinationunknownHSC70/CHIPLKB1 degradation(
      • Gaude H.
      • Aznar N.
      • Delay A.
      • Bres A.
      • Buchet-Poyau K.
      • Caillat C.
      • Vigouroux A.
      • Rogon C.
      • Woods A.
      • Vanacker J.M.
      • Hohfeld J.
      • Perret C.
      • Meyer P.
      • Billaud M.
      • Forcet C.
      Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.
      )
      unknownHERC2LKB1 degradation(
      • Bai B.
      • Man A.W.
      • Yang K.
      • Guo Y.
      • Xu C.
      • Tse H.F.
      • Han W.
      • Bloksgaard M.
      • De Mey J.G.
      • Vanhoutte P.M.
      • Xu A.
      • Wang Y.
      Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1.
      )
      Lys41, Lys44, Lys48, Lys62, Lys64Skp2-SCFMaintenance of LKB1/STRAD/MO25 complex and activation of LKB1HCC cells(
      • Lee S.W.
      • Li C.F.
      • Jin G.
      • Cai Z.
      • Han F.
      • Chan C.H.
      • Yang W.L.
      • Li B.K.
      • Rezaeian A.H.
      • Li H.Y.
      • Huang H.Y.
      • Lin H.K.
      Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress.
      )
      unknownFBXO22Suppression of assocation with STRAD/MO25 and LKB1 inactivationLung cancer cells(
      • Zhu X.N.
      • He P.
      • Zhang L.
      • Yang S.
      • Zhang H.L.
      • Zhu D.
      • Liu M.D.
      • Yu Y.
      FBXO22 mediates polyubiquitination and inactivation of LKB1 to promote lung cancer cell growth.
      )
      unknownRNF146Suppression of assocation with STRAD/MO25 and LKB1 inactivationCancer cells(
      • Li N.
      • Wang Y.
      • Neri S.
      • Zhen Y.
      • Fong L.W.R.
      • Qiao Y.
      • Li X.
      • Chen Z.
      • Stephan C.
      • Deng W.
      • Ye R.
      • Jiang W.
      • Zhang S.
      • Yu Y.
      • Hung M.C.
      • Chen J.
      • Lin S.H.
      Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling.
      )
      SUMOylationLys178unknownInteraction with and AMPK activationMouse myoblast cell(
      • Ritho J.
      • Arold S.T.
      • Yeh E.T.
      A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress.
      )
      Lys178UBC9Nuclear retention and suppression of association with STRAD/MO25HCC cells(
      • Zubiete-Franco I.
      • Garcia-Rodriguez J.L.
      • Lopitz-Otsoa F.
      • Serrano-Macia M.
      • Simon J.
      • Fernandez-Tussy P.
      • Barbier-Torres L.
      • Fernandez-Ramos D.
      • Gutierrez-de-Juan V.
      • Lopez de Davalillo S.
      • Carlevaris O.
      • Beguiristain Gomez A.
      • Villa E.
      • Calvisi D.
      • Martin C.
      • Berra E.
      • Aspichueta P.
      • Beraza N.
      • Varela-Rey M.
      • Avila M.
      • Rodriguez M.S.
      • Mato J.M.
      • Diaz-Moreno I.
      • Diaz-Quintana A.
      • Delgado T.C.
      • Martinez-Chantar M.L.
      SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer.
      )
      NeddylationunknownunknownLKB1 stabilizationHCC cells(
      • Barbier-Torres L.
      • Delgado T.C.
      • Garcia-Rodriguez J.L.
      • Zubiete-Franco I.
      • Fernandez-Ramos D.
      • Buque X.
      • Cano A.
      • Gutierrez-de Juan V.
      • Fernandez-Dominguez I.
      • Lopitz-Otsoa F.
      • Fernandez-Tussy P.
      • Boix L.
      • Bruix J.
      • Villa E.
      • Castro A.
      • Lu S.C.
      • Aspichueta P.
      • Xirodimas D.
      • Varela-Rey M.
      • Mato J.M.
      • Beraza N.
      • Martinez-Chantar M.L.
      Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer.
      )
      PrenylationCys430unknownMembrane localizationHEK293T cell(
      • Wilkinson S.
      • Hou Y.
      • Zoine J.T.
      • Saltz J.
      • Zhang C.
      • Chen Z.
      • Cooper L.A.
      • Marcus A.I.
      Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity.
      )
      Cys431unknownMembrane localizationMouse cells(
      • Houde V.P.
      • Ritorto M.S.
      • Gourlay R.
      • Varghese J.
      • Davies P.
      • Shpiro N.
      • Sakamoto K.
      • Alessi D.R.
      Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity.
      )
      Cys537unknownTranslocation to the cell cortexDrosophila oocyte(
      • Martin S.G.
      • St Johnston D.
      A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity.
      )
      AcetylationLys48UnknownSIRT1 deacetylates LKB1 to promotes its phosphorylation and cytoplasmic localization.HCC cells(
      • Lan F.
      • Cacicedo J.M.
      • Ruderman N.
      • Ido Y.
      SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation.
      )
      Lys48UnknownSIRT2 deacetylates LKB1 to promotes its cytoplasmic localizationcardiomyocytes(
      • Tang X.
      • Chen X.F.
      • Wang N.Y.
      • Wang X.M.
      • Liang S.T.
      • Zheng W.
      • Lu Y.B.
      • Zhao X.
      • Hao D.L.
      • Zhang Z.Q.
      • Zou M.H.
      • Liu D.P.
      • Chen H.Z.
      SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy.
      )
      Lys64UnknownSIRT1 deacetylates LKB1 to promotes its degradationEndothelial cell(